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Abstract: Vertical optofluidic biosensors based on refractive index sensing promise highest 

sensitivities at smallest area foot-print. Nevertheless, when it comes to large scale fabrication and 

application of such sensors, cheap and robust platforms for sample preparation and supply are 

needed – not to mention the expected ease of use in application. We present an optofluidic sensor 

system using a cyclic olefin copolymer microfluidic chip as carrier and feeding supply for a 

complementary metal-oxide-semiconductor-compatibly fabricated Ge PIN photodetector. Whereas 

typically only passive components of a sensor are located within the microfluidic channel, here the 

active device is directly exposed to the fluid, enabling top-illumination. The capability for detecting 

different refractive indices was verified by different fluids with subsequent recording of the optical 

responsivity. All components excel in their capability to be transferred to large scale fabrication and 

further integration of microfluidic and sensing systems. The photodetector itself is intended to serve 

as a platform for further sophisticated collinear sensing approaches. 

--- 

Optical biosensors based on refractive index sensing concepts utilize the sensitivity of structures such 

as waveguides (Blanco et al. 2006), microring resonators (De Vos et al. 2007), plasmonic 

nanoantennas (Chen et al. 2011), and plasmonic nanohole arrays (Brolo et al. 2004) to changes in the 

surrounding refractive index induced by analyte-ligand binding events (Damborský et al. 2016). The 

resulting change in optical response can be used for highly sensitive detection of biomolecules. 

Refractive index sensors support on-chip integration with signal conditioning circuits as well as 

wireless transmission for ultra-compact sensing solutions. Thus, setups that combine microrings for 

optical sensing with integrated Ge detectors have been realized experimentally (Zang et al. 2015). 

For even more compact integrated sensors, plasmonic nanohole arrays (Guyot et al. 2011), 

plasmonic gratings (Patskovsky and Meunier 2013; Perino et al. 2014) and nanodiscs (Mazzotta et al. 

2010) have been positioned directly onto Si-based photodetectors for on-chip electrical detection of 

the optical response. Besides their ability to analyze minute sample volumes, such sensors offer 
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additional advantages of small device footprints and, as a consequence, low fabrication cost. Their 

vertical illumination eliminates furthermore the need for optical coupling into waveguide structures. 

While most of the experimental work is dedicated to the improvement of the optical sensing 

sensitivity, much less effort has been devoted to aspects of system integration (Laplatine et al. 2017). 

For practical on-chip applications, sensors consisting of plasmonic structures situated on top of 

photodetectors have to be placed directly into microfluidic channels; this contrasts with 

interferometer-based solutions, in which only passive components of the sensor are in contact with 

fluids. Complications that can arise from a placement of active photodetectors within the channel 

include leakage of the microfluidic channel due to surface structuring necessary in the device 

fabrication process as well as short-out of the device if electrolytes are used as fluidic media. Here, 

we investigate the viability of a microfluidic system consisting of a cyclic olefin copolymer (COC) 

microfluidic chip for application with on-chip Ge-based diodes as complementary metal-oxide-

semiconductor (CMOS) compatible photodetectors. Cost and integration aspects are primary 

motivations for the choice of our materials. Figures of merit for photonic biosensors concern the limit 

of detection, multiplexibility and fabrication cost (Erickson et al. 2008). Sensor fabrication costs, in 

particular, can be reduced if the well-established CMOS technology can be used. CMOS-compatible 

sensor fabrication comprises furthermore the advantageous possibility of manufacturing the 

photonic biosensor with high yield and at a low price per unit as well as the possibility to integrate it 

simultaneously into read-out circuits and data processing units maximizing the integration level. 

Additionally, in large scale fabrication, joining as well as machining processes have to be taken into 

account since they are expensive and limiting the yield.  

Beyond the implementation of CMOS fabrication technology, polymeric materials play a major role in 

the field of integrated sensors due to their broad variation in their properties and the wide range of 

prototype fabrication techniques like e.g. milling or hot embossing. Moreover, the availability of 

cheap mass fabrication techniques like injection-molding opens the field of disposable devices. 

In the early development stage of integrated sensors, polydimethylsiloxane (PDMS) provides a rapid 

way to carry out preliminary tests enabled by its straightforward processability via casting as well as 

its self-sealing properties due to its softness. More rigid materials like COC or polycarbonate (PC) 

have the advantage, in comparison to PDMS, that the microfluidic channel cross-section or the 

overall shape is relatively pressure resistant and, hence, better suitable for systems, in which a 

hydraulic force is used for fluid transportation. Nevertheless the integration of rigid sensors is more 

complex, because a sealing material has to be additionally integrated to achieve a leak tight sensor 

packaging.  



 
 

3 
 

In this work COC was chosen as fluidic chip material due to its high transparency over a broad 

wavelength range that allows in future applications the light source to be placed outside of the 

microfluidic channel, which minimizes malfunctions of the illumination source. In addition, the low 

water absorption, the high compressive strength in comparison to PMDS, and the possibility to 

upscale the fabrication by using injection moulding are advantageous for our application. 

Our optofluidic sensor system is shown schematically in Fig. 1. The microfluidic channels were 

realized by three components (see Fig. 1b), which are the microfluidic chip, the adhesive tape and 

the Si-substrate. Tubing connectors and feeding channels were milled into the COC microfluidic chip, 

which was supplied by TOPAS® and covered with a pressure-sensitive adhesive (Absolute QPCR Seal 

(AB-1170)) ordered from Thermo Scientific®. The channels conducting the fluid over the 

photodetectors were formed in double-sided adhesive tape by ablation with a CO2 laser. Using the 

double-sided adhesive tape, the Si-substrates with a feed size of 10 mm were glued manually into a 

pocket milled into the microfluidic chip, taking care to align the channels in the adhesive tape with 

the channels in the microfluidic chip. The electrical contacts are still readily accessible from one side 

since the microfluidic chip does not fully cover the Si-substrate (Fig. 1a). 

A schematic cross-section through the active device region of the Ge PIN photodetector is shown in 

Fig. 1e. The semiconductor layers are grown by a solid-source molecular beam epitaxy system on a p-

-Si substrate. Layer growth started with the deposition of a 100 nm B-doped Ge-layer that was 

annealed at 850 °C to form a virtual substrate in order to enable the subsequent growth of high-

quality Ge-layers (Kasper et al. 1998). Layer growth continued with the deposition of a 300 nm p-

doped Ge-layer and a 300 nm intrinsic Ge-layer followed by a top contact layer consisting of 100 nm 

n-doped Ge and 100 nm n-doped Si. The topmost layer is composed of Si in order to facilitate 

contacting the device. The doping concentrations in the p-doped region as well as in the n-doped 

region are 1020 cm-3. A vertical layer growth approach has been used in several concepts that 

necessitate the integration of Ge-photodetectors on a Si-platform and is also available as foundry 

process in the context of group-IV photonic devices for communication technologies (Beals et al. 

2008). In industry-scale wafer production, vertical layer growth is realized by differential epitaxy 

using a plasma-enhanced chemical vapor deposition (PECVD) process in the front end of line (FEOL) 

of fabrication. 
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Device fabrication started with mesa-structuring using standard photolithography and an inductively 

coupled plasma reactive-ion etching (ICP-RIE) process. The mesa height of only 600 nm can be 

expected to have negligible influence on the properties of the microfluidic channel. After passivation 

with SiO2 from a PECVD-process and opening of contact holes defined through a lithography process, 

sputtered Al was used as a CMOS-compatible metal contact-layer and structured with 

photolithography and dry-etching. The samples were diced into 10x10 mm chips containing 2x10 

diodes aligned for use in two microfluidic channels (see Fig. 1c and Fig. 1d).  

Fig. 1: Details of the optofluidic sensing system. (a) Image of the optofluidic sensing system under test. (b) 

Complete microfluidic setup with microfluidic chip with milled microfluidic channels and tubing connectors 

for inlet and outlet from the two microfluidic lines. Using the double-sided adhesive tape, with the two 

fluidic lines fabricated by laser ablation, the prepared Si-substrate is glued into a cavity inside the 

microfluidic chip. (c) Mask layout of the Si-substrate with 10 x 10 mm with two lines of photodetectors for 

use inside two separated microfluidic channels and contact metallization. (d) Mask layout of one single 

photodetector. (e) Schematic 3D plot of the Ge PIN photodetector showing the MBE-layers as well as 

passivation and Al-metallization. 
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The optofluidic sensing system was tested by filling the microfluidic channels sequentially with 

different fluids (Ethanol, Isopropanol and DI-water; all “very large scale integration” (VLSI) quality) 

and recording the optical response of the photodetector under illumination with light of different 

wavelengths. The illumination was provided by an external light source and coupled into the sensor 

via a glass fiber in vertical incidence (see Fig. 1a) whose alignment relative to the detector remained 

fixed for the complete duration of the measurements performed on the device. The glass fiber was 

fed by a super-continuum light-source equipped with an acousto-optical tunable filter able to supply 

narrow output spectra over a broad wavelength range. The photodetector was operated in 

photovoltaic mode (with external bias 𝑉bias = 0) and diode currents with (𝐼light(𝜆)) and without 

(𝐼dark(𝜆)) illumination were measured with an on-wafer semiconductor analyzer for incident 

wavelengths in the range from 1250 nm to 1600 nm and in steps of 5 nm. The responsivity 𝑅opt(𝜆) of 

the devices is obtained by dividing the photocurrent 𝐼light(𝜆) − 𝐼dark(𝜆) by the incident optical 

power Φopt(𝜆) pointwise: 

𝑅opt(𝜆) =
𝐼light(𝜆) − 𝐼dark(𝜆)

Φopt(𝜆)
 

The incident optical power Φopt(𝜆) is monitored by measuring it after each measurement of diode 

currents 𝐼light(𝜆) and without 𝐼dark(𝜆) at a fixed wavelength. The main source of experimental error 

in our setup is given by the measurement accuracy of the semiconductor analyzer (±0.1 %) leading 

to error bars smaller than the symbol size in the plots shown in Fig. 2.  

Since the radiation has to penetrate through the microfluidic chip as well as the sample volume 

before reaching the photodetector the recorded photocurrents differ depending on the refractive 

index of the fluid filling the microfluidic channel and absorption within the fluid.  
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Figure 2 shows the responsivity for two different photodetectors with a diameter of 80 µm and 40 

µm when filling the channel with the previously mentioned fluids or keeping it empty (air). It can be 

clearly seen that filling the channel with a fluid of higher refractive index increases the responsivity 

since the reflection at the COC-channel as well as channel-semiconductor interface decreases 

compared to an air-filled channel. Furthermore, as shown in Fig. 2 for the photodetector with a 

diameter of 40 μm, the change in responsivity when introducing either ethanol (with refractive index 

nEtOH = 1.353) or isopropanol (nIPA = 1.375) into the channel is large compared to an air-filled channel 

(nair = 1). By comparison, the responsivities obtained for an isopropanol-filled channel and for an 

ethanol-filled channel are almost identical for wavelengths below 1400 nm as a result of the small 

difference in refractive indices of the two fluids. Finally, the characteristic absorption of water (nDI = 

1.321) around 1450 nm lowers the responsivity in this wavelength region, making it clearly 

distinguishable from the other fluids. Additionally, a feature from the microfluidic chip is visible at 

1400 nm where COC absorbs in a small band (compare to Fig. 3 (TOPAS Advanced Polymers 2017)). 

When normalizing the responsivity obtained from a filled microfluidic channel to an empty channel’s 

responsivity, i.e. when calculating 

𝑉 =
𝑅opt,fluid

𝑅opt,air
 

the different fluids can clearly be differentiated (lower graphs in Fig. 2). The higher ratio observed at 

the photodetector with a diameter of 40 µm can be attributed to the lower refraction at the above 

Fig. 2: Responsivities measured on a photodetector with 80 µm diameter and 40 µm diameter under 

different microfluidic conditions. Lower graphs show the responsivities of the fluids normalized to the 

responsivities of an air filled fluidic channel. 
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mentioned COC-channel interface when filling the channel with a fluid, funneling more light into the 

detector. This aspect can also be recognized from the lower responsivity measured at this detector 

since the initially collimated incident light is scattered at the air-COC interface, widening the beam 

cone such that it becomes larger than detector surface. We note that for this reason, glass fiber 

alignment with respect to the detector has to be kept fixed during measurements in order to be able 

to compare responsivity spectra for different fluids present in the microfluidic channel.   

This proof-of-concept of a simplistic refractive index sensor can be used as a platform for further 

improved CMOS-devices, which are e.g. equipped with localized surface plasmon resonance (LSPR) 

based sensing approaches using metallic nanostructures (Canalejas-Tejero et al. 2014; Augel et al. 

2016; Fischer et al. 2016). The platform even offers the feasibility of the complex flow-through 

instead of the classical flow-over LSPR sensing unit approach (Escobedo et al. 2010). Here, shorter 

sensor response times can be achieved, by circumventing the mainly convective mass transport to 

the sensing surface in flow-over sensors. Combining the refractive index detector and transducer 

within the same device would further decrease sample preparation complexity and overall size (Cetin 

et al. 2014) of such systems. 

In this work, we found that it is possible to use a microfluidic chip made from COC as a carrier for a 

Ge PIN photodetector fabricated in CMOS compatible technology. In our setup, the detector for a 

vertical and top-illuminated optofluidic sensing unit is completely located within the microfluidic 

channel. Utilizing this setup for future integrated biosensors can be expected to result in a reduction 

of the price per unit since production costs in CMOS fabrication depend on the sensor area and large-

scale fabrication of the microfluidic chip is possible by injection molding. Absorption within the COC 

material used for the microfluidic waveguides does not limit the sensing capabilities: our simple 

sensor was able to distinguish between fluids with different refractive indices flowing over the 

detector. Within the scope of future work the detector will be equipped with a plasmonic nanohole 

array combining high-sensitivity sensing using LSPR (Augel et al. 2016) and detection within one 

device. 
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