Skip to main content

Advertisement

Log in

Broad-range real-time PCR assay for detection of bacterial DNA in ocular samples from infectious endophthalmitis

  • Clinical Investigation
  • Published:
Japanese Journal of Ophthalmology Aims and scope Submit manuscript

Abstract

Background

To evaluate a broad-range real-time polymerase chain reaction (PCR) targeting the bacterial 16S rRNA gene for detection of bacterial DNA in infectious endophthalmitis.

Methods

The bacterial 16S rRNA gene was measured by quantitative real-time PCR. For the assay, bacterial DNA was prepared from 12 Gram-positive and 4 Gram-negative strains. To determine the optimum method for DNA extraction, four extraction procedures were selected by using DNA extraction program cards with and without the use of lysozyme. To evaluate PCR sensitivity, PCR fragments were amplified from Staphylococcus aureus and Escherichia coli DNA.

Results

DNA extraction using the Bacteria card® without enzymes resulted in detection of all the tested strains at concentrations ≥107 copies/mL. Extraction with the Bacteria card® with lysozyme resulted in detection of all the tested strains at concentrations ≥106 copies/mL, indicative of no significant difference between the two procedures. DNA extraction using the Virus card®, both with and without enzymes, resulted in reduced efficiency of detection of all strains compared with use of the Bacteria card®. The PCR could detect as few as 1–10 colony-forming units (CFU) in diluted vitreous samples per reaction, and all tested bacterial species known to cause endophthalmitis were detected.

Conclusions

Bacterial 16S-specific PCR can comprehensively detect the main causative bacteria of clinically suspected endophthalmitis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Brun-Buisson C, Fartoukh M, Lechapt E, Honoré S, Zahar JR, Cerf C, et al. Contribution of blinded, protected quantitative specimens to the diagnostic and therapeutic management of ventilator-associated pneumonia. Chest. 2005;128:533–44.

    Article  PubMed  Google Scholar 

  2. Therese KL, Anand AR, Madhavan HN. Polymerase chain reaction in the diagnosis of bacterial endophthalmitis. Br J Ophthalmol. 1998;82:1078–82.

    Article  PubMed  CAS  Google Scholar 

  3. Chiquet C, Cornut PL, Benito Y, Thuret G, Maurin M, Lafontaine PO, et al. Eubacterial PCR for bacterial detection and identification in 100 acute postcataract surgery endophthalmitis. Invest Ophthalmol Vis Sci. 2008;49:1971–8.

    Article  PubMed  Google Scholar 

  4. Sugita S, Shimizu N, Watanabe K, Katayama M, Horie S, Ogawa M, et al. Diagnosis of bacterial endophthalmitis by broad-range quantitative PCR. Br J Ophthalmol. 2011;95:345–9.

    Article  PubMed  Google Scholar 

  5. Takai K, Horikoshi K. Rapid detection and quantification of members of the archaeal community by quantitative PCR using fluorogenic probes. Appl Environ Microbiol. 2000;66:5066–72.

    Article  PubMed  CAS  Google Scholar 

  6. Zucol F, Ammann RA, Berger C, Aebi C, Altwegg M, Niggli FK, et al. Real-time quantitative broad-range PCR assay for detection of the 16S rRNA gene followed by sequencing for species identification. J Clin Microbiol. 2006;44:2750–9.

    Article  PubMed  CAS  Google Scholar 

  7. Usui N, Uno T, Oki K, Oshika T, Ohashi Y, Ogura Y, et al. Nationwide surveillance of postoperative endophthalmitis related to cataract surgery. Jpn J Ophthalmic Surg. 2006;19:73–9.

    Google Scholar 

  8. Aaberg TM Jr, Flynn HW Jr, Schiffman J, Newton J. Nosocomial acute-onset postoperative endophthalmitis survey. A 10-year review of incidence and outcomes. Ophthalmology. 1998;105:1004–10.

    Article  PubMed  Google Scholar 

  9. Vafidis G. Propionibacterium acnes endophthalmitis. Br J Ophthalmol. 1991;75:706.

    Article  PubMed  CAS  Google Scholar 

  10. Boldt HC, Pulido JS, Blodi CF, Folk JC. Rural endophthalmitis. Ophthalmology. 1989;96:1722–6.

    PubMed  CAS  Google Scholar 

  11. Jackson TL, Eykyn SJ, Graham EM, Stanford MR. Endogenous bacterial endophthalmitis: a 17-year prospective series and review of 267 reported cases. Surv Ophthalmol. 2003;48:403–23.

    Article  PubMed  Google Scholar 

  12. Chen YJ, Kuo HK, Wu PC, Kuo ML, Tsai HH, Liu CC, et al. A 10-year comparison of endogenous endophthalmitis outcomes: an east Asian experience with Klebsiella pneumoniae infection. Retina. 2004;24:383–90.

    Article  PubMed  Google Scholar 

  13. Callegan MC, Engelbert M, Parke DW 2nd, Jett BD, Gilmore MS. Bacterial endophthalmitis: epidemiology, therapeutics, and bacterium–host interactions. Clin Microbiol Rev. 2002;15:111–24.

    Article  PubMed  Google Scholar 

  14. Callegan MC, Gilmore MS, Gregory M, Ramadan RT, Wiskur BJ, Moyer AL, et al. Bacterial endophthalmitis: therapeutic challenges and host–pathogen interactions. Prog Retin Eye Res. 2007;26:189–203.

    Article  PubMed  CAS  Google Scholar 

  15. Tomaso H, Kattar M, Eickhoff M, Wernery U, Al Dahouk S, Straube E, et al. Comparison of commercial DNA preparation kits for the detection of Brucellae in tissue using quantitative real-time PCR. BMC Infect Dis. 2010;10:100.

    Article  PubMed  Google Scholar 

  16. Tsai YL, Olson BH. Rapid method for direct extraction of DNA from soil and sediments. Appl Environ Microbiol. 1991;57:1070–4.

    PubMed  CAS  Google Scholar 

  17. Lee YK, Kim HW, Liu CL, Lee HK. A simple method for DNA extraction from marine bacteria that produce extracellular materials. J Microbiol Methods. 2003;52:245–50.

    Article  PubMed  CAS  Google Scholar 

  18. Callewaert L, Aertsen A, Deckers D, Vanoirbeek KG, Vanderkelen L, Van Herreweghe JM, et al. A new family of lysozyme inhibitors contributing to lysozyme tolerance in gram-negative bacteria. PLoS Pathog. 2008;4:e1000019. doi:10.1371/journal.ppat.1000019.

    Article  PubMed  Google Scholar 

  19. Davis KM, Akinbi HT, Standish AJ, Weiser JN. Resistance to mucosal lysozyme compensates for the fitness deficit of peptidoglycan modifications by Streptococcus pneumoniae. PLoS Pathog. 2008;4:e1000241. doi:10.1371/journal.ppat.1000241.

    Article  PubMed  Google Scholar 

  20. Vollmer T, Störmer M, Kleesiek K, Dreier J. Evaluation of novel broad-range real-time PCR assay for rapid detection of human pathogenic fungi in various clinical specimens. J Clin Microbiol. 2008;46:1919–26.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Ikuyo Yamamoto, Shizu Inoue, and Chizuru Kato for providing technical assistance and the doctors of the Uveitis Group at Tokyo Medical and Dental University Hospital for sample collection. This work was supported by the Comprehensive Research on Disability, Health and Welfare, Health and Labor Sciences Research Grants, Ministry of Health, Labor and Welfare, Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sunao Sugita.

About this article

Cite this article

Ogawa, M., Sugita, S., Shimizu, N. et al. Broad-range real-time PCR assay for detection of bacterial DNA in ocular samples from infectious endophthalmitis. Jpn J Ophthalmol 56, 529–535 (2012). https://doi.org/10.1007/s10384-012-0174-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10384-012-0174-z

Keywords

Navigation