Skip to main content
Log in

Modeling Plaque Fissuring and Dissection during Balloon Angioplasty Intervention

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Balloon angioplasty intervention is traumatic to arterial tissue. Fracture mechanisms such as plaque fissuring and/or dissection occur and constitute major contributions to the lumen enlargement. However, these types of mechanically-based traumatization of arterial tissue are also contributing factors to both acute procedural complications and chronic restenosis of the treatment site. We propose physical and finite element models, which are generally useable to trace fissuring and/or dissection in atherosclerotic plaques during balloon angioplasty interventions. The arterial wall is described as an anisotropic, heterogeneous, highly deformable, nearly incompressible body, whereas tissue failure is captured by a strong discontinuity kinematics and a novel cohesive zone model. The numerical implementation is based on the partition of unity finite element method and the interface element method. The later is used to link together meshes of the different tissue components. The balloon angioplasty-based failure mechanisms are numerically studied in 3D by means of an atherosclerotic-prone human external iliac artery, with a type V lesion. Image-based 3D geometry is generated and tissue-specific material properties are considered. Numerical results show that in a primary phase the plaque fissures at both shoulders of the fibrous cap and stops at the lamina elastica interna. In a secondary phase, local dissections between the intima and the media develop at the fibrous cap location with the smallest thickness. The predicted results indicate that plaque fissuring and dissection cause localized mechanical trauma, but prevent the main portion of the stenosis from high stress, and hence from continuous tissue damage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.

Similar content being viewed by others

References

  1. Agarwal R., Kaul U., Dev V., Sharma S., Venugopal P. (1991) The morphology of coronary arterial dissection occurring subsequent to angioplasty and its influence on acute complications. Int. J. Cardiol. 31:59–64

    Article  PubMed  CAS  Google Scholar 

  2. Armero F., Garikipati K. (1996) An analysis of strong discontinuities in multiplicative finite strain plasticity and their relation with the numerical simulation of strain localization in solids. Int. J. Solids Struct. 33:2863–2885

    Article  Google Scholar 

  3. Auer M., Stollberger R., Regitnig P., Ebner F., Holzapfel G. A. (2006) 3-D reconstruction of tissue components for atherosclerotic human arteries based on high-resolution MRI. IEEE Trans. Med. Imaging 25:345–357

    Article  PubMed  Google Scholar 

  4. Black A. J., Namay D. L., Niederman A. L., Lembo N. J., Roubin G. S., Douglas J. S. Jr., King III S. B. (1989) Tear or dissection after coronary angioplasty Morphologic correlates of an ischemic complication. Circulation 79:1035–1042

    PubMed  CAS  Google Scholar 

  5. Carson M. W., Roach M. R. (1990) The strength of the aortic media and its role in the propagation of aortic dissection. J. Biomech. 23:579–588

    Article  PubMed  CAS  Google Scholar 

  6. Castaneda-Zuniga W. R., Formanek A., Tadavarthy M., Vlodaver Z., Edwards J. E., Zollikofer C., Amplatz K. (1980) The mechanism of balloon angioplasty. Radiology 135:565–571

    PubMed  CAS  Google Scholar 

  7. Clark J. M., Glagov S. (1985) Transmural organization of the arterial media: The lamellar unit revisited. Arteriosclerosis 5:19–34

    PubMed  CAS  Google Scholar 

  8. Coleman B. D., Noll W. (1963) The thermodynamics of elastic materials with heat conduction and viscosity. Arch. Rat. Mech. Anal. 13:167–178

    Article  Google Scholar 

  9. Coulden R. A., Moss H., Graves M. J., Lomas D. J., Appleton D. S., Weissberg P. L. (2000) High resolution magnetic resonance imaging of atherosclerosis and the response to balloon angioplasty. Heart 83:188–191

    Article  PubMed  CAS  Google Scholar 

  10. Cripps T. R., Morgan J. M., Rickards A. F. (1991) Outcome of extensive coronary artery dissection during coronary angioplasty. Br. Heart J. 66:3–6

    PubMed  CAS  Google Scholar 

  11. Detre K. M., Holmes D. R. Jr., Holubkov R., Cowley M. J., Bourassa M. G., Faxon D. P., Dorros G. R., Bentivoglio L. G., Kent K. M., Myler R. K. (1990) Incidence and consequences of periprocedural occlusion: The 1985-1986 National Heart, Lung, and Blood Institute Percutaneous Transluminal Coronary Angioplasty Registry. Circulation 82:739–750

    PubMed  CAS  Google Scholar 

  12. Finlay H. M., Whittaker P., Canham P. B. (1998) Collagen organization in the branching region of human brain arteries. Stroke 29:1595–1601

    PubMed  CAS  Google Scholar 

  13. Gasser T. C., Holzapfel G. A. (2002) A rate-independent elastoplastic constitutive model for (biological) fiber-reinforced composites at finite strains: Continuum basis, algorithmic formulation and finite element implementation. Comput. Mech. 29:340–360

    Article  Google Scholar 

  14. Gasser T. C., Holzapfel G. A. (2003) Geometrically non-linear and consistently linearized embedded strong discontinuity models for 3D problems with an application to the dissection analysis of soft biological tissues. Comput. Methods Appl. Mech. Eng. 192:5059–5098

    Article  Google Scholar 

  15. Gasser T. C., Holzapfel G. A. (2005) Modeling 3D crack propagation in unreinforced concrete using PUFEM. Comput. Methods Appl. Mech. Eng. 194:2859–2896

    Article  Google Scholar 

  16. Gasser T. C. and G. A. Holzapfel. Physical and numerical modeling of dissection propagation in arteries caused by balloon angioplasty. In Hamza, M. H. (ed.) Proceedings of the 3rd IASTED International Conference on Biomechanics, Anaheim. ACTA Press, 2005, pp. 229–233

  17. Gasser T. C. and G. A. Holzapfel. Finite element modeling of balloon angioplasty by considering overstretch of remnant non-diseased tissues in lesions. Comput. Mech., 2006, online doi 10.1007/s00466-006-0081-6

  18. Gasser T. C., Holzapfel G. A. (2006) 3D crack propagation in unreinforced concrete. A two-step algorithm for tracking 3D crack paths. Comput. Methods Appl. Mech. Eng. 195:5198–5219

    Article  Google Scholar 

  19. Gasser T. C., Holzapfel G. A. (2006) Modeling the propagation of arterial dissection. Eur. J. Mech. A/Solids 25:617–633

    Article  Google Scholar 

  20. Gasser T. C., Ogden R. W., Holzapfel G. A. (2006) Hyperelastic modelling of arterial layers with distributed collagen fibre orientations. J. R. Soc. Interface 3:15–35

    Article  PubMed  Google Scholar 

  21. Haslach, H. W. Rupture mechanisms in circulatory system vascular tissue. In Abstracts of the 5th World Congress of Biomechanics. Munich, Germany, 29 July–4 August 2006. Elsevier, 2006, p. 274

  22. Hillerborg A., Modeer M., Petersson P. E. (1976) Analysis of crack formation and crack growth in concrete by means of fracture mechanics and finite elements. Cement Concr. Res. 6:773–782

    Article  Google Scholar 

  23. Hjemdahl-Monsen C. E., Ambrose J. A., Borrico S., Cohen M., Sherman W., Alexopoulos D., Gorlin R., Fuster V. (1990) Angiographic patterns if balloon inflation during percutaneous transluminal coronary angioplasty: Role of pressure-diameter curves in studying distensibility and elasticity of the stenotic lesion and the mechanism of dilation. J. Am. Coll. Cardiol., 16:569–575

    Article  PubMed  CAS  Google Scholar 

  24. Holzapfel G. A. (2000) Nonlinear Solid Mechanics A Continuum Approach for Engineering. John Wiley & Sons, Chichester

    Google Scholar 

  25. Holzapfel G. A., Gasser T. C. (2001) A viscoelastic model for fiber-reinforced composites at finite strains: Continuum basis, computational aspects and applications. Comput. Methods Appl. Mech. Eng. 190:4379–4403

    Article  Google Scholar 

  26. Holzapfel, G. A., Gasser T. C. (2007). Computational stress–deformation analysis of arterial walls including high-pressure response. Int. J. Cardiol. 116:78–85

    Article  PubMed  Google Scholar 

  27. Holzapfel G. A., Gasser T. C., Ogden R. W. (2000) A new constitutive framework for arterial wall mechanics and a comparative study of material models. J. Elasticity 61:1–48

    Article  Google Scholar 

  28. Holzapfel G. A., Gasser T. C., Ogden R. W. (2004) Comparison of a multi-layer structural model for arterial walls with a Fung-type model, and issues of material stability. J. Biomech. Eng. 126:264–275

    Article  PubMed  Google Scholar 

  29. G. A. Holzapfel, R. W. Ogden (eds.) (2003) Biomechanics of Soft Tissue in Cardiovascular Systems. Springer-Verlag, Wien – New York

    Google Scholar 

  30. Holzapfel, G. A., C. A. J. Schulze-Bauer, and M. Stadler. Mechanics of angioplasty: Wall, balloon and stent. In Casey, J. and G. Bao (eds.) Mechanics in Biology. New York: The American Society of Mechanical Engineers (ASME). AMD-Vol. 242/BED-Vol. 46, 2000, pp. 141–156

  31. Holzapfel, G. A., G. Sommer, M. Auer, P. Regitnig, and R. W. Ogden. Layer-specific 3D residual deformations of human aortas with non-atherosclerotic intimal thickening. Ann. Biomed. Eng., doi 10.1007/s10439-006-9252-z, in press

  32. Holzapfel G. A., Sommer G., Regitnig P. (2004) Anisotropic mechanical properties of tissue components in human atherosclerotic plaques. J. Biomech. Eng. 126:657–665

    Article  PubMed  Google Scholar 

  33. Holzapfel G. A., Stadler M., Gasser T. C. (2005) Changes in the mechanical environment of stenotic arteries during interaction with stents: Computational assessment of parametric stent design. J. Biomech. Eng. 127:166–180

    Article  PubMed  Google Scholar 

  34. Holzapfel G. A., Stadler M., Schulze-Bauer C. A. J. (2002) A layer-specific three-dimensional model for the simulation of balloon angioplasty using magnetic resonance imaging and mechanical testing. Ann. Biomed. Eng. 30:753–767

    Article  PubMed  Google Scholar 

  35. Holzapfel G. A., Weizsäcker H. W. (1998) Biomechanical behavior of the arterial wall and its numerical characterization. Comp. Biol. Med. 28:377–392

    Article  CAS  Google Scholar 

  36. Huber M. S., Mooney J. F., Madison J., Mooney M. R. (1991) Use of a morphologic classification to predict clinical outcome after dissection from coronary angioplasty. Am. J. Cardiol. 68:467–471

    Article  PubMed  CAS  Google Scholar 

  37. Humphrey J. D. (2002) Cardiovascular Solid Mechanics Cells, Tissues, and Organs. Springer-Verlag, New York

    Google Scholar 

  38. Jain S. P., Jain A., Collins T. J., Ramee S. R., White C. J. (1994) Predictors of restenosis: a morphometric and quantitative evaluation by intravascular ultrasound. Am. Heart J. 128:664–673

    Article  PubMed  CAS  Google Scholar 

  39. Kachanov L. M. (1986) Introduction to Continuum Damage Mechanics. Martinus Nijhoff Publishers, Dordrecht, The Netherlands

    Google Scholar 

  40. Lendon C. L., Davies M. J., Born G. V. R., Richardson P. D. (1991) Atherosclerotic plaque caps are locally weakened when macrophages density is increased. Atherosclerosis 87:87–90

    Article  PubMed  CAS  Google Scholar 

  41. Losordo D. W., Rosenfield K., Pieczek A., Baker K., Harding M., Isner J. M. (1992) How does angioplasty work? Serial analysis of human iliac arteries using intravascular ultrasound. Circulation 86:1845–1858

    PubMed  CAS  Google Scholar 

  42. MacLean N. F., Dudek N. L., Roach M. R. (1999) The role of radial elastic properties in the development of aortic dissections. J. Vasc. Surg. 29:703–710

    Article  PubMed  CAS  Google Scholar 

  43. Ogden R. W. (1997) Non-linear Elastic Deformations. Dover, New York

    Google Scholar 

  44. Oliver J. (1996) Modelling strong discontinuities in solid mechanics via strain softening constitutive equations Part 1: Fundamentals. Int. J. Numer. Methods Eng. 39:3575–3600

    Article  Google Scholar 

  45. Ortiz M., Pandolfi A. (1999) Finite-deformation irreversible cohesive elements for three-dimensional crack-propagation analysis. Int. J. Numer. Methods Eng. 44:1267–1282

    Article  Google Scholar 

  46. Patel D. J., Janicki J. S., Carew T. E. (1969) Static anisotropic elastic properties of the aorta in living dogs. Circ. Res. 25:765–779

    PubMed  CAS  Google Scholar 

  47. Popma J. J., Leon M. B., Mintz G. S., Kent K. M., Satler L. F., Garrand T. J., Pichard A. D. (1992) Results of coronary angioplasty using the transluminal extraction catheter. Am. J. Cardiol. 70:1526–1532

    Article  PubMed  CAS  Google Scholar 

  48. Purslow P. P. (1983) Positional variations in fracture toughness, stiffness and strength of descending thoracic pig aorta. J. Biomech. 16:947–953

    Article  PubMed  CAS  Google Scholar 

  49. Rhodin J. A. G. (1980). Architecture of the vessel wall. In: Bohr D. F., Somlyo A. D., Sparks H. V. (eds). Handbook of Physiology, The Cardiovascular System, volume 2. American Physiological Society, Bethesda, Maryland, pp 1–31

    Google Scholar 

  50. Richardson P. D. (2002) Biomechanics of plaque rupture: progress, problems, and new frontiers. Ann. Biomed. Eng. 30:524–536

    Article  PubMed  Google Scholar 

  51. Richardson P. D. (2006) Mechanical properties of atherosclerotic tissues. In: Holzapfel G. A., Ogden R. W. (eds). Mechanics of Biological Tissue. Heidelberg, Springer-Verlag, pp 207–223

    Chapter  Google Scholar 

  52. Roach M. R., He J. C., Kratky R. G. (1999) Tear propagation in isolated, pressurized porcine thoracic aortas. Can. J. Cardiol. 15:569–575

    PubMed  CAS  Google Scholar 

  53. Rose J. H., Ferrante J., Smith J. R. (1981) Universal binding energy curves for metals and bimetallic interfaces. Phys. Rev. Lett. 47:675–678

    Article  CAS  Google Scholar 

  54. Rose J. H., Smith J. R., Ferrante J. (1983) Universal features of bonding in metals. Phys. Rev. B 28:1835–1845

    Article  CAS  Google Scholar 

  55. Saber R. S., Edwards W. D., Bailey K. R., McGovern T. W., Schwartz R. S., Holmes D. R. Jr. (1993) Coronary embolization after balloon angioplasty or thrombolytic therapy: An autopsy study of 32 cases. J. Am. Coll. Cardiol. 22:1283–1288

    Article  PubMed  CAS  Google Scholar 

  56. Salunke N. V., Topoleski L. D. T. (1997) Biomechanics of atherosclerotic plaque. Crit. Rev. Biomed. Eng. 25:243–285

    PubMed  CAS  Google Scholar 

  57. Schöberl J. (2002) NETGEN – A 3D tetrahedral mesh generator – Version. 4.2. University Linz, Austria

    Google Scholar 

  58. Sommer G., T. C. Gasser, P. Regitnig, M. Auer, and G. A. Holzapfel. Dissection of the human aortic media: An experimental study. J. Biomech. Eng., in press

  59. Stary H. C. (2003) Atlas of Atherosclerosis: Progression and Regression 2nd edition. The Parthenon Publishing Group Limited, Boca Raton, London, New York, Washington, D.C.

    Google Scholar 

  60. Taylor R. L. (2002) FEAP – A Finite Element Analysis Program, Version 7.4 User Manual. University of California at Berkeley, Berkeley, California

    Google Scholar 

  61. Tobis J.M., Mallery J., Mahon D., Lehmann K., Zalesky P., Griffith J., Gessert J., Moriuchi M., McRae M., Dwyer M. L. et al. (1991) Intravascular ultrasound imaging of human coronary arteries in vivo. Analysis of tissue characterizations with comparison to in vitro histological specimens. Circulation 83:913–926

    PubMed  CAS  Google Scholar 

  62. Toussaint J. F., Southern J. F., Fuster V., Kantor H. L. (1997) Water diffusion properties of human atherosclerosis and thrombosis measured by pulse field gradient nuclear magnetic resonance. Arterioscler. Thromb. Vasc. Biol. 17:542–546

    PubMed  CAS  Google Scholar 

  63. Toussaint J. F., Southern J. F., Kantor H. L., Jang I. K., Fuster V. (1998) Behavior of atherosclerotic plaque components after in vitro angioplasty and atherectomy studied by high field MR imaging. Magn. Reson. Imaging 16:175–183

    Article  PubMed  CAS  Google Scholar 

  64. Weizsäcker H. W., Pinto J. G. (1988) Isotropy and anisotropy of the arterial wall. J. Biomech. 21:477–487

    Article  PubMed  Google Scholar 

  65. Wolinsky H., Glagov S. (1967) A lamellar unit of aortic medial structure and function in mammals. Circ. Res. 20:90–111

    Google Scholar 

  66. Wriggers P. (2002) Computational Contact Mechanics. John Wiley & Sons, Chichester

    Google Scholar 

  67. Zhou J., Fung Y. C. (1997) The degree of nonlinearity and anisotropy of blood vessel elasticity. Proc. Natl. Acad. Sci. USA 94:14255–14260

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We would like to thank Martin Auer and Dimitrios E. Kiousis for their helpful support to generate the finite element grids. Financial support for this research was partly provided by the Austrian Science Foundation under START-Award Y74-TEC. This support is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gerhard A. Holzapfel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gasser, T.C., Holzapfel, G.A. Modeling Plaque Fissuring and Dissection during Balloon Angioplasty Intervention. Ann Biomed Eng 35, 711–723 (2007). https://doi.org/10.1007/s10439-007-9258-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-007-9258-1

Keywords

Navigation