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technique suitable for clinical research, such as cancer bio-
marker discovery, as well as in-depth analysis of recombi-
nant glycoproteins. In this review, we will focus on how 
PGC in conjunction with MS detection can deliver specific 
structural information for clinical research on protein-
bound N-glycans and mucin-type O-glycans. In addition, 
we will briefly review PGC analysis approaches for glyco-
peptides, glycosaminoglycans (GAGs) and human milk oli-
gosaccharides (HMOs). The presented applications cover 
systems that vary vastly with regard to complexity such as 
purified glycoproteins, cells, tissue or body fluids revealing 
specific glycosylation changes associated with various bio-
logical processes including cancer and inflammation.
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Introduction

Glycans, either in free form or attached to proteins and 
lipids, are important key molecules found on cellular 
surfaces, in the extracellular matrix and in secreted flu-
ids. These glycans and glycoconjugates are involved in a 
variety of vital biological processes such as cell–cell and 
cell–host interaction as well as cellular trafficking. Altera-
tions in the complex glycosylation machinery responsible 
for the biosynthesis of glycoconjugates have frequently 
been correlated with cancer progression and metastasis 
[1–4]. As a consequence, several established biomark-
ers for different types of cancer such as colorectal cancer 
(carcinoembryonic antigen—CEA), ovarian cancer (cancer 
antigen-125—CA-125) or prostate cancer (prostate-spe-
cific antigen—PSA) are glycoproteins or specific glycan 

Abstract  Glycoconjugates and free glycan are involved 
in a variety of biological processes such as cell–cell inter-
action and cell trafficking. Alterations in the complex 
glycosylation machinery have been correlated with vari-
ous pathological processes including cancer progression 
and metastasis. Mass Spectrometry (MS) has evolved as 
one of the most powerful tools in glycomics and glyco-
proteomics and in combination with porous graphitized 
carbon–liquid chromatography (PGC–LC) it is a versatile 
and sensitive technique for the analysis of glycans and to 
some extent also glycopeptides. PGC–LC–ESI–MS analy-
sis is characterized by a high isomer separation power ena-
bling a specific glycan compound analysis on the level of 
individual structures. This allows the investigation of the 
biological relevance of particular glycan structures and gly-
can features. Consequently, this strategy is a very powerful 
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epitopes [5]. Despite the fact that glycosylation changes 
in diseased tissues have already been discovered decades 
ago [6], sophisticated approaches to capture the glycome 
and glycoproteome of purified glycoproteins, cells, tissues 
or body fluids in a sensitive and selective manner have just 
recently been established, allowing to study these changes 
in detail at a molecular level.

Various glycoanalytical technological developments 
of recent years have enabled the detailed characteriza-
tion of disease-associated glycosylation changes. Many of 
these technological advances have been realized by using 
mass spectrometry (MS) techniques, which have evolved 
as some of the most powerful tools for glycan and glyco-
conjugate analysis. Electrospray ionization (ESI)–MS and 
matrix-assisted laser desorption/ionization (MALDI)–MS 
are the most applied techniques for carbohydrate analy-
sis, performed in positive and negative ionization mode 
[7]. MALDI–MS of carbohydrates in their native and also 
derivatized form, such as permethylation, is widely applied 
and has been comprehensively reviewed recently [8–14]. 
However, samples containing glycan isomers might be not 
distinguished by this approach. Various online separation 
techniques coupled to ESI–MS can overcome this issue. 
There are well-established approaches for glycan analy-
sis using liquid chromatography (LC) and electrophoretic 
separation coupled to MS which have been compared with 
each other in several reviews, e.g., hydrophilic interaction–
liquid chromatography (HILIC) of fluorescently labeled 
glycans, high-performance anion exchange chromatogra-
phy (HPAEC) or porous graphitized carbon (PGC)–LC–
ESI–MS of native and reduced glycans, as well as capillary 
electrophoresis (CE)–MS and capillary gel electrophore-
sis (CGE)–MS of native and derivatized glycans [15–20]. 
Recently, several multi-institutional studies evaluated some 
of these different techniques for the analysis of protein gly-
cosylation [21–23].

PGC–LC in combination with ESI–MS/MS detection 
is a versatile and sensitive tool for the analysis of released 
and free glycans and, with some limitations, also glycocon-
jugates such as glycopeptides [24]. In this review, we will 
focus on how PGC-based approaches can deliver specific 
structural information on protein-bound N-glycans, mucin-
type O-glycans and briefly also on glycopeptides, glycosa-
minoglycans (GAGs) and human milk oligosaccharides 
(HMOs).

A common approach for the analysis of protein N-gly-
cosylation involves the enzymatic release of these glycans 
using peptide-N-glycosidase F (PNGase F). The enzyme 
releases the N-glycans by forming a glycosylamine inter-
mediate which may convert into a glycan exhibiting a free 
reducing end. This enables the analysis of glycans either 
with a reducing end or after reduction as alditols. Another 
widely used strategy targets specifically the reducing end 

by chemical derivatization, where fluorescent labels such 
as 2-aminobenzamide or 9-aminopyrene-1,4,6-trisulfonic 
acid are added via reductive amination as reviewed before 
[18]. Since there is no enzyme that would allow a global 
release of O-glycans from the protein backbone, reductive 
β-elimination is the method of choice concomitantly releas-
ing and reducing the O-glycans in a single-step procedure 
[25–28]. However, this technique does not allow subse-
quent labeling with a fluorescent tag and thus non-reduc-
tive, chemical release approaches are further investigated 
[29–33] ).

Characteristic Features of PGC‑Based Glycan Analysis

For the analysis of released glycans by PGC–LC, just 
minimal sample preparation is required, since no chemi-
cal derivatization of the glycan compounds is required such 
as labeling of the reducing end or permethylation. Thus, 
PGC–LC coupled to tandem mass spectrometry is almost 
exclusively performed on underivatized oligosaccharides in 
their reduced or non-reduced (native) form, which has the 
advantage that sample losses due to incomplete derivati-
zation and additional purification steps can be minimized. 
This feature makes PGC–LC also one of the most wide-
spread methods for the analysis of O-glycans released by 
reductive β-elimination [25, 26, 34].

PGC chromatography is frequently used in the solid-
phase extraction (SPE) mode for oligosaccharide desalt-
ing as well as purification prior to MS analysis [35]. It has 
been successfully used for desalting and purification of 
N-glycans [25, 36–41], O-glycans [42–44], GAGs [45–47] 
and glycans derived from glycolipids [48]. Consequently, 
also free oligosaccharides [49], including HMOs from dif-
ferent sources were enriched and cleaned-up by PGC–SPE 
[50–52].

Due to the fact that glycans themselves cannot be 
detected by any optical detection methods in sufficient 
nano/picomolar sensitivity, coupling of PGC–LC with MS 
has developed as a powerful approach for detection and 
characterization of native and reduced glycans. Depending 
on the type of solvent used for separation, the released gly-
cans are detected either as positively or negatively charged 
species. Many approaches use negative ionization as the 
preferred approach [24, 25], which results in fragmenta-
tion spectra that give rise to more specific cross-ring cleav-
ages in MS/MS spectra, facilitating structure characteriza-
tion [53–57]. Notably, signal intensities of acidic glycans 
detected in negative-ion mode can be more pronounced 
than those of the neutral glycans [58], and consequently 
correction factors can be introduced to allow accurate rela-
tive quantitation [59]. Nevertheless, when reduced N-gly-
cans are analyzed in positive-ion mode, signal intensities 
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of simultaneously analyzed acidic and neutral glycans tend 
to show ratios that are comparable to results obtained from 
HILIC separation with fluorescence detection of 2-AB-
labeled glycans [58]. Labeling glycans with a chromophore 
followed by HILIC analysis with fluorescence detection is 
an alternative approach, resulting in higher sensitivity, but 
introduces also additional sample preparation steps [18].

One of the most distinguished features of PGC–LC of 
glycans is the high separation power for structural and link-
age isomers, which complements in particular MS analy-
ses as compounds exhibiting exactly the same m/z can be 
separately analyzed. This feature makes PGC–LC–ESI–
MS/MS a very capable tool for screening of disease spe-
cific glycosylation signatures. Particular structural features 

of glycans are known to influence the elution behavior in 
PGC chromatography, e.g., N-glycans carrying a bisect-
ing N-acetylglucosamine (GlcNAc) are eluting several 
minutes earlier than their non-bisected structural isomers 
that carry an additional antenna (Fig.  1). The linkage of 
sialic acid residues has also been shown to alter the reten-
tion time behavior, with α(2,3)-linked structures eluting 
later compared to their α(2,6)-linked counterparts [19, 58, 
60], which is also demonstrated for a set of hybrid sialo 
N-glycoforms in ovarian cancer cell lines in Fig.  2 [61]. 
This distinct feature of isomer separation provides valuable 
information in studies focusing on cancer glycosylation, as 
alterations in expression of α(2,6)-sialyltransferases and 
thus α(2,6)-sialylated glycans are associated with cancer 

Fig. 1   PGC–LC–ESI–IT–MS EICs of m/z 913.84, showing the dif-
ferent elution times of three N-glycan isomers with the composition 
Hexose4N-acetylhexosamine4Fucose1, derived from human colon 
tissue of an ulcerative colitis patient. Separation of the isobaric 
structures allows separate MS/MS analyses for in-depth structural 

characterization of the respective N-glycans. The EIC illustrates the 
different elution of structures with different glycan features, as the 
N-glycans containing a bisecting GlcNAc elute earlier than structural 
isomers with an additional antenna

Fig. 2   PGC–LC–ESI–IT–MS EICs of monosialylated hybrid N-gly-
cans in a the non-cancerous epithelial cells (HOSE 6.3) and b ovarian 
cancer cell line (SKOV 3). The authors found a set of different N-gly-
can structures containing α(2,6)-linked sialic acid exclusively in ovar-
ian cancer cell lines but not in non-cancerous cell lines as represented 

for HOSE 6.3 and SKOV 3. The EICs further illustrate the different 
retention behaviors of linkage isomers with α(2,6)-linked and α(2,3)-
linked sialic acid, as α(2,3)-linked sialic acid containing glycans are 
stronger retained and elutes later in the gradient [61]. © 2014 Ameri-
can Society for Biochemistry and Molecular Biology
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progression [62]. The separation power of PGC is not lim-
ited to sialylated glycans but has also been successfully 
applied in the differentiation and characterization of fuco-
sylated N- and O-glycans, resolving glycan isomers with 
LeX, LeA, LeY and LeB structural elements [44] as well 
as oligomannosidic N-glycans [63]. The high capacity of 
PGC to separate isomeric glycans thus makes it a perfect 
tool to be combined with MS detection for relative quan-
titation of single structural isomers and structural charac-
terization. Besides PGC also other separation techniques 
are able to separate isomers to a certain extent, as reviewed 
elsewhere for HILIC [18, 20, 64–67], reversed phase (RP)–
LC [15, 18], high-performance anion exchange chromatog-
raphy (HPEAC) [68] and capillary as well as capillary gel 
electrophoresis (CE and CGE) [18, 20, 69], which are not 
detailed in this review. However, the isomer-selective sepa-
ration of PGC cannot be reached by these methods, as pre-
viously shown in a systematic comparison of RP, HPAEC, 
HILIC and PGC [70] and as was reviewed for sialylated 
glycoforms [19].

Several publications have focused on the elucidation of 
N- and O-glycan fragmentation pathways of released gly-
cans in negative-ion mode. The determined fragmentation 
patterns and diagnostic ions specific for different glycan 
features allow a detailed structural elucidation [26, 53–57, 
71, 72]. Recently, it has been shown that glycan fragmenta-
tion is conserved for negatively charged precursors in ESI-
ion trap(IT)-MS/MS, even if instruments from different 
vendors are used in different laboratories [73]. Thus, the 
collection of a large number of N- and O-glycan spectra in 
an open access database organized by the UniCarb-DB ini-
tiative [74] presents an important first step to facilitate data 
analysis using reference spectra and makes PGC–LC–ESI–
MS/MS-based glycomics accessible to a broader audience 
of researchers.

Applications of PGC–LC–ESI–MS in the Analysis 
of Disease‑Associated Glycosylation Signatures

N‑Glycans

PGC–LC–ESI–MS/MS allows monitoring and detailed 
characterization of particular disease-associated N-gly-
cosylation signatures. This allows the evaluation of indi-
vidual glycan species data or further functional grouping 
(e.g., complex, hybrid, high-mannose glycans) and rela-
tive quantification of glycan features and epitopes such as 
Lewis-type and blood group epitopes, α(2,3)- and α(2,6)-
linked sialic acids or bisecting GlcNAc structures. The 
comparative analysis of specific glycan features derived 
from control and disease samples pinpoints to alterations 
in the glycan biosynthesis such as differential expression 

of glycosyltransferases, providing important first hints for 
further investigations, which aim to understand onset and 
progression of a disease.

N‑Glycan Analysis of Cancer Cell Lines

The PGC–LC–ESI–MS/MS glycomics approach has been 
applied by the group of Nicolle Packer to investigate gly-
cosylation changes occurring in different cancer cell lines 
such as colorectal cancer [75, 76], leukemia [77] and ovar-
ian cancer [61]. N-glycans and subsequently O-glycans 
were released using a polyvinylidene fluoride (PVDF) 
membrane protein immobilization approach, followed by 
analysis of glycan alditols in negative-ion mode ESI-IT–
MS/MS [25]. Manual structural elucidation of glycan frag-
mentation spectra and relative quantification based on the 
area under the curve (AUC) of the corresponding extracted 
ion chromatograms (EICs) was used to obtain the identity 
and the relative amount of the individual glycan compo-
nents present in a particular sample.

A recent study on ovarian cancer compared the mem-
brane N-glycome of two non-cancerous ovarian sur-
face epithelial cell lines and four ovarian cancer cell 
lines with the gene expression of the corresponding key 
glycosyltransferases [61]. In total 70 individual N-gly-
can structures derived from 53 identified compositions 
were detected and their relative abundances determined. 
The cancer cell lines showed a larger portion of high-
mannose glycans and a reduced amount of complex sia-
lylated N-glycans. Additionally, a set of N-glycans car-
rying α(2,6)-linked sialic acid and bisecting GlcNAc as 
well as mono-, di-fucosylated, and sialylated LacdiNAc 
(N-acetylgalactosamine β(1,4)N-acetylglucosamine β1-) 
structures was exclusively found in the cancer cell lines 
and not in non-cancerous ovarian surface epithelial cell 
lines. In Fig.  2, two panels with representative EICs of 
hybrid sialo N-glycans are depicted that show the spe-
cific expression of α(2,6)-linked sialic acid containing 
structures in ovarian cancer cell lines compared to ovarian 
epithelial cell lines. A gene expression analysis of vari-
ous glycosyltransferases including α(2,6) sialyltransferase 
(ST6GAL 1 gene), bisecting GlcNAc transferase (MGAT 
3 gene), β(1,3/4) N-acetyl-galactosaminyltransferases 
(B3GALNT and B4GALNT3 genes), ST3Gal sialyl-
transferases (ST3GAL 1-5) and six α-(1,2/3/4/6) fucosyl-
transferases (FUT2-5,8,9) showed that gene expression 
of the ST6GAL 1, MGAT 3, and B4GALNT3 genes was 
increased, whereas the ST3GAL 5 gene expression was 
decreased in cancer cell lines. This data confirmed the 
direct correlation of gene expression and specific N-gly-
can changes occurring in the analyzed cell lines [61].

Sethi et  al. compared the N-glycosylation of three dif-
ferent colorectal cancer cell lines classified as “moderately 
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differentiated”, “moderately differentiated metastatic” and 
“poorly differentiated—aggressive” [76]. They detected 
42  N-glycan structures derived from 34 different compo-
sitions containing a high proportion of high-mannose gly-
cans as well as lower amounts of hybrid, complex and also 
paucimannosidic glycans. When the sialic acid containing 
glycans were grouped, they exhibited a different expression 
profile between the three cell lines analyzed. In particular, 
α(2,3)-linked sialic acid containing N-glycans were only 
found in the more aggressive cell line, while α(2,6)-linked 
sialic acid was present on N-glycans in all samples, indicat-
ing a correlation between sialic acid expression and tumor 
progression. Furthermore, several N-glycans containing a 
bisecting GlcNAc were exclusively detected in the meta-
static cell line. Orthogonal confirmation of these results 
was obtained using the bisecting GlcNAc-recognizing 
PHA-E lectin and mRNA expression level analysis of the 
Mgat3 gene, which encodes the bisecting GlcNAc transfer-
ring GlcNAc transferase III [76].

A recent study by Chik et al. [75] compared the glyco-
sylation profiles of four colorectal cancer cell lines with the 
ones obtained from human colorectal tumors and found dis-
tinct glycan differences in the tissue samples compared to 
the cell line-derived samples. In total 173 N-glycan and 43 
O-glycan structures were detected and confirmed by man-
ual annotation of fragmentation spectra and their relative 
abundances were quantified. The expression of different 
glycans in the cell lines compared to the tumor epithelial 
tissue may indicate that cell surface molecule glycosylation 
is adapted to cell culture conditions over time in established 
cell lines. This work clearly indicates that the aspect of pro-
tein glycosylation needs to be carefully considered when 
planning and performing cell line-based biomarker discov-
ery studies or when evaluating or reassessing tissue-derived 
glycomics information within cancer cell lines [75].

Analysis of N‑Glycans Derived From Cancer Patient 
Human Plasma

Besides reduced N-glycans also non-reduced N-glycans 
are commonly analyzed on PGC–LC. The analysis of non-
reduced glycans results in an additional separation of alpha 
and beta anomers, which introduces an additional level of 
complexity [78] that is caused by the PNGase F release: 
On the protein, the N-glycan is exclusively attached in 
beta configuration to the asparagine side chain while for 
released N-glycans a spontaneous conversion of alpha 
and beta anomers takes place resulting in an equilibrium. 
The group of Carlito Lebrilla is using this approach for 
biomarker studies in different cancer types by analyz-
ing human plasma N-glycans [79–81]. The authors use 
a microfluidic chip including a PGC guard and analytical 
column [82] which is mostly combined with an additional 

PGC–SPE clean-up step prior mass spectrometric analy-
sis. This chip-based approach is featuring a highly repro-
ducible chromatography, since unstable absolute retention 
times can cause problems in PGC–LC data analysis [83]. 
The released N-glycans were detected as positively charged 
species, also because an acidic LC-buffer system consisting 
of 0.1 % formic acid in water (solvent A) and 0.1 % formic 
acid in acetonitrile (solvent B) was used. In this context, it 
needs to be mentioned that ionic strength and pH in differ-
ent LC-buffer systems have an effect on the glycan recov-
ery, which has been systematically investigated recently by 
Pabst and Altmann [58]. They reported a poor recovery of 
highly sialylated structures in unbuffered systems with low 
ionic strength. This needs to be considered carefully, since 
reports using the 0.1 % formic acid in water and acetoni-
trile solvent system are observing a loss of higher sialylated 
glycans [84].

Ruhaak et  al. compared different protein enrichment 
techniques from human plasma of 20 lung cancer patients 
and 20 control persons for a lung cancer glycan biomarker 
discovery study [81]. N-glycan profiles of whole plasma, 
enriched IgG, enriched medium abundance proteins and 
their corresponding wash fractions were analyzed. For sta-
tistical evaluation, relative intensities of structural isomers 
were combined into single glycan compositions. In addi-
tion, these compositions (between 79 and 20 depending 
on the fraction) were grouped according to general glycan 
features such as high-mannose, complex or hybrid (C/H) 
non-sialylated and non-fucosylated, C/H fucosylated, C/H 
sialylated and C/H fucosylated and sialylated glycans. Data 
analysis revealed significant differences in relative intensi-
ties of glycan compositions and features between cancer 
patients and control persons for the IgG-enriched fraction 
and whole plasma, but not for medium abundance pro-
teins. These results suggest that glycosylation differences 
in plasma of lung cancer patients are more pronounced on 
higher abundant proteins [81].

In a different study from the Lebrilla group serum 
N-glycans were analyzed from a large cohort of ovarian 
cancer patients (n = 199) and control subjects (n = 100) to 
investigate potential glycan biomarkers [80]. Their statis-
tical analysis of glycan profiles was performed in 2 steps: 
First, a model was developed based on a training set, which 
was then used for classification of a second set of samples. 
They found the differential expression of a set of 22 glycan 
compositions in three different tumor stages when com-
pared to the control samples. From these 22 glycan compo-
sitions, two were being expressed in higher and 20 of them 
in lower abundance in tumor patient sera. They could also 
show that a combination of up to nine glycan compositions, 
on an individual level as well as on a group level, could 
be used for classification between cancer and control cases 
[80].



312 K. Stavenhagen et al.

1 3

O‑Glycans

PGC–LC has widely been applied in the analysis of O-gly-
cans, in particular derived from mucins. These mucin-type 
O-glycans, which are generally attached via an O-GalNAc 
to a serine or threonine residue, are largely found in mucous 
membranes on secreted gel-forming mucins, including 
MUC2, MUC5AC, MUC5B, MUC6, MUC7 and MUC19, 
or on membrane-bound cell surface mucins such as MUC1, 
MUC3A, MUC3B and MUC4 [85]. However, mucin-type 
O-glycans can be also attached to non-mucin glycopro-
teins such as plasma glycoproteins [86, 87]. Changes in 
mucin-type O-glycosylation have also been associated with 
inflammatory diseases and cancer [88, 89]. With the help 
of PGC–LC–ESI–MS/MS mucin-type O-glycans were ana-
lyzed from different body fluids and tissues [42, 90–93], 
investigating their role in pathogen binding [44, 94, 95], 
and with respect to several diseases such as rheumatoid 
arthritis [96, 97], cystic fibrosis [98, 99] and ovarian can-
cer [100]. The method of choice to release O-glycans from 
the glycoproteins in all studies discussed in this review was 
reductive β-elimination prior PGC–LC–ESI–MS/MS anal-
ysis [25].

The group of Niclas Karlsson published several dis-
ease-related O-glycan studies such as the investigation of 
lubricin O-glycosylation derived from synovial fluids from 
rheumatoid arthritis (RA) patients. Specific sulfotrans-
ferases are known to be expressed in inflamed synovial 
fluids (SF) of RA patients [101] and the O-glycan charac-
terization of lubricin, the major component of the acidic 
protein fraction in SF, revealed mainly mono- and disi-
alylated core 1 and core 2 structures, as well as sulfated 
core 2 structures [97]. In a follow-up study, they analyzed 
the acidic protein O-glycosylation in SF of RA patients 
and found distinct differences in glycan expression in the 
acute form (reactive arthritis—ReA) of the disease com-
pared to the chronic RA. ReA SF contained three structural 
and linkage isomers of the sulfated core 1 glycan (Galβ1–
3GalNAcol) (Fig.  3a), whereas in the SF of chronic RA 
patients just one isomer could be detected (Fig.  3b) [96]. 
Since RA is a systemic disease glycosylation changes can 
also be expected to be present on a global level in addition 
to changes occurring at the site of inflammation. Conse-
quently, O-glycosylation of salivary MUC7 in RA patients 
(n =  10) was analyzed and compared to control samples 
(n = 11) with regard to the sulfated core 1 O-glycan using 
a glycan-specific selected reaction monitoring (SRM) 
approach developed by the Karlsson group. With this sensi-
tive and selective method, the sulfated 3-Gal-linked isomer 
of the core 1 glycan (Galβ1-3GalNAcol) could be quanti-
fied relative to the non-sulfated counterpart. They found a 
significantly higher expression of the sulfated form in RA 
patients (37.2  ±  3.11  %) compared to the control group 

(25.5 ± 1.75 %) showing that in the case of RA a change 
of glycosylation occurs at the site of inflammation and on 
a systemic level [96]. This particular SRM approach for 
the relative quantification of specific compounds benefits 
significantly from the isomer separation power of PGC 
chromatography.

A different study by Everest-Dass et al. [44] focused on 
the potential role of N- and O-glycosylation in infection. 
First, they provided a comprehensive inventory of the N- 
and O-glycosylation present in human saliva and on buccal 
epithelial cells (BEC) using PGC–LC–ESI–MS/MS, iden-
tifying 78  N-glycan and 112 unique O-glycan structures. 
The resolving power of PGC chromatography and struc-
tural elucidation by manual glycan spectra interpretation 
allowed a detailed comparison of specific glycan epitopes 
present in saliva and on buccal epithelial cells, including 
different Lewis and blood group epitopes, which are known 
receptors for pathogen adhesion [102]. Overall, Everest-
Dass et al. [44] found similar glycan epitopes with differ-
ing relative intensities in both saliva and on buccal epithe-
lial cells (Fig.  4b). They further investigated the potential 
of salivary protein glycosylation to inhibit Candida albi-
cans infection. A flow cytometry-based cell adhesion assay 

Fig. 3   PGC–LC–ESI–IT–MS EICs of sulfated core 1 O-glycan iso-
mers (m/z 464.1) from acidic glycoproteins of synovial fluid from 
a patient with ReA (a) and RA (b). ReA patients showed a more 
diverse isomer pattern as it contains one structure with the sulfate 
linked to the GalNAc (RT 15.4 min) and two structures with a Gal-
linked sulfate (RT 16.6 and 17.2 min). In contrast RA patients carry 
just a single Gal-linked sulfate structure on their synovial acidic gly-
coproteins (RT 15.6  min) [96]. © 2014 American Society for Bio-
chemistry and Molecular Biology
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confirmed that salivary glycans in different amounts as 
well as whole saliva inhibit binding of Candida albicans 
to buccal epithelial cells [Fig. 4a (panel 1–5)]. These data 
indicate a role of saliva glycans in mimicking epithelial cell 
epitopes and inhibiting pathogen binding as part of a first 
immune defense [44].

The Application of PGC Chromatography for the 
In‑depth Characterization of Glycoproteins 
and Glycopeptides

Besides using PGC–LC–ESI–MS/MS as a tool for the 
analysis of complex glycan mixtures it is also applied as 
an important tool for the in-depth characterization of glyco-
proteins. Detailed elucidation of the protein-specific types 

of glycans, their structures and compositions represents an 
important pillar in the comprehensive analysis of glycopro-
tein micro- and macroheterogeneity.

Deshpande et al. used PGC–LC–ESI–MS/MS to analyze 
the protein-specific glycosylation patterns of the four major 
protein components of secretory IgA (secretory compo-
nent, IgA1&IgA2 and joining chain) [103]. Distinct glycan 
profiles of these proteins were determined, clearly showing 
that the secretory component carries mostly neutral, LeX-
containing N-glycans, whereas neutral, bisected N-glycans 
and core 1 and core 2 type O-glycans were the dominat-
ing structures on IgA. In contrast, the joining chain pro-
tein carried mostly mono- and disialylated N-glycans with 
and without core fucose [103]. With this information the 
respective site-specific glycosylation features were deter-
mined by RP–LC–ESI–MS/MS of glycopeptides showing 

Fig. 4   Flow cytometry-based assay to quantify the adhesion of  
Candida albicans to BEC. a5 shows the adhesion of C. albicans to 
BEC normalized to 100 % and a4 the corresponding autofluorescence 
of BEC only. The inhibition of interaction was analyzed after incu-
bation with 0.5  mL of whole saliva a3, N- and O-glycans released 
from 0.5  mL saliva a2 and N- and O-glycans released from 5  mL 
saliva a1. Salivary glycans as well as whole saliva inhibits binding of  
C. albicans to BEC. The graph contains the mean ± standard error of 

three independent biological replicates and their technical triplicates. 
(b) shows relative intensities of glycan epitopes from O-glycans of 
salivary and BEC membrane proteins, which express similar gly-
can epitopes in different relative intensities. Relative quantification 
was performed on MS ion intensities of all glycans carrying these 
epitopes. The graph contains the mean ± standard error of three tech-
nical replicates of both saliva and BEC collected from an individual 
of blood group A secretor status [44]. © Oxford University Press
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that every site in all of the glycoproteins carries a specific 
set of glycans. A similar approach has also been applied 
in studying human and recombinant IgGs [104], human 
butyrylcholinesterase [105] and recombinant human folli-
cle-stimulating hormone [41].

Another elegant approach for the in-depth characteriza-
tion of a single, purified glycoprotein is shown in the rep-
resentative analytical workflow depicted in Fig. 5 that was 
applied for the analysis of a purified plasma glycoprotein 
[106], where the authors combined a variety of different 
techniques to achieve a comprehensive characterization 
of the glycoprotein. Besides top-down approaches on the 
intact glycoprotein, e.g., MALDI–TOF–MS and 1D/2D gel 
electrophoresis with and without the use of specific glycosi-
dases also PGC–LC–ESI–MS was integrated into the work-
flow as part of a bottom-up approach to elucidate the gly-
can moieties attached to the protein. The obtained glycan 
information was then used for site-specific glycosylation 
analysis on the glycopeptide level using RP–LC–ESI–MS/

MS to gain further information about which specific N- and 
O-glycan species are attached to which glycosylation site.

PGC–LC–ESI–MS can also be applied for the analy-
sis of intact glycopeptides [107–112]. However, it needs 
to be considered that the hydrophobicity of a glycopep-
tide increases with increasing peptide length, leading to a 
stronger interaction with the PGC stationary phase [107, 
108]. To avoid the loss of (glyco-)peptides during PGC 
chromatography or SPE clean-up due to irreversible bind-
ing and low recovery, the peptide moiety should be kept as 
small as possible, but still in an appropriate length to obtain 
sufficient information on the peptide identity for unambig-
uous glycosylation site assignment. Unspecific or broad-
specificity proteases, such as proteinase K or pronase, can 
be used for the enzymatic cleavage of glycoproteins result-
ing in small amino acid stretches that remain linked to the 
glycan. These “peptide tags” on the glycans have been 
described to be mostly sufficient for qualitative site-specific 
glycosylation analysis [109, 110]. Despite the presence of 

Fig. 5   A representative workflow for a multi-experimental compre-
hensive characterization of a purified glycoprotein that shows the 
suitability of PGC–LC–ESI–MS/MS implementation into an ana-
lytical workflow. The glycoprotein is analyzed on three different lev-
els, including the analysis of the intact (glyco)protein in a top-down 
approach (upper part). Besides that glycans are characterized in a 
bottom-up approach by blotting the protein on a PDVF membrane 

and subsequent release of N- and O-glycans, which are then analyzed 
on PGC–LC–ESI–MS/MS (lower right part). This information is 
then be used for peptide and glycopeptide characterization in a bot-
tom-up approach to elucidate the full micro- and macroheterogeneity 
of the glycoprotein (lower left part). Modified from Sumer-Bayraktar 
et al. [106]
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a short peptide tag, it needs to be carefully considered that 
highly sialylated glycopeptides generated by this approach 
may be retained irreversibly by the PGC column because of 
an increased interaction with the stationary phase, and thus 
just partial site-specific glycoprofiles would be obtained, 
with an expected bias towards low sialylation.

PGC–LC for the Analysis of Glycosaminoglycans 
(GAGs)

GAGs such as heparan sulfate proteoglycans, for exam-
ple, are involved in several processes such as basement 
membrane organization, cell signaling and morphogenesis 
[113]. Consequently, alterations in heparan sulfate glycosa-
minoglycans have been identified in several diseases [114]. 
In contrast to the above-discussed N- and O-glycans, GAGs 
are linear molecules consisting of repeating disaccharide 
units of hexosamines and hexuronic acids. The overall size 
of such GAG chains requires that they are digested by spe-
cific enzymes (e.g., keratanase, heparitinase or chondroi-
tinase) into their disaccharide units, which are then com-
monly analyzed using LC–ESI–MS/MS (for further reading 
the detailed reviews by Joseph Zaia are recommended, 
comprehensively describing various approaches for MS-
based GAG analyses) [17, 115]. PGC–LC–ESI–MS/MS is 
well suited for the analysis of disaccharides generated from 
GAGs [45, 116, 117] and has found numerous applications 
in the analysis of GAGs from plasma and serum [46, 47, 
118, 119]. In a study by Wei et  al., a method was devel-
oped and applied to analyze disaccharides from heparan 
sulfate (HS) GAGs in human serum using PGC–LC–ESI–
MS/MS in negative-ion mode, providing compositional 
information on 12 disaccharides including structural iso-
mers [46]. In a different study, by the same group free HS 
and heparan sulfate proteoglycans (HSPG) were analyzed 
from serum of 26 premenopausal and 25 postmenopau-
sal women using PGC–LC–ESI–MS/MS [47]. Statistical 
analysis of the 12 HS-derived disaccharides revealed dif-
ferences in four structures from HSPG and two structures 
from HS, including N-acetylated and N-sulfated disaccha-
rides. These results indicated changes in the enzyme regu-
lation of N-deacetylase/N-sulfotransferase in the context of 
menopause [47].

Human milk oligosaccharides (HMOs)

PGC–LC has also been successfully applied in the analysis 
of HMOs, which are free sugars in milk of lactating women 
and present in concentrations between 5 and 20 g/L [120]. 
They are considered to have prebiotic effects to bacteria 
like Bifidobacterium bifidum and also to prevent pathogen 

binding to the intestinal mucosa by acting as analogs to cell 
surface epitopes [121]. In vitro studies have shown sys-
temic, immunomodulatory effects of HMOs [122], which 
is also supported by their presence in urine [51], as well as 
in plasma of breastfed infants [52, 123]. Further biological 
functions of HMOs have been reviewed extensively else-
where [124–126].

The analysis of HMOs by mass spectrometry has been 
discussed in detail by different groups, in part, also with 
respect to the use of PGC as stationary phase for LC sep-
aration. Similar to the glycan species discussed above, 
mainly HMOs with a free reducing ends were analyzed 
using PGC–LC [127–129].

Alpha-(1,2)-Fucosylated structures are found in blood 
group antigen secreting humans, specifically in their body 
fluids, including milk. Milk of secreting women, that con-
tains high levels of α-(1,2)-fucosyloligosaccharides, has 
been associated with protecting full-term infants from 
diarrhea [130]. Using PGC–LC–ESI–MS α-(1,2)-linked 
fucosylation can be clearly distinguished from α-(1,3)-
fucosylation by the different retention times of these iso-
mers. Thus, a PGC nano-HPLC chip/TOF–MS approach 
provided a suitable analysis platform to compare HMOs 
from milk of mothers giving birth to full-term infants com-
pared to preterm delivering mothers [131], since preterm 
infants are considered to exhibit an immature immune sys-
tem [132]. The authors observed a large variation in the 
relative abundance of fucosylated structures in the milk 
derived from preterm delivering mothers. This example 
also emphasizes the importance of studies focusing on the 
analysis of specific fucosylation features [131].

Conclusions and Future Perspectives

Recent technological developments made way for faster sam-
ple preparation as well as more sensitive and selective mass 
spectrometric analyses in glycomics and glycoproteomics. In 
this regard, porous graphitized carbon is a versatile and pow-
erful tool, which has found a wide range of applications as 
SPE material and as a stationary phase for PGC–LC–ESI–
MS applications for the analysis of predominantly native 
and reduced glycans. PGC features a high isomer separation, 
which in combination with tandem mass spectrometric analy-
ses offers unique opportunities for specific glycan compound 
analyses of individual structures with high sensitivity and the 
seamless integration into already existing proteomics work-
flows. This capacity allows that functional questions regard-
ing the role of specific glycan structures and features can now 
be addressed in a more protein-specific way. Consequently, 
this strategy becomes a more reliable technique also for clini-
cal research such as cancer biomarker discovery and detailed 
characterization of therapeutic recombinant glycoproteins.
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As a result of the isomer separation capacity of PGC–LC, 
data complexity can be already considerably high for gly-
can analyses of purified glycoproteins. To date, data analy-
sis still represents a major bottleneck in glycomic analysis 
and needs to be addressed appropriately by (partial) auto-
mation to make PGC–LC–ESI–MS/MS-based glycomics 
approaches available and attractive to a broader scientific 
audience. One step towards this direction is the presence 
of several glycan databases containing experimental glycan 
fragmentation spectra [133]. Unicarb-DB contains a large 
selection of fragment spectra, which significantly facili-
tates the analysis of negative-ion mode PGC–LC–ESI–MS/
MS data of native reduced N- and O-glycans. This database 
allows manual spectra matching with acquired data and is 
also meant to be used for automated structural assignment 
in the future [74]. Additionally, several research groups are 
focusing on developing software tools for compositional 
N-glycan identification on MS level and/or based on reten-
tion times, as well as tools that match acquired tandem MS 
spectra with theoretical fragmentation spectra [134–137]. 
Nevertheless, to fully exploit the unique potential for glyco-
conjugate analysis offered by PGC–LC–ESI–MS/MS-based 
approaches, concerted future efforts will be necessary to 
facilitate confident and automated glycan identification and 
quantification while maintaining sufficient data quality and 
reducing false positive assignments [138, 139].
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