Skip to main content

Advertisement

Log in

Test–retest variability in structural parameters measured with glaucoma imaging devices

  • Review
  • Published:
Japanese Journal of Ophthalmology Aims and scope Submit manuscript

Abstract

In addition to classical stereo-disc photography, various glaucoma imaging devices were developed in the last two decades to quantitatively measure and record glaucoma-related structural parameters of the eye. In determining whether or not the glaucomatous damage progressed from baseline and in estimating the number of test results’ optimal frequency needed to confirm disease progression, information relating to the test–retest variability of measurement results provided by each imaging device is indispensable. Such information enables the clinician to apply these devices in practice. The test–retest variability of a system is usually estimated using the Bland–Altman analysis and by calculating the coefficient of variation (CV), intraclass correlation coefficient (ICC), and minimum detectable changes (MDC). The reported CV, ICC, and MDC values for glaucoma-related structural parameter measurement results of stereo-disc photographs, confocal scanning laser ophthalmoscopes, scanning laser polarimeters, time-domain optical coherence tomography (OCT), spectral-domain OCT (SD-OCT), anterior-segment OCT, and ultrasound biomicroscope are systematically reviewed in this manuscript, which will enable the clinician to interpret measurement results provided by each glaucoma imaging devices and thus be useful in practice. Although SD-OCT systems may be currently prevailing because of the volume of information provided and the relatively better test–retest variability, these systems need improvement in their test–retest variability measurement capabilities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chauhan BC, Garway-Heath DF, Gońi FJ, Rossetti L, Bengtsson B, Viswanathan AC, et al. Practical recommendations for measuring rates of visual field change in glaucoma. Br J Ophthalmol. 2008;92:569–73.

    Article  PubMed  CAS  Google Scholar 

  2. Bunce C. Correlation, agreement, and Bland–Altman analysis: statistical analysis of method comparison studies. Am J Ophthalmol. 2009;148:4–6.

    Article  PubMed  Google Scholar 

  3. Bland JM, Altman DG. Statistical methods for assessing agreement between two methods of clinical measurement. Lancet. 1986;1:307–10.

    Article  PubMed  CAS  Google Scholar 

  4. Bland JM, Altman DG. Measuring agreement in method comparison studies. Stat Methods Med Res. 1999;8:135–60.

    Article  PubMed  CAS  Google Scholar 

  5. Fleiss JL, Levin B, Paik MC. Statistical methods for rates and proportions. Hoboken: Wiley; 2003.

    Book  Google Scholar 

  6. Shrout PE, Fleiss JL. Intraclass correlations: use in assessing rater reliability. Psychol Bull. 1979;86:420–8.

    Article  PubMed  CAS  Google Scholar 

  7. Bartko JJ. On various intraclass correlation reliability coefficient. Psychol Bull. 1976;83:727–5.

    Article  Google Scholar 

  8. Tsushima H. Intraclass correlation coefficient as a measure of reliability. http://www.hs.hirosaki-u.ac.jp/~pteiki/research/stat/icc.pdf Accessed 14 May 2012.

  9. Shimoi T, Tani H. The absolute reliability of two different tandem gait tests with minimal detectable change. Rigakuryoho Kagaku (in Japanese). 2009;25:49–53.

    Article  Google Scholar 

  10. Faber MJ, Bosscher RJ, van Wieringen PCW. Clinical properties of the performance-oriented mobility assessment. Phys Ther. 2006;86:944–54.

    PubMed  Google Scholar 

  11. Strouthidis NG, White ET, Owen VM, Ho TA, Hammond CJ, Garway-Heath DF. Factors affecting the test–retest variability of Heidelberg retina tomograph and Heidelberg retina tomograph II measurements. Br J Ophthalmol. 2005;89:1427–32.

    Article  PubMed  CAS  Google Scholar 

  12. Fayers T, Strouthidis NG, Garway-Heath DF. Monitoring glaucomatous progression using event. Ophthalmology. 2007;114:1973–80.

    Article  PubMed  Google Scholar 

  13. Caprioli J, Jonas J, Vasile C. Optic disc photographs. In: Weireb RN, Greve EL, editors. Glaucoma diagnosis. Structure and function. The Hague: Kugler Publications; 2004. p. 39–46.

    Google Scholar 

  14. Parish RK II, Schiffman JC, Feuer WJ, Anderson DR, Budenz DL, Wells-Albornoz MC, et al. Ocular Hypertension treatment study group. Test–retest reproducibility of optic disc deterioration detected from stereophotographs by masked graders. Am J Ophthalmol. 2005;140:762–4.

    Google Scholar 

  15. Zeyen T, Miglior S, Pfeiffer N, Cunna-Vaz J, European Glaucoma Prevention Study Group. Reproducibility of evaluation of optic disc change for glaucoma with stereo optic disc photographs. Ophthalmology. 2003;110:340–4.

    Article  PubMed  Google Scholar 

  16. O’Leary N, Crabb DP, Mansberger SL, Fortune B, Twa MD, Lloyd MJ, et al. Glaucomatous progression in series of stereoscopic photographs and Heidelberg retina tomography images. Arch Ophthalmol. 2010;128:560–8.

    Article  PubMed  Google Scholar 

  17. Kass MA, Heuer DK, Higginbotham EJ, Johnson CA, Keltner JL, Miller JP, et al. for the Ocular Hypertension Treatment Study Group. The Ocular Hypertension Treatment Study. A randomized trial determines that topical ocular hypotensive medication delays or prevents the onset of primary open-angle glaucoma. Arch Ophthalmol. 2002;120:701–13.

    Google Scholar 

  18. The European Glaucoma Prevention Study (EGPS) Group. Results of the European glaucoma prevention study. Ophthalmology. 2005;112:366–75.

    Article  Google Scholar 

  19. Sommer A, Pollack I, Maumenee AE. Optic disc parameters and onset of glaucomatous field loss. I. Methods and progressive changes in disc morphology. Arch Ophthalmol. 1979;97:1444–8.

    Article  PubMed  CAS  Google Scholar 

  20. Klein BE, Magli YL, Richie KA, Moss SE, Meuer SM, Klein R. Quantitation of optic disc cupping. Ophthalmology. 1985;92:1654–6.

    PubMed  CAS  Google Scholar 

  21. Klein BE, Moss SE, Magli YL, Klein R, Johnson JC, Roth H. Optic disc cupping as clinically estimated from photographs. Ophthalmology. 1987;94:1481–3.

    PubMed  CAS  Google Scholar 

  22. Tielsch JM, Katz J, Quigley HA, Miller NR, Sommer A. Intraobserver and interobserver agreement in measurement of optic disc characteristics. Opthalmology. 1988;95:350–6.

    CAS  Google Scholar 

  23. Varma R, Spaeth GL, Steinmann WC, Katz LJ. Agreement between clinicians and an image analyzer in estimating cup-to-disc ratios. Arch Ophthalmol. 1989;107:526–9.

    Article  PubMed  CAS  Google Scholar 

  24. Varma R, Steinmann WC, Scott IU. Expert agreement in evaluating the optic disc for glaucoma. Ophthalmology. 1992;99:215–21.

    PubMed  CAS  Google Scholar 

  25. Abrams LS, Scott IU, Spaeth GL, Quigley HA, Varma R. Agreement among optometrists, ophthalmologists, and residents in evaluating the optic disc for glaucoma. Ophthalmology. 1994;101:1662–7.

    PubMed  CAS  Google Scholar 

  26. Zangwill L, Shakiba S, Caprioli J, Weinreb RN. Agreement between clinicians and a confocal scanning laser ophthalmoscope in estimating cup/disc ratios. Am J Ophthalmol. 1995;119:415–21.

    PubMed  CAS  Google Scholar 

  27. Morgan JE, Sheen NJL, North RV, Goyal R, Morgan S, Ansari E, et al. Discrimination of glaucomatous optic neuropathy by digital stereoscopic analysis. Ophthalmology. 2005;112:855–62.

    Article  PubMed  CAS  Google Scholar 

  28. Caprioli J, Prum B, Zeyen T. Comparison of methods to evaluate the optic nerve head and nerve fiber layer for glaucomatous change. Am J Ophthalmol. 1996;121:659–67.

    PubMed  CAS  Google Scholar 

  29. Rosenthal AR, Kottler MS, Donaldson DD, Falconer DG. Comparative reproducibility of the digital photogrammetric procedure utilizing three methods of stereophotography. Invest Ophthalmol Vis Sci. 1977;16:54–60.

    PubMed  CAS  Google Scholar 

  30. Takamoto T, Schwartz B. Reproducibility of photogrammetric optic disc cup measurements. Invest Ophthalmol Vis Sci. 1985;26:814–7.

    PubMed  CAS  Google Scholar 

  31. Stürmer J, Poinoosawmy D, Broadway DC, Hitchings RA. Intra- and inter-observer variation of optic nerve head measurements in glaucoma suspects using disc-data. Int Ophthalmol. 1992;16:227–33.

    Article  PubMed  Google Scholar 

  32. Garway-Heath DF, Poinoosawmy D, Wollstein G, Viswanathan A, Kamal D, Fontana L, et al. Inter- and intraobserver variation in the analysis of optic disc images: comparison of the Heidelberg retina tomograph and computer assisted planimetry. Br J Ophthalmol. 1999;83:664–9.

    Article  PubMed  CAS  Google Scholar 

  33. Nguyen NX, Meindl C, Horn FK, Dzialach M, Langenbucher A, Jünemann A, et al. Digital planimetry for long-term follow-up of glaucomatous optic disk injuries in patients with normal pressure glaucoma. Ophthalmologe (in German). 2004;101:589–94.

    CAS  Google Scholar 

  34. Gramer E, Siebert M. Optic nerve head measurements: the optic nerve head analyzer—its advantages and its limitations. Int Ophthalmol. 1989;13:3–13.

    Article  PubMed  CAS  Google Scholar 

  35. Funk J, Steeb R. Improved reproducibility of computer-assisted structural analysis of the optic papilla. Klin Monbl Augenheilkd (in German). 1991;199:25–9.

    Article  CAS  Google Scholar 

  36. Janknecht P, Funk J. Optic nerve head analyzer and Heidelberg retina tomograph: accuracy and reproducibility of topographic measurements in a model eye and in volunteers. Br J Ophthalmol. 1994;78:760–8.

    Article  PubMed  CAS  Google Scholar 

  37. Shields MB, Martone JF, Shelton AR, Ollie AR, Macmillan J. Reproducibility of topographic measurements with the optic nerve head analyzer. Am J Ophthalmol. 1987;104:581–6.

    PubMed  CAS  Google Scholar 

  38. Mikelberg FS, Douglas GR, Schulzer M, Cormsweet TN, Wijsman K. Reliability of optic disk topographic measurements recorded with a video-ophthalmograph. Am J Ophthalmol. 1984;98:98–102.

    Article  PubMed  CAS  Google Scholar 

  39. Caprioli J, Klingbeil U, Sears M, Pope B. Reproducibility of optic disc measurements with computerized analysis of stereoscopic video images. Arch Ophthalmol. 1986;104:1035–9.

    Article  PubMed  CAS  Google Scholar 

  40. Azuara-Blanco A, Harris A, Cantor LB. Reproducibility of optic disk topographic measurements with the Topcon ImageNet and the Heidelberg Retina Tomograph. Ophthalmologica. 1998;212:95–8.

    Article  PubMed  CAS  Google Scholar 

  41. Nanba K, Shirakashi M, Fukuchi T, Iwata K. Stereomorphometry of optic disc cupping with a computer image analyzer IMAGE net. Rinsho Ganka (in Japanese). 1989;43:535–8.

    Google Scholar 

  42. Janknecht P, Funk J. Optic nerve head analyzer and Heidelberg retinal tomograph: relative error and reproducibility of topographic measurements in a model eye with simulated cataract. Graefes Arch Clin Exp Ophthalmol. 1995;233:523–9.

    Article  PubMed  CAS  Google Scholar 

  43. Azuara-Blanco A, Spaeth GL, Nicholl J, Lanzl IM, Augsburger JJ. Comparison between laser scanning tomography and computerised image analysis of the optic disc. Br J Ophthalmol. 1999;83:295–8.

    Article  PubMed  CAS  Google Scholar 

  44. Azuara-Blanco A, Katz LJ, Spaeth GL, Nicholl J, Lanzl IM. Detection of changes of the optic disc in glaucomatous eyes: clinical examination and image analysis with the Topcon Imagenet system. Acta Ophthalmol Scand. 2000;78:647–50.

    Article  PubMed  CAS  Google Scholar 

  45. Ikram MK, Borger PH, Assink JJ, Jonas JB, Hofman A, de Jong PT. Comparing ophthalmoscopy, slide viewing, and semiautomated systems in optic disc morphometry. Ophthalmology. 2002;109:486–93.

    Article  PubMed  Google Scholar 

  46. Sung VCT, Bhan A, Vernon SA. Agreement in assessing optic discs with a digital stereoscopic optic disc camera (Discam) and Heidelberg retina tomograph. Br J Ophthalmol. 2002;86:196–202.

    Article  PubMed  Google Scholar 

  47. Shuttleworth GN, Khong CH, Diamong JP. A new digital optic stereo camera: intraobserver and interobserver repeatability of optic disc measurements. Br J Ophthalmol. 2000;84:403–7.

    Article  PubMed  CAS  Google Scholar 

  48. Saito H, Tsutsumi T, Iwase A, Tomidokoro A, Araie M. Correlation of disc morphology quantified on stereophotographs to results by Heidelberg retina tomograph II, GDx variable corneal compensation, and visual field tests. Ophthalmology. 2010;117:282–9.

    Article  PubMed  Google Scholar 

  49. Correnti AJ, Wollstein G, Price LL, Schuman JS. Comparison of optic nerve head assessment with a digital stereoscopic camera (Discam), scanning laser ophthalmoscopy, and stereophotography. Ophthalmology. 2003;110:1499–505.

    Article  PubMed  Google Scholar 

  50. Jayasundera T, Danesh-Meyer HV, Donaldson M, Gamble G. Agreement between stereoscopic photographs, clinical assessment, Heidelberg retina tomograph and digital stereoscopic optic disc camera in estimating vertical cup: disc ratio. Clin Exp Ophthalmol. 2005;33:259–63.

    Article  Google Scholar 

  51. Januschowski K, Blumenstock G, Rayford CE 2nd, Bartz-Schmidt KU, Shiefer U, Ziemssen F. Stereometric parameters of the optic disc. Comparison between a simultaneous non-mydriatic stereoscopic fundus camera (KOWA WX 3D) and the Heidelberg scanning laser ophthalmoscope (HRT III). Ophthalmologe (in German). 2011;108:957–62.

    Article  CAS  Google Scholar 

  52. Quigley HA, Katz J, Derick R, Gilbert D, Sommer A. An evaluation of optic disc and nerve fiber layer examinations in monitoring progression of early glaucoma damage. Ophthalmology. 1992;99:19–28.

    PubMed  CAS  Google Scholar 

  53. Kim TW, Park UC, Park KH, Kim DM. Ability of Stratus OCT to identify localized retinal nerve fiber layer defects in patients with normal standard automated perimetry results. Invest Ophthalmol Vis Sci. 2007;48:1635–41.

    Article  PubMed  Google Scholar 

  54. Suh MH, Kim DM, Kim YK, Kim TW, Park KH. Patterns of progression of localized retinal nerve fiber layer defect on red-free fundus photographs in normal-tension glaucoma. Eye. 2010;24:857–63.

    Article  PubMed  CAS  Google Scholar 

  55. Yoo YC, Park KH. Influence of angular width and peripapillary position of localized retinal nerve fiber layer defects on their detection by time-domain optical coherence tomography. Jpn J Ophthalmol. 2011;55:115–22.

    Article  PubMed  Google Scholar 

  56. Nitta K, Sugiyama K, Higashide T, Ohkubo S, Tanahashi T, Kitazawa Y. Does the enlargement of retinal nerve fiber layer defects relate to disc hemorrhage or progressive visual field loss in normal-tension glaucoma? J Glaucoma. 2011;20:189–95.

    Article  PubMed  Google Scholar 

  57. Hwang JM, Kim TW, Park KH, Kim DM, Kim H. Correlation between topographic profiles of localized retinal nerve fiber layer defects as determined by optical coherence tomography and red-free fundus photography. J Glaucoma. 2006;15:223–8.

    Article  PubMed  Google Scholar 

  58. Yoo YC, Park KH. Comparison of optical coherence tomography and scanning laser polarimetry for detection of localized retinal nerve fiber layer defects. J Glaucoma. 2010;19:229–36.

    Article  PubMed  Google Scholar 

  59. Jeoung JW, Park KH, Kim TW, Khwarg SI, Kim DM. Diagnostic ability of optical coherence tomography with a normative database to detect localized retinal nerve fiber layer defects. Ophthalmology. 2005;112:2157–63.

    Article  PubMed  Google Scholar 

  60. Jeoung JW, Park KH. Comparison of cirrus OCT and stratus OCT on the ability to detect localized retinal nerve fiber layer defects in preperimetric glaucoma. Invest Ophthalmol Vis Sci. 2010;51:938–45.

    Article  PubMed  Google Scholar 

  61. Nukada M, Hangai M, Mori S, Nakano N, Nakanishi H, Ohashi-Ikeda H, et al. Detection of localized retinal nerve fiber layer defects in glaucoma using enhanced spectral-domain optical coherence tomography. Ophthalmology. 2011;118:1038–48.

    Article  PubMed  Google Scholar 

  62. Tan JCH, Hitchings RA. Reference plane definition and reproducibility in optic nerve head images. Invest Ophthalmol Vis Sci. 2003;44:1132–7.

    Article  PubMed  Google Scholar 

  63. Jampel HD, Vitale S, Ding Y, Quigley H, Friedman D, Congdon N, Zeimer R. Test–retest variability in structural and functional parameters of glaucoma damage in the glaucoma imaging longitudinal study. J Glaucoma. 2006;15:152–7.

    Article  PubMed  Google Scholar 

  64. Strouthidis NG, White ET, Owen VM, Ho TA, Garway-Heath DF. Improving the repeatability of Heidelberg retina tomograph and Heidelberg retina tomograph II rim area measurements. Br J Ophthalmol. 2005;89:1433–7.

    Article  PubMed  CAS  Google Scholar 

  65. Ortega JED, Sakata LM, Kakati B, McGwin G Jr, Monheit BE, Arthur SN, et al. Effect of glaucomatous damage on repeatability of confocal scanning laser ophthalmoscope, scanning laser polarimetry, and optical coherence tomography. Invest Ophthalmol Vis Sci. 2007;48:1156–63.

    Article  Google Scholar 

  66. Leung CKS, Kheung CYL, Lin D, Pang CP, Lam DSC, Weinreb RN. Longitudinal variability of optic disc and retinal nerve fiber layer measurements. Invest Ophthalmol Vis Sci. 2008;49:4886–92.

    Article  PubMed  Google Scholar 

  67. Asaoka R, Strouthidis NG, Kappou V, Gardiner SK, Garway-Heath DF. HRT-3 Moorfields reference plane: effect on rim area repeatability and identification of progression. Br J Ophthalmol. 2009;93:1510–3.

    Article  PubMed  CAS  Google Scholar 

  68. Lin D, Leung CKS, Weinreb RN, Cheung CYL, Li H, Lam DSC. Longitudinal evaluation of optic disc measurement variability with optical coherence tomography and confocal scanning laser ophthalmoscopy. J Glaucoma. 2009;18:101–6.

    Article  PubMed  Google Scholar 

  69. Shpak AA, Sevostyanova MK, Ogorodnikova SN, Shormaz IN. Comparison of measurement error of cirrus HD-OCT and Heidelberg retina tomograph 3 in patients with early glaucomatous visual field defect. Graefes Arch Clin Exp Ophthalmol. 2012;250:271–7.

    Article  PubMed  Google Scholar 

  70. Rohrschneider AK, Burk ROW, Völcker HE. Reproducibility of topometric data acquisition in normal and glaucomatous optic nerve heads with the laser tomographic scanner. Graefes Arch Clin Exp Ophthalmol. 1993;231:457–64.

    Article  PubMed  CAS  Google Scholar 

  71. Sihota R, Gulati V, Agarwal HC, Saxena R, Sharma A, Pandey RM. Variables affecting test–retest variability of Heidelberg retina tomograph II stereometric parameters. J Glaucoma. 2002;11:321–8.

    Article  PubMed  Google Scholar 

  72. Miglior S, Albé E, Guareschi M, Rossetti L, Orzalesi N. Intraobserver and interobserver reproducibility in the evaluation of optic disc stereometric parameters by Heidelberg retina tomograph. Ophthalmology. 2002;109:1072–7.

    Article  PubMed  Google Scholar 

  73. Watkins RJ, Broadway DC. Intraobserver and interobserver reliability indices for drawing scanning laser ophthalmoscope optic disc contour lines with and without the aid of optic disc photographs. J Glaucoma. 2005;14:351–7.

    Article  PubMed  Google Scholar 

  74. Larsson E, Nuija E, Alm A. The optic nerve head assessed with HRT in 5–16-year-old normal children: normal values, repeatability and interocular difference. Acta Ophthalmol. 2011;89:755–8.

    Article  PubMed  Google Scholar 

  75. Chauhan BC, LeBlanc RP, McCormick TA, Rogers JB. Test–retest variability of topographic measurements with confocal scanning laser tomography in patients with glaucoma and control subjects. Am J Ophthalmol. 1994;118:9–15.

    PubMed  CAS  Google Scholar 

  76. Brigatti L, Weitzman M, Caprioli J. Regional test–retest variability of confocal scanning laser tomography. Am J Ophthalmol. 1995;120:433–40.

    PubMed  CAS  Google Scholar 

  77. Tan JCH, Garway-Heath DF, Fitzke FW, Hitchings RA. Reasons for rim area variability in scanning laser tomography. Invest Ophthalmol Vis Sci. 2003;44:1126–31.

    Article  PubMed  Google Scholar 

  78. Poli A, Strouthidis NG, Ho TA, Garway-Heath DF. Analysis of HRT images: comparison of reference planes. Invest Ophthalmol Vis Sci. 2008;49:3970–5.

    Article  PubMed  Google Scholar 

  79. Tan JCH, Garway-Heath DF, Hitchings RA. Variability across the optic nerve head in scanning laser tomography. Br J Ophthalmol. 2003;87:557–9.

    Article  PubMed  CAS  Google Scholar 

  80. Owen VMF, Strouthidis NG, Garway-Heath DF, Crabb DP. Measurement variability in Heidelberg retinal tomography imaging of neuroretinal rim area. Invest Ophthalmol Vis Sci. 2006;47:5322–30.

    Article  PubMed  Google Scholar 

  81. See JL, Nicolela MT, Chauhan BC. Rates of neuroretinal rim and peripapillary atrophy area change: a comparative study of glaucoma patients and normal controls. Ophthalmology. 2009;116:840–7.

    Article  PubMed  Google Scholar 

  82. Alencar LM, Zangwill LM, Weinreb RN, Bowd C, Sample PA, Girkin CA, et al. A comparison of rates of change in neuroretinal rim area and retinal nerve fiber layer thickness in progressive glaucoma. Invest Ophthalmol Vis Sci. 2010;51:3531–9.

    Article  PubMed  Google Scholar 

  83. Harju M, Kurvinen L, Saari J, Vesti E. Change in optic nerve head topography in healthy volunteers: an 11-year follow-up. Br J Ophthlamol. 2011;95:818–21.

    Article  Google Scholar 

  84. Strouthidis N, Scott A, Peter NM, Garway-Heath DF. Optic disc and visual field progression in ocular hypertensive subjects: detection rates, specificity, and agreement. Invest Ophthalmol Vis Sci. 2006;47:2904–10.

    Article  PubMed  Google Scholar 

  85. Saarela V, Airaksinen PJ. Heidelberg retina tomography parameters of the optic disc in eyes with progressive retinal nerve fiber layer defects. Acta Ophthalmol. 2008;86:603–8.

    Article  PubMed  Google Scholar 

  86. Swindale NV, Stjepanovic G, Chin A, Mikelberg FS. Automated analysis of normal and glaucomatous optic nerve head topography images. Invest Ophthalmol Vis Sci. 2000;41:1730–42.

    PubMed  CAS  Google Scholar 

  87. Strouthidis NG, Demirel S, Asaoka R, Cossio-Zuniga C, Garway-Heath DF. The Heidelberg retina tomography glaucoma probability score. Reproducibility and measurement of progression. Ophthalmology. 2010;117:724–9.

    Article  PubMed  Google Scholar 

  88. Patterson AJ, Garway-Heath DF, Strouthidis NG, Crabb DP. A new statistical approach for quantifying change in series of retinal and optic nerve head topography images. Invest Ophthalmol Vis Sci. 2005;46:1659–67.

    Article  PubMed  Google Scholar 

  89. Chauhan BC, Blanchard JW, Hamilton DC, LeBlanc RP. Technique for detecting serial topographic changes in the optic disc and peripapillar retina using scanning laser tomography. Invest Ophthalmol Vis Sci. 2000;41:775–82.

    PubMed  CAS  Google Scholar 

  90. Chauhan BC, McCormick TA, Nicolela MT, LeBlanc RP. Optic disc and visual field changes in a prospective longitudinal study of patients with glaucoma: comparison of scanning laser tomography with conventional perimetry and optic disc photography. Arch Ophthalmol. 2001;119:1492–9.

    Article  PubMed  CAS  Google Scholar 

  91. Balasubramanian M, Bowd C, Weinreb RN, Vizzeri G, Alencar LM, Sample PA, et al. Clinical evaluation of the proper orthogonal decomposition framework for detecting glaucomatous changes in human subjects. Invest Ophthalmol Vis Sci. 2010;51:264–71.

    Article  PubMed  Google Scholar 

  92. Bowd C, Balasubramanian M, Weinreb RN, Vizzeri G, Alencar LM, O’Leary N, et al. Performance of confocal scanning laser tomograph topographic change analysis (TCA) for assessing glaucomatous progression. Invest Ophthalmol Vis Sci. 2009;50:691–701.

    Article  PubMed  Google Scholar 

  93. Kook MS, Sung K, Park RH, Kim ST, Kang W. Reproducibility of scanning laser polarimetry (GDx) of peripapillary retinal nerve fiber layer thickness in normal subjects. Graefes Arch Clin Exp Ophthalmol. 2001;239:118–21.

    Article  PubMed  CAS  Google Scholar 

  94. Colen TP, Tjon-Fo-sang MJ, Mulder PG, Lemij HG. Reproducibility of measurements with the nerve fiber analyzer (NfA/GDx). J Glaucoma. 2000;9:363–70.

    Article  PubMed  CAS  Google Scholar 

  95. Ferreri F, Aragona P, Ferreri G. Scanning laser polarimetry and confocal scanning laser ophthalmoscopy: technical notes on their use in glaucoma. Prog Brain Res. 2008;173:125–38.

    Article  PubMed  Google Scholar 

  96. Medeiros FA, Alencar LM, Zangwill LM, Sample PA, Susanna R, Weinreb RN. Impact of atypical retardation patterns on detection of glaucoma progression using the GDx with variable corneal compensation. Am J Ophthalmol. 2009;148:155–63.

    Article  PubMed  Google Scholar 

  97. Toth M, Hollo G. Enhanced corneal compensation for scanning laser polarimetry on eyes with atypical polarisation pattern. Br J Ophthalmol. 2005;89:1139–42.

    Article  PubMed  CAS  Google Scholar 

  98. Medeiros FA, Bowd C, Zangwill LM, Patel C, Weinreb RN. Detection of glaucoma using scanning laser polarimetry with enhanced corneal compensation. Invest Ophthalmol Vis Sci. 2007;48:3146–53.

    Article  PubMed  Google Scholar 

  99. Medeiros FA, Zangwill LM, Alencar LM, Sample PA, Weinreb RN. Rates of progressive retinal nerve fiber layer loss in glaucoma measured by scanning laser polarimetry. Am J Ophthalmol. 2010;149:908–15.

    Article  PubMed  Google Scholar 

  100. Grewal DS, Sehi M, Cook RJ, Greenfield DS, Advanced Imaging in Glaucoma Study Group. The impact of retardance pattern variability on nerve fiber layer measurements over time using GDx with variable and enhanced corneal compensation. Invest Ophthalmol Vis Sci. 2011;52:4516–24.

    Article  PubMed  Google Scholar 

  101. Grewal DS, Sehi M, The Advanced Imaging in Glaucoma Study Group. Comparing rates of retinal nerve fibre layer loss with GDxECC using different methods of visual-field progression. Br J Ophthalmol. 2011;95:1122–7.

    Article  PubMed  Google Scholar 

  102. Medeiros FA, Zangwill LM, Bowd C, Sample PA, Weinreb RN. Use of progressive glaucomatous optic disk change as the reference standard for evaluation of diagnostic tests in glaucoma. Am J Ophthalmol. 2005;139:1010–8.

    Article  PubMed  Google Scholar 

  103. Pozzo SD, Marchesan R, Canziani T, Vattovani O, Ravalico G. Atypical pattern of retardation on GDx-VCC and its effect on retinal nerve fiber layer evaluation in glaucomatous eyes. Eye. 2006;20:769–75.

    Article  PubMed  Google Scholar 

  104. Garas A, Tóth M, Vargha P, Holló G. Influence of pupil dilation on repeatability of scanning laser polarimetry with variable and enhanced corneal compensation in different stages of glaucoma. J Glaucoma. 2010;19:142–8.

    Article  PubMed  Google Scholar 

  105. Frenkel S, Slonim E, Horani A, Molcho M, Barzel I, Blumenthal EZ. Operator learning effect and interoperator reproducibility of the scanning laser polarimeter with variable corneal compensation. Ophthalmology. 2005;112:257–61.

    Article  PubMed  Google Scholar 

  106. Blumenthal EZ, Frenkel S. Inter-device reproducibility of the scanning laser polarimeter with variable cornea compensation. Eye. 2005;19:308–11.

    Article  PubMed  CAS  Google Scholar 

  107. Iacono P, Da Pozzo S, Fuser M, Marchesan R, Ravalico G. Intersession reproducibility of retinal nerve fiber layer thickness measurements by GDx-VCC in healthy and glaucomatous eyes. Ophthalmologica. 2006;220:266–71.

    Article  PubMed  Google Scholar 

  108. Medeiros FA, Doshi R, Zangwill LM, Vasile C, Weinreb RN. Long-term variability of GDx VCC retinal nerve fiber layer thickness measurements. J Glaucoma. 2007;16:277–81.

    Article  PubMed  Google Scholar 

  109. Mai TA, Reus NJ, Lemij HG. Retinal nerve fiber layer measurement repeatability in scanning laser polarimetry with enhanced corneal compensation. J Glaucoma. 2008;17:269–74.

    Article  PubMed  Google Scholar 

  110. Moon BG, Sung KR, Cho JW, Kang SY, Yun SC, Na JH, et al. Glaucoma progression detection by retinal nerve fiber layer measurement using scanning laser polarimetry: event and trend analysis. Korean J Ophthalmol. 2012;26:174–81.

    Article  PubMed  Google Scholar 

  111. Medeiros FA, Alencar LM, Zangwill LM, Bowd C, Vizzeri G, Sample PA, et al. Detection of progressive retinal nerve fiber layer loss in glaucoma using scanning laser polarimetry with variable corneal compensation. Invest Ophthalmol Vis Sci. 2009;50:1675–81.

    Article  PubMed  Google Scholar 

  112. Medeiros FA, Alencar LM, Zangwill LM, Sample PA, Weinreb RN. The relationship between intraocular pressure and progressive retinal nerve fiber layer loss in glaucoma. Ophthalmology. 2009;116:1125–33.

    Article  PubMed  Google Scholar 

  113. Alencar LM, Zangwill LM, Weinreb RN, Bowd C, Vizzeri G, Sample PA, et al. Agreement for detecting glaucoma progression with the GDx guided progression analysis, automated perimetry, and optic disc photography. Ophthalmology. 2010;117:462–70.

    Article  PubMed  Google Scholar 

  114. Grewal DS, Sehi M, Greenfield DS. Detecting glaucomatous progression using GDx with variable and enhanced corneal compensation using guided progression analysis. Br J Ophthalmol. 2011;95:502–8.

    Article  PubMed  Google Scholar 

  115. Townsend KA, Wollstein G, Schuman JS. Imaging of the retinal nerve fiber layer for glaucoma. Br J Ophthalmol. 2009;93:139–43.

    Article  PubMed  CAS  Google Scholar 

  116. Kieman DF, Mieler VF, Hariprasad SM. Spectral-domain optical coherence tomography: a comparison of modern high-resolution retinal imaging systems. Am J Ophthalmol. 2010;149:18–31.

    Article  Google Scholar 

  117. Leung CK, Chong KK, Chan W, Yiu CK, Tso M, Woo J, et al. Comparative study of retinal nerve fiber layer measurement by Stratus OCT and GDx VCC, II: structure/function regression analysis in glaucoma. Invest Ophthalmol Vis Sci. 2005;46:3702–11.

    Article  PubMed  Google Scholar 

  118. Paunescu LA, Schuman J, Price LL, Stark PC, Beaton S, Ishikawa H, et al. Reproducibility of nerve fiber thickness, macular thickness, and optic nerve head measurements using stratus OCT. Invest Ophthalmol Vis Sci. 2004;45:1716–24.

    Article  PubMed  Google Scholar 

  119. Lee ES, Kim H, Kim JM. Effect of signal strength on reproducibility of peripapillary retinal nerve fiber layer thickness measurement and its classification by time-domain optical coherence tomography. Jpn J Ophthalmol. 2010;54:414–22.

    Article  PubMed  Google Scholar 

  120. Kim JH, Kim NR, Kin H, Lee ES, Seong GJ, Kim CY. Effect of signal strength on reproducibility of circumpapillary retinal nerve fiber layer thickness measurement and its classification by spectral-domain optical coherence tomography. Jpn J Ophthalmol. 2011;55:220–7.

    Article  PubMed  Google Scholar 

  121. Tzamalis A, Kynigopoulos M, Schlote T, Haefilger I. Improved reproducibility of retinal nerve fiber layer thickness measurements with the repeat-scan protocol using the stratus OCT in normal and glaucomatous eyes. Graefes Arch Clin Exp Ophthalmol. 2009;247:245–52.

    Article  PubMed  Google Scholar 

  122. Gürses-Özden R, Teng C, Vessani R, Zafar S, Liebmann JM, Ritch R. Macular and retinal nerve fiber layer thickness measurement reproducibility using optical coherence tomography (OCT-3). J Glaucoma. 2004;13:238–44.

    Article  PubMed  Google Scholar 

  123. Budenz DL, Chang RT, Huang X, Knighton R, Tielsch J. Reproducibility of retinal nerve fiber thickness measurements using the stratus OCT in normal and glaucomatous eyes. Invest Ophthalmol Vis Sci. 2005;46:2440–3.

    Article  PubMed  Google Scholar 

  124. Budenz DL, Fredette M-J, Feuer WJ, Anderson DR. Reproducibility of peripapillary retinal nerve fiber thickness measurements with stratus OCT in glaucomatous eyes. Ophthalmology. 2008;115:661–6.

    Article  PubMed  Google Scholar 

  125. Lee EJ, Kim TW, Park KH, Seong M, Kim H, Kim KM. Ability of stratus OCT to detect progressive retinal nerve fiber layer atrophy in glaucoma. Invest Ophthalmol Vis Sci. 2009;50:662–8.

    Article  PubMed  Google Scholar 

  126. Kamppeter BA, Schbert KV, Budde WM, Degenring RF, Jonas JB. Optical coherence tomography of the optic nerve head—interindividual reproducibility. J Glaucoma. 2006;15:248–54.

    Article  PubMed  Google Scholar 

  127. Leung CKS, Cheung CYL, Weinreb RN, Qiu Q, Liu S, Li H, et al. Retinal nerve fiber layer imaging with spectral-domain optical coherence tomography. A variability and diagnostic performance study. Ophthalmology. 2009;116:1257–63.

    Article  PubMed  Google Scholar 

  128. Töteberg-Harms M, Sturm V, Knecht P, Funk J, Menke MN. Repeatability of nerve fiber layer thickness measurements in patients with glaucoma and without glaucoma using spectral-domain and time-domain OCT. Graefes Arch Clin Exp Ophthalmol. 2012;250:279–87.

    Article  PubMed  Google Scholar 

  129. Arthur SN, Smith SD, Wright MM, Grajewski AL, Wang Q, Terny JM, et al. Reproducibility and agreement in evaluating retinal nerve fibre layer thickness between stratus and spectralis OCT. Eye. 2011;25:192–200.

    Article  PubMed  CAS  Google Scholar 

  130. Kim JS, Ishikawa H, Sung KR, Xu J, Wollstein G, Bilonick RA, et al. Retinal nerve fibre layer thickness measurement reproducibility improved with spectral domain optical coherence tomography. Br J Ophthalmol. 2009;93:1057–63.

    Article  PubMed  CAS  Google Scholar 

  131. Garas A, Tóth M, Vargha P, Holló G. Comparison of repeatability of retinal nerve fiber layer thickness measurement made using the RTVue fourier-domain optical coherence tomograph and the GDx scanning laser polarimeter with variable or enhanced corneal compensation. J Glaucoma. 2010;19:412–7.

    Article  PubMed  Google Scholar 

  132. Savini G, Carbonelli M, Parisi V, Barboni P. Effect of pupil dilation on retinal nerve fibre layer thickness measurements and their repeatability with Cirrus HD-OCT. Eye. 2010;24:1503–8.

    Article  PubMed  CAS  Google Scholar 

  133. Wu H, De Boer JF, Chen TC. Reproducibility of retinal nerve fiber layer thickness measurements using spectral domain optical coherence tomography. J Glaucoma. 2011;20:470–6.

    Article  PubMed  Google Scholar 

  134. Garas A, Vargha P, Holló G. Reproducibility of retinal nerve fiber layer and macular thickness measurement with the RTVue-100 optical coherence tomograph. Ophthalmology. 2010;1174:738–46.

    Article  Google Scholar 

  135. Mwanza JC, Chang RT, Budenz DL, Durbin MK, Gendy MG, Shi W, et al. Reproducibility of peripapillary retinal nerve fiber layer thickness and optic nerve head parameters measured with cirrus HD-OCT in glaucomatous eyes. Invest Ophthalmol Vis Sci. 2010;51:5724–30.

    Article  PubMed  Google Scholar 

  136. Savini G, Carbonelli M, Parisi V, Barboni P. Repeatability of optic nerve head parameters measured by spectral-domain OCT in healthy eyes. Ophthalmic Surg Lasers Imaging. 2011;42:209–15.

    Article  PubMed  Google Scholar 

  137. Garcia-Martin E, Pinilla I, Idoipe M, Fuertes I, Pueyo V. Intra and interoperator reproducibility of retinal nerve fibre and macular thickness measurements using Cirrus Fourier-domain OCT. Acta Ophthalmol. 2011;89:e23–9.

    Article  PubMed  Google Scholar 

  138. Garcia-Martin E, Pueyo V, Pinilla I, Ara JR, Martin J, Fernandez J. Fourier-domain OCT in multiple sclerosis patients: reproducibility and ability to detect retinal nerve fiber layer atrophy. Invest Ophthalmol Vis Sci. 2011;52:4127–31.

    Article  Google Scholar 

  139. Carpineto P, Nubile M, Agnifili L, Toto L, Aharrh-Gnama A, Masrtropasqua R, et al. Reproducibility and repeatability of Cirrus™ HD-OCT peripapillary retinal nerve fibre layer thickness measurements in young normal subjects. Ophthalmologica. 2012;227:139–45.

    Article  PubMed  Google Scholar 

  140. Langenegger SJ, Funk J, Töteberg-Harms M. Reproducibility of retinal nerve fiber layer thickness measurements using the eye tracker and the retest function of spectralis SD-OCT in glaucomatous and healthy control eyes. Invest Ophthalmol Vis Sci. 2011;52:3338–44.

    Article  PubMed  Google Scholar 

  141. Tan BB, Natividad M, Chua KC, Yip LW. Comparison of retinal nerve fiber layer measurement between 2 spectral domain OCT instruments. J Glaucoma. 2012;21:266–73.

    Article  PubMed  Google Scholar 

  142. Serbecic N, Beutelspacher SC, Aboul-Enein FC, Kircher K, Reitner A, Schmidt-Erfurth U. Reproducibility of high-resolution optical coherence tomography measurements of the nerve fibre layer with the new Heidelberg Spectralis optical coherence tomography. Br J Ophthalmol. 2011;95:804–10.

    Article  PubMed  CAS  Google Scholar 

  143. González-García AO, Vizzeri G, Bowd C, Medeiros FA, Zangwill LM, Weinreb RN. Reproducibility of RTVue retinal nerve fiber layer thickness and optic disc measurements and agreement with stratus optical coherence tomography measurements. Am J Ophthalmol. 2009;147:1067–74.

    Article  PubMed  Google Scholar 

  144. Menke MN, Knecht P, Sturm V, Dabov S, Funk J. Reproducibility of nerve fiber layer thickness measurements using 3D fourier-domain OCT. Invest Ophthalmol Vis Sci. 2008;49:5386–91.

    Article  PubMed  Google Scholar 

  145. Nakatani Y, Higashide T, Ohkubo S, Takeda H, Sugiyama K. Evaluation of macular thickness and peripapillary retinal nerve fiber layer thickness for detection of early glaucoma using spectral domain optical coherence tomography. J Glaucoma. 2011;20:252–9.

    Article  PubMed  Google Scholar 

  146. Lee SH, Kim SH, Kim TW, Park KH, Kim DM. Reproducibility of retinal nerve fiber thickness measurements using the test–retest function of spectral OCT/SLO in normal and glaucomatous eyes. J Glaucoma. 2010;19:637–42.

    Article  PubMed  Google Scholar 

  147. Hong JT, Sung KR, Cho JW, Yun S-C, Kang SY, Kook MS. Retinal nerve fiber layer measurement variability with spectral domain optical coherence tomography. Korean J Ophthalmol. 2012;26:32–8.

    Article  PubMed  Google Scholar 

  148. Mansoori T, Viswanath K, Balakrishna N. Reproducibility of peripapillary retinal nerve fiber layer thickness measurements with spectral domain optical coherence tomography in normal and glaucomatous eyes. Br J Ophthalmol. 2011;95:685–8.

    Article  PubMed  Google Scholar 

  149. Sharma A, Oakley JD, Schiffman JC, Budenz DL, Anderson DR. Comparison of automated analysis of Cirrus HD OCT spectral-domain optical coherence tomography with stereo photographs of the optic disc. Ophthalmology. 2011;118:1348–57.

    Article  PubMed  Google Scholar 

  150. Leung CK, Liu S, Weinreb RN, Lai G, Ye C, Cheung CYL, et al. Evaluation of retinal nerve fiber layer progression in glaucoma. A prospective analysis with neuroretinal rim and visual field progression. Ophthalmology. 2011;118:1551–7.

    Article  PubMed  Google Scholar 

  151. Leung CK, Cheung CYL, Weinreb RN, Liu S, Ye C, Lai G, et al. Evaluation of retinal nerve fiber layer progression in glaucoma. A comparison between the fast and the regular retinal nerve fiber layer scans. Ophthalmology. 2011;118:763–7.

    Article  PubMed  Google Scholar 

  152. Lee EJ, Kim TW, Weinreb RN, Park KH, Kim SH, Kim DM. Trend-based analysis of retinal nerve fiber layer thickness measured by optical coherence tomography in eyes with localized nerve fiber layer defects. Invest Ophthalmol Vis Sci. 2011;52:1138–44.

    Article  PubMed  Google Scholar 

  153. Leung CK, Cheung CY, Weinreb RN, Qiu K, Liu S, Li H, et al. Evaluation of retinal nerve fiber layer progression in glaucoma: a study on optical coherence tomography guided progression analysis. Invest Ophthalmol Vis Sci. 2010;51:217–22.

    Article  PubMed  Google Scholar 

  154. Medeiros FA, Zangwill LM, Alencar LM, Bowd C, Sample PA, Susanna R Jr, et al. Detection of glaucoma progression with stratus OCT retinal nerve fiber layer, optic nerve head, and macular thickness measurements. Invest Ophthalmol Vis Sci. 2009;50:5741–8.

    Article  PubMed  Google Scholar 

  155. Leung CK, Chiu V, Weinreb RN, Liu S, Ye C, Yu M, et al. Evaluation of retinal nerve fiber layer progression in glaucoma. A comparison between spectral-domain and time-domain optical coherence tomography. Ophthalmology. 2011;118:1558–62.

    Article  PubMed  Google Scholar 

  156. Palvin CJ, Sherar MD, Foster FS. Subsurface ultrasound microscopic imaging of the intact eye. Ophthalmology. 1990;97:244–50.

    Google Scholar 

  157. Tello C, Liebmann J, Potash SD, Cohen H, Robert R. Measurement of ultrasound biomicroscopy images: intraobserver and interobserver reliability. Invest Ophthalmol Vis Sci. 1994;35:3549–52.

    PubMed  CAS  Google Scholar 

  158. Henzan IM, Tomidokoro A, Uejo C, Sakai H, Sawaguchi S, Iwase A, et al. Comparison of ultrasound biomicroscopic configurations among primary angle closure, its suspects, and nonoccludable angles: the Kumejima Study. Am J Ophthalmol. 2011;151:1065–73.

    Article  PubMed  Google Scholar 

  159. Yokoyama S, Kojima T, Horai R, Ito M, Nakamura T, Ichikawa K. Repeatability of the ciliary sulcus-to-sulcus diameter measurement using wide-scanning-field ultrasound biomicroscopy. J Cataract Refract Sur. 2011;37:1251–6.

    Article  Google Scholar 

  160. Goldsmith JA, Li Y, Chalita MR, Westphal V, Patil CA, Rollins AM, et al. Anterior chamber width measurement by high-speed optical coherence tomography. Ophthalmology. 2005;112:238–44.

    Article  PubMed  Google Scholar 

  161. Müller M, Dahmen G, Pörksen E, Geerling G, Laqua H, Ziegler A, et al. Anterior chamber angle measurement with optical coherence tomography: intraobserver and interobserver variability. J Cataract Refract Surg. 2006;32:1803–8.

    Article  PubMed  Google Scholar 

  162. Li H, Liung CKS, Cheung CYL, Wong L, Pang CP, Neal R, et al. Repeatability and reproducibility of anterior chamber angle measurement with anterior segment optical coherence tomography. Br J Ophthalmol. 2007;91:1490–2.

    Article  PubMed  Google Scholar 

  163. Radhakrishnan S, See J, Smith SD, Nolan WP, Ce Z, Fridman DS, et al. Reproducibility of anterior chamber angle measurements obtained with anterior segment optical coherence tomography. Invest Ophthalmol Vis Sci. 2007;48:3683–8.

    Article  PubMed  Google Scholar 

  164. Fukuda S, Kawana K, Yasuno Y, Oshika T. Repeatability and reproducibility of anterior ocular biometric measurements with 2-dimensional and 3-dimensional optical coherence tomography. J Cataract Refract Surg. 2010;36:1867–73.

    Article  PubMed  Google Scholar 

  165. Tan AN, Sauren LDC, de Brabander J, Berendschot TTJM, Passos VL, Webers CAB, et al. Reproducibility of anterior chamber angle measurements with anterior segment optical coherence tomography. Invest Ophthalmol Vis Sci. 2011;52:2095–9.

    Article  PubMed  Google Scholar 

  166. Kim DY, Sung KR, Kang SY, Cho JW, Lee KS, Park SB, et al. Characteristics and reproducibility of anterior chamber angle assessment by anterior-segment optical coherence tomography. Acta Ophthalmol. 2011;89:435–41.

    Article  PubMed  Google Scholar 

  167. Hood DC, Kardon RH. A framework for comparing structural and functional measures of glaucomatous damage. Prog Retin Eye Res. 1007;26:688–710.

    Article  Google Scholar 

  168. Advanced Glaucoma Intervention Study. 2. Visual field test scoring and reliability. Ophthalmology. 1994;101:1455–55.

    Google Scholar 

  169. Katz J. Scoring systems for measuring progression of visual field loss in clinical trials of glaucoma treatment. Ophthalmology. 1999;106:391–5.

    Article  PubMed  CAS  Google Scholar 

  170. Heijl A, Leska MC, Bengtsson B, Bengtsson B, Hussein M, the EMGT Group. Measuring visual field progression in the Early Manifest Glaucoma Trial. Acta Ophthalmol. 2003;81:286–93.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Makoto Araie.

About this article

Cite this article

Araie, M. Test–retest variability in structural parameters measured with glaucoma imaging devices. Jpn J Ophthalmol 57, 1–24 (2013). https://doi.org/10.1007/s10384-012-0181-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10384-012-0181-0

Keywords

Navigation