Skip to main content
Log in

Boundary cartilage lubrication: review of current concepts

Grenzflächenknorpelschmierung – Eine Übersicht der bestehenden Konzepte

  • review
  • Published:
Wiener Medizinische Wochenschrift Aims and scope Submit manuscript

Summary

Effective lubrication of synovial joints is important to prevent cartilage degeneration and to keep the joints healthy. This paper sets out the basics of engineering lubrication with respect to the composition and properties of synovial fluid constituents. Two basic types of boundary lubrication are discussed: the presence of highly hydrophilic proteoglycans that provide a water liquid film, and the existence of multilamellar phospholipids lubricating layers at the surface ofarticular cartilage. Based on current knowledge, we may conclude that no single mechanism of boundary lubrication exists, and that effective boundary lubrication of synovial joints is maintained by the synergic effect of all synovial fluid constituents.

Zusammenfassung

Die effektive Schmierung der synovialen Gelenke ist wichtig, um der Degeneration des Knorpelgewebes vorzubeugen und die Gelenke gesund zu erhalten. Die vorliegende Arbeit beschreibt die Grundlagen des Schmierungsaufbaus, was die Zusammensetzung und Eigenschaften der Synoviabestandteile betrifft. Zwei grundlegende Arten der Grenzflächenschmierung werden besprochen: das Vorkommen stark hydrophiler Proteoglykane, die einen wasserflüssigen Film bilden, und die Existenz multilamellarer Phospholipide, die auf der Oberfläche des artikulären Knorpels als Schmierschichten dienen. Nach heutigem Wissensstand dürfen wir schließen, dass es sich bei der Grenzflächenschmierung nicht um einen isolierten Mechanismus handelt. Vielmehr wird die effektive Grenzflächenschmierung der synovialen Gelenke durch den synergischen Effekt aller Bestandteile der Synovialflüssigkeit aufrechterhalten.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Poole AR, Guilak F, Abramson SB. Etiopathogenesis of ostearthritis. In: Moskowitz R, editor. Osteoarthritis. 4th ed. Lippincot Wiliams & Wilkins; 2007.

  2. Bao JP, Chen WP, Wu LD. Lubricin: a novel potential biotherapeutic approaches for the treatment of osteoarthritis. Mol Biol Rep. 2011;38(5):2879–85.

    Article  PubMed  CAS  Google Scholar 

  3. Schwarz IM, Hills BA. Surface-active phospholipid as the lubricating component of lubricin. Br J Rheumatol. 1998;37(1):21–6.

    Article  PubMed  CAS  Google Scholar 

  4. Morlock M, Schneider E, Bluhm A, Vollmer M, Bergmann G, Müller V, et al. Duration and frequency of every day activities in total hip patients. J Biomech. 2001;34:873–88.

    Article  PubMed  CAS  Google Scholar 

  5. Hodge WA, Carlson KL, Fijan RS, Burgess RG, Riley PO, Harris WH, et al. Contact pressures from an instrumented hip endoprostheses. J Bone Joint Surg Am. 1989;71(9):1378–86.

    PubMed  CAS  Google Scholar 

  6. Wong M, Carter DR. Articular cartilage functional histomorphology and mechanobiology: a research perspective. Bone.  2003;33(1):1–13.

    Article  PubMed  CAS  Google Scholar 

  7. Ballantine GC, Stachowiak GW. The effect of lipid depletion on osteoarthritic wear. Wear. 2002;253:385–93.

    Article  CAS  Google Scholar 

  8. Brinckmann P, Frobin W, Leivseth G. Musculoskeletal biomechanics. Stuttgart: Georg Thieme Verlag; 2002.

    Google Scholar 

  9. Eisenhart RV, Adam C, Steinlechner M, Eckstein F, Eisenhart R von, Müller-Gerbl M. Quantitative determination of joint incongruity and pressure distribution during simulated gait and cartilage thickness in the human hip joint. J Orthop Res. 1999;17(4):532–9.

    Article  Google Scholar 

  10. Ateshian GA, Hung CT. Functional. In: Guilak F, Butler DL, Goldstein SA, Mooney D, editors. Functional tissue engineering. New York: Springer-Verlag; 2003. pp 46–68.

  11. Wright V, Dowson D. Lubrication and cartilage. J Anat. 1976;121(Pt 1):107–18.

    Google Scholar 

  12. McNary SM, Athanasiou KA, Reddi AH. Engineering lubrication in articular cartilage. Tissue Eng Part B Rev. 2012 Apr;18(2):88–100.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  13. Dowson D, Higginson GR. Elasto-hydrodynamic lubrication: the fundamentals of roller and gear lubrication. 1st ed. Oxford:Pergamon Press; 1966.

    Google Scholar 

  14. Hlaváček M. Squeeze-film lubrication of the human ankle joint with synovial fluid filtrated by articular cartilage with the superficial zone worn out. J Biomech. 2000;33(11):1415–22.

    Article  PubMed  Google Scholar 

  15. Ateshian GA. The role of interstitial fluid pressurization in articular cartilage lubrication. J Biomech. 2009;42(9):1163–76.

    Article  PubMed Central  PubMed  Google Scholar 

  16. Walker PS, Dowson D, Longfield MD, Wright V. “Boosted lubrication” in synovial joints by fluid entrapment and enrichment. Ann Rheum Dis. 1968;27(6):512–20.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  17. Neville A, Morina A. Synovial joint lubrication does nature teach more effective engineering lubrication strategies? P I Mech Eng C-J Mec. 2007;221(10):1223–30.

    Article  Google Scholar 

  18. Hersey MD. Laws of lubrication. J Washington Acad Sci. 1914;4:542–52.

    Google Scholar 

  19. Friction WTA. In: Applied biophysics: a molecular approach for physical scientists. Wiley-Interscience; 2007. pp 165–8.

  20. Shi L, Sikavitsas VI, Striolo A. Experimental friction coefficients for bovine cartilage measured with a pin-on-disk tribometer: testing configuration and lubricant effects. Ann Biomed Eng. 2011;39(1):132–46.

    Article  PubMed  Google Scholar 

  21. Hills BA, Crawford RW. Normal and prosthetic synovial joints are lubricated by surface-active phospholipid: a hypothesis. J Arthroplasty. 2003;18(4):499–505.

    Article  PubMed  CAS  Google Scholar 

  22. Crockett R, Roos S, Rossbach P, Dora C, Born W, Troxler H. Imaging of the surface of human and bovine articular cartilage with ESEM and AFM. Tribol Lett. 2005;19:311–7.

    Article  CAS  Google Scholar 

  23. Decker B, McGuckin WF, McKenzie BF, Slocumb CH. Concentration of hyaluronic acid in synovial fluid. Clin Chem. 1959;5(5):465–9.

    PubMed  CAS  Google Scholar 

  24. Fraser JR, Laurent TC, Laurent UB. Hyaluronan: its nature, distribution, functions and turnover. J Intern Med. 1997;242(1):27–33.

    Article  PubMed  CAS  Google Scholar 

  25. Jay GD, Haberstroh K, Cha CJ. Comparison of the boundary-lubricating ability of bovine synovial fluid, lubricin, and Healon. J Biomed Mater Res. 1998;40(3):414–8.

    Article  PubMed  CAS  Google Scholar 

  26. Radin EL, Swann DA, Weisser PA. Separation of a hyaluronate-free lubricating fraction from synovial fluid. Nature. 1970;228(5269):377–8.

    Article  PubMed  CAS  Google Scholar 

  27. Swann DA, Slayter HS, Silver FH. The molecular structure of lubricating glycoprotein-I, the boundary lubricant for articular cartilage. J Biol Chem. 1981;256(11):5921–5.

    PubMed  CAS  Google Scholar 

  28. Zappone B, Ruths M, Greene GW, Jay GD, Israelachvili JN. Adsorption, lubrication, and wear of lubricin on model surfaces: polymer brush-like behavior of a glycoprotein. Biophys J. 2007;92(5):1693–708.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  29. Raviv U, Giasson S, Kampf N, Gohy J. Lubrication by charged polymers. Nature. 2003;425(6954):163–5.

    Article  PubMed  CAS  Google Scholar 

  30. Chappuis J, Sherman IA, Neumann AW. Surface tension of animal cartilage as it relates to friction in joints. Ann Biomed Eng. 1983;11(5):435–9.

    Article  PubMed  CAS  Google Scholar 

  31. Pawlak Z, Urbaniak W, Oloyede A. The relationship between friction and wettability in aqueous environment. Wear. 2011;271:1745–9.

    Article  CAS  Google Scholar 

  32. Hills BA. Oligolamellar lubrication of joints by surface active phospholipid. J Rheumatol. 1989;16(1):8291.

    Google Scholar 

  33. Vieira DB, Carmona-Ribeiro AM. Cationic lipids and surfactants as antifungal agents: mode of action. J Antimicrob Chemother. 2006;58(4):760–7.

    Article  PubMed  CAS  Google Scholar 

  34. Han L, Grodzinsky AJ, Ortiz C. Nanomechanics of the cartilage extracellular matrix. Annu Rev Mater Res. 2011;41:133–68.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  35. Hills BA. Oligolamellar nature of the articular surface. J Rheumatol. 1990;17(3):349–56.

    PubMed  CAS  Google Scholar 

  36. Mirea DA, Trunfio-Sfarghiu A-F, Matei CI, Munteanu B, Piednoir A, Rieu JP, et al. Role of the biomolecular interactions in the structure and tribological properties of synovial fluid. Tribol Int. 2013;59:302–11.

    Article  CAS  Google Scholar 

  37. Kreuzer M, Strobl M, Reinhardt M, Hemmer MC, Hauß T, Dahint R, et al. Impact of a model synovial fluid on supported lipid membranes. Biochim Biophys Acta. 2012;1818(11):2648–59.

    Article  PubMed  CAS  Google Scholar 

  38. Kumar P, Oka M, Toguchida J, Kobayashi M, Uchida E, Nakamura T, et al. Role of uppermost superficial surface layer of articular cartilage in the lubrication mechanism of joints. J Anat. 2001;199(Pt 3):241–50.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  39. Sarma AV, Powell GL, LaBerge M. Phospholipid composition of articular cartilage boundary lubricant. J Orthop Res. 2001;19(4):671–6.

    Article  PubMed  CAS  Google Scholar 

  40. Zea-Aragon Z, Terada N, Ohtsuki K, Ohnishi M, Ohno S. Immunohistochemical localization of phosphatidylcholine in rat mandibular condylar surface and lower joint cavity by cryotechniques. Histol Histopathol. 2005;20(2):531–6.

    PubMed  CAS  Google Scholar 

  41. Crockett R, Grubelnik A, Roos S, Dora C, Born W, Troxler H. Biochemical composition of the superficial layer of articular cartilage. J Biomed Mater Res A. 2007;82(4):958–64.

    Article  PubMed  CAS  Google Scholar 

  42. Sawae Y, Murakami T, Matsumoto K, Horimoto M. Study on morphology and lubrication of articular cartilage surface with atomic force microscopy. J Jpn Soc Tribol. 2000;45(2):150–7.

    Google Scholar 

  43. Crockett R. Boundary lubrication in natural articular joints. Tribol Lett. 2009;35:77–84.

    Article  CAS  Google Scholar 

  44. Hills BA, Monds MK. Enzymatic identification of the load-bearing boundary lubricant in the joint. Br J Rheumatol. 1998;37(2):137–42.

    Article  PubMed  CAS  Google Scholar 

  45. Jay GD, Cha CJ. The effect of phospholipase digestion upon the boundary lubricating ability of synovial fluid. J Rheumatol. 1999;26(11):2454–7.

    PubMed  CAS  Google Scholar 

  46. Chan SMT, Neu CP, Duraine G, Komvopoulos K, Reddi AH. Atomic force microscope investigation of the boundary-lubricant layer in articular cartilage. Osteoarthritis Cartilage. 2010;18(7):956–63.

    Article  PubMed  CAS  Google Scholar 

  47. Schmidt TA, Gastelum NS, Nguyen QT, Schumacher BL, Sah RL. Boundary lubrication of articular cartilage: role of synovial fluid constituents. Arthritis Rheum. 2007;56(3):882–91.

    Article  PubMed  Google Scholar 

  48. Pasquali-Ronchetti I, Quaglino D, Mori G, Bacchelli B, Ghosh P. Hyaluronan-phospholipid interactions. J Struct Biol. 1997;120(1):1–10.

    Article  PubMed  CAS  Google Scholar 

  49. Nitzan DW, Nitzan U, Dan P, Yedgar S. The role of hyaluronic acid in protecting surface-active phospholipids from lysis by exogenous phospholipase A(2). Rheumatology (Oxford). 2001;40(3):336–40.

    Article  CAS  Google Scholar 

  50. Daniel M. Role of surface-active lipids in cartilage lubrication. In: Iglicˇ A, editor. Advances in planar lipid bilayer and liposomes. Amsterdam: Academic Press; 2012. pp 226–44.

  51. Pawlak Z, Oloyede A. Conceptualisation of articular cartilage as a giant reverse micelle: a hypothetical mechanism for joint biocushioning and lubrication. Biosystems. 2008;94(3):193–201.

    Article  PubMed  CAS  Google Scholar 

  52. Chizhik S, Wierzcholski K, Trushko A, Zhytkova M, Miszczak A. Properties of cartilage on micro- and nanolevel. Adv Tribol. 2010;2010:1–8.

    Article  CAS  Google Scholar 

  53. Wierzcholski K. Friction force and pressure calculations for time-dependent impulsive intelligent lubrication of human hip joint. Acta Bioeng Biomech. 2010;12(3):95–101.

    PubMed  Google Scholar 

Download references

Conflict of interest

The authors declare that there are no actual or potential conflicts of interest in relation to this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matej Daniel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Daniel, M. Boundary cartilage lubrication: review of current concepts. Wien Med Wochenschr 164, 88–94 (2014). https://doi.org/10.1007/s10354-013-0240-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10354-013-0240-2

Keywords

Schlüsselwörter

Navigation