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Summary
Background—Tissue engineering has been defined as “an interdisciplinary field that applies the
principles of engineering and life sciences toward the development of biological substitutes that
restore, maintain, or improve tissue function or a whole organ”. Traumatic peripheral nerve injury
resulting in significant tissue loss at the zone of injury necessitates the need for a bridge or
scaffold for regenerating axons from the proximal stump to reach the distal stump.

Methods—A review of the literature was used to provide information on the components
necessary for the development of a tissue engineered peripheral nerve substitute. Then, a
comprehensive review of the literature is presented composed of the studies devoted to this goal.

Results—Extensive research has been directed toward the development of a tissue engineered
peripheral nerve substitute to act as a bridge for regenerating axons from the proximal nerve stump
seeking the distal nerve. Ideally this nerve substitute would consist of a scaffold component that
mimics the extracellular matrix of the peripheral nerve and a cellular component that serves to
stimulate and support regenerating peripheral nerve axons.

Conclusions—The field of tissue engineering should consider its challenge to not only meet the
autograft “gold standard” but also to understand what drives and inhibits nerve regeneration in
order to surpass the results of an autograft.
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Nerve injury and clinical need
It is important to understand the anatomy of peripheral nerves when determining the options
for nerve repair or reconstruction after injury. In a nerve, myelinated axons of motoneurons,
large sensory neurons, smaller nonmyelinated sensory nerves, and autonomic neurons are
bundled into fascicles within the connective tissue layer of the epineurium. Each fascicle is
surrounded by the perineurium (the level of the blood-nerve barrier) and each nerve fiber is
contained within the endoneurium. Peripheral nerve injuries result from open or closed
trauma and are often debilitating [1]. The nerve injury can involve damage to any of the
tissue layers. Seddon has broadly classified nerve injuries into the three groups: local
conduction block with or without demyelination (neurapraxia), axon transection and damage
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with both perineurium and epineurium remaining intact (axonotmesis), and nerve transection
(neurotmesis) where the continuity of the nerve is disrupted either by transection or scar [2].
In practical terms, nerve transection injuries require surgical repair, ideally performed by a
coaptation of the proximal and distal nerve stumps without undue tension.

Unless nerve injuries are sustained close to the cell body, there is no motoneuron loss [3] but
sensory neuron loss may be as high as 40 % regardless of the location [4–7]. Therefore,
nerve regeneration is primarily driven by the ability of the surviving neurons to regenerate
their axons from the proximal stump to the distal stump to reinnervate their end-organ target.
To facilitate this process, axonal regeneration from the proximal stump into the distal stump
is preceded by Wallerian degeneration in the distal stump, whereby the distal nerve stump
axon fragments are broken down and phagocytosed by the resident Schwann cells (SCs) [8].
SCs are responsible for phagocytosis of axon debris in the first 3 days, the debris being
mitogenic for the cells and thereby playing an important role in their proliferation post
injury [9, 10]. Macrophages are also involved leading to overall removal of inhibitory
factors to axonal extension and outgrowth [11]. After Wallerian degeneration is complete,
SCs progressively assume long processes and align on the basal lamina of fibronectin and
laminin (Bands of Bungner), providing a permissive growth environment for the
regenerating axons that emerge from the proximal nerve stump [12].

Damage to a peripheral nerve often results in a defect, scar, or neuroma in continuity that
leads to a gap between the proximal and distal nerve stumps that cannot be directly repaired
without excessive tension and impeding or limiting regeneration [13–17]. Therefore, a guide
or graft is used to bridge the damaged ends to reconnect the proximal and distal stumps.
Nerve autografts remain the clinical standard of care for critical, and long, large diameter
peripheral nerve defects. The autograft provides a scaffold and trophic support in the form of
basal lamina, endoneural tubes, and SCs for the regenerating axons guiding nerves to the
distal stump [18]. Donor nerves that are commonly used as autografts are expendable
sensory nerves such as the sural nerve or the medial antebrachial cutaneous nerve [17–19].
However, disadvantages of autografts include loss of feeling and possible neuroma
formation and pain at the donor site, insufficient donor tissue availability, secondary
incisions, and less than optimal dimensions (diameter and/or length) of the donor nerve to
span the injury site [18, 20].

Tissue engineered peripheral nerve
Tissue engineering has been defined as “an interdisciplinary field that applies the principles
of engineering and life sciences toward the development of biological substitutes that
restore, maintain, or improve tissue function or a whole organ”. As it pertains to peripheral
nerve surgery, tissue engineering efforts have primarily been devoted to the recapitulation
and restoration of the distal nerve stump following peripheral nerve injury (Fig. 1).
Traumatic peripheral nerve injury resulting in significant tissue loss at the injury zone
necessitates the need for a bridge or scaffold for regenerating axons from the proximal
stump to reach the distal stump, as direct surgical coaptation is not an option. Extensive
research has been directed toward the development of a tissue engineered peripheral nerve
substitute to act as a bridge for regenerating axons from the proximal nerve stump seeking
the distal nerve. Ideally, this nerve substitute would consist of a scaffold component that
mimics the extracellular matrix of the peripheral nerve and a cellular component that serves
to stimulate and support regenerating peripheral nerve axons (Fig. 1). The current review
briefly describes the components necessary to the development of a tissue engineered
peripheral nerve substitute and reviews the literature devoted to this goal. We will not
address the role of growth factor or drug delivery from a scaffold, which has been
incorporated into the scope of modern tissue engineering, due to the extensive variables in
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modulating and optimizing drug delivery for peripheral nerve graft substitutes. The readers
are directed to more specific reviews on the advances of drug delivery for peripheral nerve
for more information [21].

Candidate scaffolds
Conduits

Lundborg et al. [24] initially considered using a tube or conduit to bridge a nerve defect.
Besides creating an alternative to an autograft, they also desired a model to study peripheral
nerve regeneration, where a tube would act as a viewing device for nerve regeneration
across a defect. They first used a pseudosynovial neural sheath to bridge a nerve defect in
the rat sciatic nerve [22, 23], which was shortly followed by silicone conduits. Both
materials led to a convenient method to encapsulate tropic and trophic factors associated
with nerve regeneration and evaluate the time course of nerve regeneration. These
experiments provided the knowledge that axonal nerve sprouting into an empty conduit was
supported by the migration of glial cells into the conduit and subsequent formation of a
protein scaffold. They also demonstrated that nerves are capable of producing their own
scaffold to support axonal regeneration over a short distance [22–25].

From this initial work, hollow tubes, conduits, or more commonly known as nerve guidance
conduits (NGCs), have been studied extensively as a “off the shelf” alternative to nerve
autografts for the treatment of nerve gaps. Early into the investigation it was determined that
silicone conduits caused significant chronic nerve compression and irritation at the
implantation site requiring removal [26–28]. The incompatibility of silicone and the long-
term presence of a material surrounding the nerve were determined to be significant
contributors to the chronic pathology and drove research into alternative materials that could
act as temporary biodegradable conduits. A wide range of materials were evaluated for this
purpose. Autologous blood vessels have been used as a biological substitute to nervous
tissue because of their similarities to conduits, their natural biodegradation, and their general
biocompatibility. However, their flimsy mechanical properties were a detriment to
regeneration, where the thinness of the vessel wall often lead to luminal collapse and
pressure on regenerating nerves [18]. To circumvent these limitations, conduits that can be
synthesized or constructed with properties that are easily modulated, such as increasing
mechanical strength, have been explored. The properties of numerous synthetic conduit
materials such as poly-L-lactic acid [29], polylactic-co-glycolic acid copolymer [29], and
poly (L-lactide–co-6-caprolactone) [30] have been explored to find an optimal mix of
mechanical support and rate of conduit degradation. Polymer conduits are advantageous
because their range of degradation, mechanical stability, and piezoelectric properties can be
modulated to benefit nerve regeneration. Natural materials, such as collagen [31, 32],
fibronectin [33], and fibrin [34], which are biodegradable, offer biocompatible advantages
over polymers but the ability to adjust their mechanical and degenerative properties is
limited. A more extensive review of conduit material properties is available by Pfister et al.
(for review see [35]).

Clinically, conduits of material composition have been approved for the treatment of small
diameter short gap (small volume) nerve defects in humans [36–39]. The significant history
of clinical use and regulatory approval of conduits are desirable traits for the selection of a
tissue engineering scaffold. However, their clinical use has also been associated with clinical
morbidities that reveal the limitations of conduits [40]. Reports of clinical failures with
significant patient morbidity have been made for conduits used with large diameter (large
volume) nerve reconstruction [40, 41]. Overall, polymer or synthetic and natural material
NGC generally support axonal regeneration for small defects (<3 cm) and fail to support
regeneration to the level of an autograft [31, 42]. The absence of cellular support and
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luminal extracellular matrix at the time of repair is thought to be a contributing factor to the
limited regeneration [43]. Thus, the use of a conduit as a tissue engineering scaffold would
require the incorporation of a lumen substrate or extracellular matrix to encourage and
promote SC and axonal migration into the conduit [44].

Initial research with silicone conduits demonstrated that extracellular matrix proteins
accumulate within the lumen of the conduit allowing glial cell infiltration and axonal
regeneration into the conduit [45]. Providing a matrix of natural proteins, such as laminin
and collagen, for cellular migration would circumvent the need for the body to construct its
own matrix before nerve regeneration. Inclusion of natural materials, such as collagen or
laminin, into a conduit has been shown to enhance nerve regeneration [46, 47]. The luminal
matrix assists SC migration into the conduits and leads to the increase in regeneration [48].
Fibrin gels or glue have also been employed as a matrix and have demonstrated positive
regenerative effects [49–53].

Employment of a conduit as the scaffold component in a tissue engineered peripheral nerve
graft has some advantages. They are currently used clinically and the materials used to
fabricate conduits can be modulated to optimize the conduit properties for nerve
regeneration. However, the clinically approved version of the conduits lack luminal structure
to support the cellular component of the tissue engineered graft and axonal regeneration.
The addition of a luminal structure or substance would require additional regulatory
approval and would poorly mimic the organized endoneurial structure of peripheral nerve
autografts. Therefore, other alternatives should be considered that may better mimic native
nerve or autografts.

Biological grafts
The ideal substitute for peripheral nerve autografts would be a scaffold of basal lamina
(longitudinally oriented) lined with fibronectin, laminin, and SCs. Nerve allografts, i.e.,
nerve tissue from organ donors, would be the perfect alternative to the autograft. Their use,
however, requires immunosuppression to avoid rejection and regeneration failure [54]. The
use of pharmacological immunosuppression is associated with significant clinical morbidity
[55] and limits the use of allografts in peripheral nerve repair to only the most severe cases
of nerve injury [56]. To avoid the morbidity associated with immunosuppression, tissue
preparation methods have been employed to remove the cellular component and diminish
the immunogenicity of the allografts. Acellular tissues, despite their lack of cells, maintain a
highly organized extracellular matrix structure and this structural arrangement would
provide an ideal scaffold component for a tissue engineered peripheral nerve. In addition to
acellular nerve, acellular muscle is also a viable scaffold candidate.

Acellular muscle tissue offers an alternative to nerve as its basal lamina arrangement mimics
the endoneurial tubes contained in peripheral nerve tissue and contains collagen type IV,
fibronectin and laminin to promote nerve outgrowth [19, 57]. Promising results have been
demonstrated with acellular muscle grafts compared to autografts in animal models [58–60].
However, the processing to produce decellularized muscle tissue can lead to a scaffold in
which axons may grow out of the tissue construct with the potential for neuroma formation
[19, 61]. Additionally, recruiting SCs to migrate within the muscle graft for large defects
may be problematic to appropriate axonal regeneration [57].

Acellular nerve grafts are conceptually appealing because their physical, chemical, and
mechanical properties are similar to those of a nerve autograft. They lack SCs, a vital
component to nerve regeneration [8, 62, 63], but they do not induce an immune response
[54, 64, 65]. Numerous methods have been used to remove cells and antigens from nerves,
as reviewed recently by Szynkaruk et al. [63]. Examples of decellularizing techniques
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include: repeated freeze-thaw cycles, exposure to radiation, lyophilization, extended storage
in cryopreservation solution, and decellularization with detergents [66–72]. The use of
repeated freeze-thaw cycles, irradiation, and lyophilization are effective at eliminating living
cells within cadaveric grafts, however these techniques fail to remove the remnants of cells
from the graft resulting in delayed regeneration across the graft [67, 73, 74]. Additionally,
repeated freeze-thaw cycles have been shown to damage basal laminae and structural
proteins that support axonal growth [75, 76]. Extended storage in cryopreservation solution
or the use of detergents to decellularize cadaveric nerve allografts effectively removes the
remnants of cellular components of the graft [77–81]. Advantages of cold preservation of
peripheral nerve grafts are that it produces a completely acellular graft with minimal damage
to the basement architecture and elicits no host immune response [78, 81]. Despite these
positive aspects of cold preservation, the duration to preserve the graft and render it
completely acellular and nonantigenic is long (>7 weeks) requiring extensive coordination
of preparation and use of the graft in a clinical setting.

Detergents have also been investigated for their ability to remove antigen presenting cells
from peripheral nerves to render an acellular graft [77, 79]. Using the detergent Triton
X-100 and a relatively short 4 day rinse protocol, Sondell et al. [79] produced an acellular
graft that was shown to support outgrowth of axons and migration of host SCs without
excessive signs of inflammation . However, the microstructure of basal laminae from grafts
undergoing the Sondell et al. [79] detergent protocol is damaged and results in inferior
regeneration [70]. Schmidt's lab developed a detergent protocol that can effectively
decellularize a cadaveric nerve while preserving the internal structure of the native nerve
[80]. A variation of this protocol was used in 2008 to develop the first commercially
available acellular peripheral nerve allograft for clinical use. Produced by AxoGen, Inc.
(Alachua, FL), nerve allografts are harvested from cadaveric human donors, processed to
remove cells using a human variation of Hudson et al. [70] protocol and chondroitin-6-
sulfate proteoglycan (a known inhibitor of axonal regeneration) [82–84], and then gamma
irradiated for “off the shelf” use. This commercially acellular allograft was evaluated in a rat
sciatic nerve model and it was determined that the grafts were nonimmunogenic, the
endoneurial tubes remained intact, and laminin was present in the acellular grafts. While
axonal regeneration was inferior to the autograft controls, the rat acellular nerve allograft
(ANA) performed better than the most commonly used commercially available type I
collagen nerve conduit at both 14 and 28 mm gap lengths (NeuraGen, Integra
NeuroSciences, Inc.) [85]. Improved regeneration across the rat ANA in comparison to a
nerve conduit was also found in a follow-up study by Moore et al. [86]. However, again the
ANA did not have equal regeneration to the autograft controls. Although ANAs are now
used clinically for peripheral nerve reconstruction, they still are unable to match the
performance of the gold standard nerve autograft. The acellular nature is the primary reason
for the deficiency in regeneration when compared to autografts. In fact, the addition of SCs
to short length ANAs (14 mm) processed using Schmidt's detergent protocol produce axonal
regeneration that is indistinguishable from that of autograft controls in a rodent model of
nerve injury [87].

In summary, a candidate scaffold for the development of a tissue engineered peripheral
nerve should be immunologically inert, have the mechanical properties of normal nerve, and
have an luminal microstructure that is organized in close approximation of normal nerve.
Currently, there is only one clinically available construct that meets all of those criteria and
is, therefore, likely to be the best available candidate scaffold for tissue engineered
peripheral nerve. Future research in the field of materials science should be devoted to
fabricating synthetic peripheral nerve scaffolds that mimic the attributes of ANAs. However,
the use of a perfectly processed ANA or synthetic nerve scaffold will still require the
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addition of a cellular component and/or growth factors to support axonal regeneration to a
level similar to nerve autografts.

Cellular component of tissue engineered peripheral nerve
SCs are the primary intrinsic mediators of nerve regeneration in the peripheral nervous
system. In contrast to the central nervous system, where glial cells lead to scarring and the
persistence of myelin-based inhibitory proteins, SCs phagocytose myelin debris, and
dedifferentiate into a migratory, proliferative phenotype after injury [88–90]. This
dedifferentiated, proliferative phenotype [91–93] is characterized in part by the expression
of proteins that support axonal regeneration. The protein expression of SCs supports axons
through the deposition of basal lamina, excretion of trophic factors, and adhesion molecules
that facilitate regeneration after nerve injury [94–98]. In fact, the absence of SCs following
nerve injury and during regeneration severely limits the quality and extent of axonal
regeneration [99, 100]. Consequently, the development of a tissue engineered construct for
the injured peripheral nerve will likely require a cellular component that can mimic the
multiple regenerative roles of the SC.

Primary SCs
The isolation and culture of primary SCs was first accomplished in the mid 1970's [101,
102] and was quickly identified as a potential cellular therapeutic for peripheral and central
neuron diseases [103, 104]. Autologous transplantation of primary SCs has, therefore, been
used to enhance nerve regeneration in animal models of peripheral nerve injury [71, 87,
105–112]. SCs isolated from nerve tissue and cultured in vitro retain the ability to express
trophic factors to support axonal regeneration and to myelinate axons following regeneration
[97, 108, 109, 113–116, 117–119]. Mitogens can be employed during the culture process to
expand cultured SC populations and thus increase the number of cells needed for
transplantation [120, 121]. The cultured cells can then be transplanted into acellularized
tissues or biomaterial scaffolds to recapitulate peripheral nerve-like tissues. SCs in culture
have also been shown to not transform or reach a proliferative limit that would alter their
utility for later transplantation [122]. Most importantly, expanded human and rat SC
populations have not demonstrated tumor formation when transplanted into rodents after
mitogen removal [108, 123].

Clinical translation of SC transplantation requires surgical harvest of a peripheral nerve,
effective isolation, and extended expansion time before transplantation is possible. Beyond
the morbidity associated with harvesting a nerve to obtain cells, primary SCs culture is
difficult. Harvested nerves contain a vast number of contaminating cells including
fibroblasts, which replicate more readily in culture than the primary SCs. As a result,
cultures that are not purely SCs can be overrun with fibroblasts and there is some evidence
to suggest that transplantation of activated fibroblasts could actually harm peripheral nerve
regeneration through the production of scar [124]. The difficulty associated with primary SC
culture is evident by the numerous SC culture protocols that have been published to
optimize the process [120, 125–130]. Even with optimization, the expansion of SCs requires
6–10 weeks from the time of harvest. Thus, the combined barrier of donor site morbidity and
difficulty of effective SC isolation and culture has significantly impeded clinical translation
despite decades of concerted interest and effort [71, 108, 109]. Only recently, after over 30
years of research, SCs were employed in a clinical trial as a treatment for spinal cord injury
by the researchers of the Miami Project to Cure Paralysis. The safety associated with the use
of SCs in this trial will likely have a significant impact on the use of SCs as a treatment for
peripheral nerve injury.
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Stem cells
The difficulty associated with the isolation and culture of primary SCs has led researchers to
search for an alternative source of cells to support axonal regeneration across a tissue
engineered construct. Stem cells are a plausible choice because of their ability to
differentiate into multiple cell types and self renew in culture. Stem cells are classified as
either embryonic or adult stem cells. Embryonic stem (ES) cells isolated from the fertilized
oocyte are defined as totipotent stem cells and ES cells taken from the blastocyst are called
pluripotent as these cells appear to be forming the three germ layers during embryogenesis.
Fully developed adult tissues and organs contain niches of multipotent adult stem cells; these
cells have been isolated from a wide range of adult tissues such as brain, heart, lungs,
kidney, adipose, dermis, and spleen. Stem cells of each type have been investigated in
models of peripheral nerve injury to determine their ability to support axonal regeneration
following injury.

Embryonic stem cell derived progenitors
The limitations associated with primary SCs culture, difficulty to isolate/purify, insufficient
number, slow expansion, and donor site morbidity to patients, can be overcome by the use of
ES cells. ES cells are readily attainable, can be expanded quickly and indefinitely in culture,
and can be prepared in mass prior to clinical need [131, 132]. Compared to SCs, ES cells
proliferate efficiently with doubling times for human and mouse ES cells taking 30–35 h and
12–15 h respectively [133]. However, transplantation of naive pluripotent ES cells to treat
peripheral nerve injury is not a viable option due to the propensity for ES cells to
excessively proliferate in vivo [134, 135]. To overcome this obstacle, ES cells can be
induced in vitro using defined culture protocols to become progenitor cells that are still
multipotent, but are more limited in their differentiation and proliferation potential.

Embryonic stem cell derived neural progenitor cells are identified by the expression of the
intermediate neurofilament nestin and have the ability to differentiate into all neural cell
subtypes [136]. Transplantation of these neural progenitor cells into conduits interposed
between the proximal and distal stump of the transected sciatic nerve was shown to
stimulate axonal regeneration more efficiently than conduit controls not containing cells.
The transplanted cells differentiated into a SC phenotype in vivo, expressing the SC specific
marker S100 and morphological colocalization with axons suggesting myelination [137].
The induction protocol used by Cui et al. [137] results in 70 % of the ES cells adopting a
neural progenitor phenotype prior to transplantation [138]. In addition to ES cell derived
neural progenitors, research efforts are also devoted to the development of induction
protocols to direct ES cells to neural crest cells and ultimately SCs in culture [139, 140].
These induction protocols result in cell populations that are approximately 60 % positive for
SC related markers and have demonstrated the ability to myelinate axons in neuronal
coculture assays. However, they have yet to be evaluated for their impact on recovery in a
peripheral nerve injury model. Another class of progenitor cells that has been shown to
impact recovery following peripheral nerve injury is mesenchymal stem cells. Examples of
peripheral nerve therapies using primary mesenchymal stem cells are discussed in depth in
the next section, but ES cell derived mesenchymal stem cells have been used to treat nerve
injury with some success [141].

Although ES cell transplantation might provide therapeutic benefit, the potential for
uncontrolled proliferation following transplantation and the need for immunosuppression
limit their translatability. Studies have shown that transplantation of cell population
containing even small percentages of naive embryonic stem cells can result in the formation
of teratomas [134, 142]. Additionally, transplantation of a heterogeneous neural stem cell
population in a human clinical trial resulted in the formation of slow growing tumors [135].
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In all of the studies noted from the literature, the highest percent of cell induction of ES cells
to a multipotent phenotype was 70 %, which leaves 30 % of the cells likely expressing
markers of a pluripotent excessively naïve phenotype. The need to transplant a pure
population of induced cells for therapeutic treatments is highlighted by numerous examples
from the literature [134, 135, 142]. Compounding the dangers of excessive proliferation is
the need for immunosuppression with ES cells to prevent immune rejection while the nerve
regenerates [56]. Certain immunosuppressive compounds have been shown to improve
axonal regeneration following nerve injury and could be seen as a positive side effect of ES
cell therapy [143–158]. However, the barrier for the use of immunosuppressive therapies for
nonlife threatening diseases, such as peripheral nerve injury, is high and will likely seriously
impede the translation of ES cell derived therapies for peripheral nerve injury [55].

Mesenchymal stem cells
Mesenchymal stem cells (MSC) are self-renewing multipotent adult precursors that are a
promising source of cells for tissue engineering [159]. MSC originate from the mesoderm
germ layer and they give rise to connective tissue, skeletal muscle cells, and cells of the
vascular system. Their multipotency, ease of isolation and expansion in vitro make them an
attractive candidate as a component for tissue engineering applications. Under normal
developmental paradigms and cellular environments, MSCs are able to differentiate into
tissues of mesodermal origin, for example, muscle, bone, cartilage, fat, and tendon.
However, recent data suggest that under specific cell culture conditions, MSCs have the
potential to transdifferentiate into many cell lineages (other than mesodermal). With
appropriate stimuli and environmental conditions, MSCs have been shown to differentiate
into sweat glands [160], myocardium [161], endothelial cells [162], astrocytes [163], and
neurons [164, 165]. Accumulating evidence has also demonstrated that MSCs can be
directed under specific conditions to differentiate into myelinating SC-like cells.

In a preliminary study, Giorgio Terenghi's lab was the first to demonstrate that MSCs in
culture could be directed into SCs like phenotype [166]. Exposing MSC to glial growth
factor, a SC mitogen, which stimulates peripheral nerve regeneration and restricts neural
crest cells to a glial fate [167], induced expression of S100 and glial fibrillary acidic protein
(GFAP) in culture. These induced cells were then implanted into nerve conduits and inserted
into a rat sciatic nerve defect. They demonstrated the ability to enhance axonal regeneration
and myelination. Additionally, they evaluated the transplantation of MSC that were not
exposed to glial growth factor and found that a portion of the transplanted cells expressed
S100 following transplantation. These results suggested that the environment surrounding
MSC has a significant impact on their differential cell fate. A series of subsequent studies
have further evaluated the transdifferentiation of MSC to SCs and have demonstrated that
under the correct culture conditions that they can express the SC markers S100, GFAP, and
p75, express growth factors such as glial cell line-derived neurotrophic factor (GDNF),
brain-derived neurotrophic factor (BDNF), and nerve growth factor (NGF), express cell
surface receptors erb3 and glial growth factor 2, and have the ability to myelinate axons in
neuron coculture [168–174].

Despite these positive findings, there are causes for concern in the use of MSC as a SC
substitute in tissue engineering constructs. The first reason is that the derivation of SCs from
MSCs requires that the cells transdifferentiate. Transdifferentiation refers to the irreversible
switch from differentiation along one cell lineage to another that is descendent of another
germ line. In case of MSC transdifferentiation into SC, the switch would require cells of
mesoderm lineage (MSCs) to differentiate into cells of ectoderm lineage (SCs), and the
possibility of this process occurring in mammals is a point of significant debate in the
literature that is beyond the scope of this review [175–177]. However, the instability of the
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MSC derived SC phenotype seems to, in part, support the conclusion that trandifferentiation
of MSC is an artifact of the cell culture environment. As described above, it has been
demonstrated that cocktails of growth factors and cytokines can foster a SC phenotype in
cultured MSC. Subsequent studies have demonstrated, however, that removal of these in
vitro signals results in reversion of the cultured cells to a myofibroblast phenotype that is
consistent with the MSC germ line origin [178]. This would suggest that the switch is
temporary and artificial, not allowing for long-term maintenance of nerve by SCs derived
from MSCs. As with ES cells, there is an inherent danger in the transplantation of cells that
are physiologically unstable and the instability of MSC derived SC phenotype likely will
increase the barrier to translation of these cells. Before determining whether the in vivo
peripheral nerve environment can stabilize the MSC derived SCs phenotype, it is necessary
to determine the ultimate utility of these cells for peripheral nerve tissue engineering
constructs.

Adipose derived stem cells
Adipose-derived stem cells (ASCs) were first isolated from the stromal vascular fraction of
homogenized adipose tissue in rats [179], which led to their ultimate isolation in human
tissue [180]. ASCs can be easily isolated from liposuction waste and can exhibit the
potential for chondrogenic, osteogenic, adipogenic, and myogenic differentiation [181, 182].
They have many similarities to MSC; they arise from the same mesodermal germ layer,
express an ~90 % similarity in cell surface markers, and have multipotent differentiation
potential [182, 183]. ASCs, however, have the advantage of increased abundance in the
body in comparison to MSCs and thus make them easier to isolate and culture [159, 184].
These factors make them an attractive therapeutic option for tissue engineering applications
and their potential to adopt a SCs phenotype under controlled cell culture conditions makes
them pertinent to the current discussion. Isolated ASCs, when treated with a mixture of glial
growth factors (GGF-2, bFGF, PDGF and forskolin), adopt a spindle-like morphology
similar to SCs. Analysis of the protein expression from these induced cells reveals
expression of the glial markers, GFAP, S100 and p75, indicative of transdifferentiation into
a SC like phenotype [185]. As with MSCs, an increasing number of studies have
demonstrated the ability of ASC derived SCs to express neurogenic growth factors, to
produce myelin, myelinate axons in vitro, and stimulate axonal regeneration in models of
peripheral nerve injury [186–190].

SCs derived from ASCs also share the same concerns as those derived from MSCs. Their
utility depends on the controversial process of transdifferentiation and is subject to the same
instabilities in phenotype. Further, concerns about their ability to survive for extended
periods following in vivo transplantation has cast doubt on the mechanism of regenerative
benefit in many of the studies listed above [191]. Limited ability of ASCs to survive would
suggest that prior regenerative benefit would be due to production of growth factors and not
a functional replacement of lost SCs. As with MSCs, long-term studies tracking the survival
and maintenance of the SCs phenotype are needed to validate the use of ASC derived SCs
for tissue engineering constructs in peripheral nerve surgery.

Skin derived stem cells
The proliferation/immune concerns associated with ES cell derived cells, and the
transdifferentiation/stability concerns associated with MSCs and ASCs are significant
barriers to translation. Ideally, an autologous source of adult progenitor cells from the neural
crest (ectoderm) lineage that can be readily expanded and induced to form true SCs would
be optimal for the development of tissue engineered peripheral nerve. Neural crest
progenitor cells have been identified in two locations in adult tissue; the gut [192] and the
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skin [193]. The gut is not a convenient source of autologous progenitor cells for tissue
engineering. The skin, however, is readily accessible for clinical harvest. Isolation of stem
cells from the dermis was done initially without full understanding of where the cells were
located within the skin or from what lineage they were derived. Li et al. [194] demonstrated
that the stem cells isolated from the dermis resided in a niche of the hair follicle. Further
characterization of these cells revealed the cells to be of neural crest lineage and
demonstrated their ability to differentiate into neural phenotypes [195–197]. Transplantation
of these skin derived neural crest related progenitors (single-nucleotide polymorphism
(SNP)) first demonstrated the capability of the cells to differentiate into SCs and myelinate
regeneration axons [198]. These observations were followed by cell culture protocols
demonstrating that SNPs responded to neural crest cues such as neuregulins to generate SCs
like cells [199]. The SNP derived SCs express markers consistent with primary SCs (P0,
S100, GFAP, and p75) and form myelin in the presence of axons. They have been shown to
produce levels of neurotrophins (NGF, and NT-3) at rates greater than that of primary SCs
[200]. These results suggest that the naïve phenotype of SNP derived SCs might make them
a better candidate for tissue engineering constructs than primary SCs. These results,
however, merit further investigation.

While SNP derived SCs are not limited by transdifferentiation, studies have demonstrated
that following transplantation these cells have limited cell survival (less than 10 %) and that
only 38 % of the transplanted cells maintain the SC phenotype [201]. The findings of this
study demonstrate the need for increased focus on cell fate following transplantation. It is
important to understand cell survival, proliferation and differentiation following
transplantation to fully understand how the transplanted cell truly impacts the disease state.
Methods can be employed to alter the transplantation environment to enhance cell survival
and maintain differentiation [142, 202].

Genetically engineered cells
Despite recent advances in the understanding of the neurobiology related to nerve
regeneration and refinement in surgical techniques, complete functional recovery after repair
of a damaged nerve is rare. Growth factors are a major component of the regenerative
process after peripheral nerve injury. Expression of growth factors after nerve injury is
upregulated in the distal nerve stump and denervated muscles [203, 204]. The expression is
higher in neuromuscular tissue distal to the site of injury, whereas minimal expression is
observed in the proximal stump of the injured nerve [205, 206]. The increased production in
the distal stump and denervated muscle following nerve injury occurs early after injury
followed by a gradual decrease in the expression with increasing time [207–209]. The
pattern of growth factor expression following injury creates a temporary concentration
gradient that increases with distance distal to the site of injury [203]. The temporary distal
upregulation and secretion of growth factors is a signal that promotes axonal regeneration.
The duration of the signal is often shorter than the time necessary for the regenerating axons
to reach the end organ target. The levels of growth factor in the distal nerve after chronic
denervation (>4 weeks in the rat) are not sufficient to stimulate robust axonal regeneration
from the proximal stump [210, 211]. Thus, before the nerve reaches its target the signal
stimulating it is gone.

Exogenous administration of neurotrophic factors has often been studied as a route to
augmenting peripheral nerve regeneration [212]. This approach has led to variable and
scattered results on the regenerating peripheral nerve post injury secondary to poor in vivo
diffusion and short windows of metabolic activity [213, 214]. Emerging research using
genetically engineered cell systems has demonstrated that novel therapeutic gene transfer
into the peripheral nervous system for local, long-term transgene expression as a new
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treatment approach to the injured peripheral nerve [215–217]. Though the use of genetically
engineered cells has demonstrated success as a novel treatment modality for the injured
peripheral nerve, certain draw backs have been noted—foremost being the so-called “candy-
store effect”, where elevated levels of neurotrophic factor ‘trap’ regenerating fibers, limiting
neurite outgrowth, as neurites will not continue to regenerate against an unfavorable
neurotrophic concentration gradient [87, 217–219]. To avoid the nerve trapping effects that
have been previously demonstrated, engineered cells systems that allow for conditional
expression of therapeutics need to be developed. In this way, physiologic levels of growth
factor can be maintained in the areas of need in the distal stump for an appropriate time
length and can be silenced after regenerating axons have transversed the defect.

Conclusions
The field of peripheral nerve surgery needs tissue engineers to create an equivalent
alternative to the nerve autograft. The ideal replacement would consist of a scaffold and a
cellular component that would support nerve regeneration across a nerve gap. Current
research efforts would suggest that the tissue engineered construct will resemble an
acellularized nerve allograft enhanced by the addition of SC-like cells. Skin-derived neural
progenitor (SNPs) derived SCs would likely be the easiest and most clinically translatable
cellular therapy due to their availability and safety, but further research is warranted. It
should be noted that functional recovery as a result of even a perfect surgical repair using an
autograft is not total and often results in only limited recovery [86, 220]. While we designate
the autograft as the “gold standard” in actuality the results of functional recovery associated
with the “gold standard” are frequently disappointing. For this reason, current clinical use of
artificial constructs (i.e. ANA or nerve conduits) that do not support regeneration to the level
of an autograft should be limited to small diameter noncritical sensory nerves with gap
distances less than or equal to 4 cm [40, 43, 86, 221].

The field of tissue engineering should consider its challenge to not only meet the autograft
“gold standard” but also to understand what drives and inhibits nerve regeneration in order
to surpass the results of an autograft. To this end, especially in the case of large defects,
genetically engineered cells that produce growth factors spatially and temporally in response
to regenerating axons may be desirable. Although extensive biomedical research is needed
to completely understand the efficacy of these methods ultimately, there is great promise in
the future of tissue engineering as it pertains to peripheral nerve regeneration. Clinically,
there is a large patient population with nerve injuries that will benefit from the ongoing
research and scientific progress.
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Fig. 1.
Tissue engineered peripheral nerve constructs. a The peripheral nerve autograft is used
clinically and is the current “Gold Standard” for peripheral nerve reconstruction. An
autograft provides three levels of regenerative support for regenerating axons of damaged
peripheral nerves. The epineurial sheath provides gross guidance of axons from the
proximal to the distal stump, endoneurial microstructure provides microscale support and
guidance of axons, and Schwann cells are present that stimulate and support regeneration
across the graft. b In contrast, nerve conduits used clinically lack endoneurial
microstructure and Schwann cells. Tissue engineering research efforts are directed towards
adding artificial endoneurial microstructure and Schwann cells to mimic the support of
nerve autografts. c Similarly, acellularized nerve allografts (ANAs) that are used clinically
lack Schwann cells and tissue engineering research is devoted towards the addition of
Schwann cells. Both clinically available nerve conduits and ANAs can be used as candidate
scaffolds for tissue engineered peripheral nerve constructs
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