Skip to main content
Log in

Determination of Pyrethroid Pesticides in Environmental Waters Based on Magnetic Titanium Dioxide Nanoparticles Extraction Followed by HPLC Analysis

  • Original
  • Published:
Chromatographia Aims and scope Submit manuscript

Abstract

A simple and fast method based on magnetic separation for extraction of pyrethroid pesticides including beta-cyfluthrin, cyhalothrin and cyphenothrin from environmental water samples has been established. Magnetic titanium dioxide was used as sorbent, which was synthesized by coating TiO2 on Fe3O4 in liquid-state co-precipitation method. The sorbent has been characterized by scanning electron microscopy and Fourier-transform infrared spectrometry, and the magnetic properties were investigated with physical property measurement system. Various parameters affecting the extraction efficiency were evaluated to achieve optimal condition and decrease ambiguous interactions. The analytes desorbed from the sorbent were detected by high performance liquid chromatography. Under the optimal condition, the linearity of the method is in the range of 25–2,500 ng L−1. The detection limits and quantification limits of pyrethroid pesticides are in the range of 2.8–6.1 ng L−1 and 9.3–20.3 ng L−1, respectively. The relative standard deviations of intra- and inter-day tests ranging from 2.5 to 7.2 % and from 3.6 to 9.1 % were obtained. In all three spiked levels (25, 250 and 2,500 ng L−1), the recoveries of pyrethroid pesticides were in the range of 84.5–94.1 %. The proposed method was successfully applied to determine pyrethroids in three water samples. Cyphenothrin was found in one river water near farmlands, and its concentration was 52 ng L−1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Ye F, Xie Z, Wu X, Lin X (2006) Talanta 69:97–102

    Article  CAS  Google Scholar 

  2. Haitzer M, Höss S, Traunspurger W, Steinberg C (1988) Chemosphere 37:1335–1362

    Article  Google Scholar 

  3. Righi DA, Palermo-Neto J (2005) Toxicology 212:98–106

    Article  CAS  Google Scholar 

  4. Moniz AC, Cruz-Casallas PE, Oliveira CA, Lucisano A, Florio JC, Nicolau AA, Spinosa HS, Bernardi MM (1999) Neurotoxicol Teratol 21:611–618

    Article  CAS  Google Scholar 

  5. Forshaw PJ, Bradbury JE (1983) Eur J Pharmacol 91:207–213

    Article  CAS  Google Scholar 

  6. Pinheiro AS, Rocha GO, Andrade JB (2011) Microchem J 99:303–308

    Article  CAS  Google Scholar 

  7. Li B, Zeng F, Dong Q, Cao Y, Fan H, Deng C (2012) Phys Procedia 25:1776–1780

    Article  CAS  Google Scholar 

  8. Sharif Z, Man YBC, Hamid NSA, Keat CC (2006) J Chromatogr A 1127:254–261

    Article  CAS  Google Scholar 

  9. Liu D, Min S (2012) J Chromatogr A 1235:166–173

    Article  CAS  Google Scholar 

  10. Bagheri H, Zandi O, Aghakhani A (2011) Chromatographia 74:483–488

    Article  CAS  Google Scholar 

  11. Chen L, Wang T, Tong J (2011) Trends Anal Chem 30:1095–1108

    Article  CAS  Google Scholar 

  12. Huang C, Hu B (2008) Spectrochim Acta B 63:437–444

    Article  Google Scholar 

  13. Suleiman JS, Hu B, Peng H, Huang C (2009) Talanta 77:1579–1583

    Article  CAS  Google Scholar 

  14. Tian H, Li J, Shen Q, Wang H, Hao Z, Zou L, Hu Q (2009) J Hazard Mater 171:459–464

    Article  CAS  Google Scholar 

  15. Anderson DJ (1995) Anal Chem 67:475–486

    Article  Google Scholar 

  16. Dorsey JG, Cooper WT, Siles BA, Foley JP, Barth HG (1996) Anal Chem 68:515–568

    Article  CAS  Google Scholar 

  17. Liu Y, Jia L (2008) Microchem J 89:72–76

    Article  CAS  Google Scholar 

  18. Katsumata H, Asai H, Kaneco S, Suzuki T, Ohta K (2007) Microchem J 85:285–289

    Article  CAS  Google Scholar 

  19. Liu Y, Li H, Lin J (2009) Talanta 77:1037–1042

    Article  CAS  Google Scholar 

  20. Zhang X, Niu H, Pan Y, Shi Y, Cai Y (2010) Anal Chem 82:2363–2371

    Article  CAS  Google Scholar 

  21. Zhang X, Niu H, Zhang S, Cai Y (2010) Anal Bioanal Chem 397:791–798

    Article  CAS  Google Scholar 

  22. Niu H, Zhang S, Zhang X, Cai Y (2010) ACS Appl Mater Inter 2:1157–1163

    Article  CAS  Google Scholar 

  23. Shen L, Laibinis PE, Hatton TA (1999) Langmuir 15:447–453

    Article  CAS  Google Scholar 

  24. Sousa MH, Tourinho FA, Depeyrot J, Silva GJ, Lara MCFL (2001) J Phys Chem B 105:1168–1175

    Article  CAS  Google Scholar 

  25. Lia Q, Lam MHW, Wu RSS, Jiang BW (2010) J Chromatogr A 1217:1219–1226

    Article  Google Scholar 

  26. Ashtari P, Wang K, Yang X, Huang S, Yamini Y (2005) Anal Chim Acta 550:18–23

    Article  CAS  Google Scholar 

  27. Meng J, Bu J, Deng C, Zhang X (2011) J Chromatogr A 1218:1585–1591

    Article  CAS  Google Scholar 

  28. Chen L, Zhang X, Xu Y, Du X, Sun X, Sun L, Wang H, Zhao Q, Yu A, Zhang H, Ding L (2010) Anal Chim Acta 662:31–38

    Article  CAS  Google Scholar 

  29. Ji Y, Yin J, Xu Z, Zhao C, Huang H, Zhang H, Wang C (2009) Anal Bioanal Chem 395:1125–1133

    Article  CAS  Google Scholar 

  30. Yu JC, Wu X, Chen Z (2001) Anal Chim Acta 436:59–67

    Article  CAS  Google Scholar 

  31. Huang C, Hu B, Jiang Z (2007) Spectrochim Acta B 62:454–460

    Article  Google Scholar 

  32. Zhang L, Wang Y, Guo X, Yuan Z, Zhao Z (2009) Hydrometallurgy 95:92–95

    Article  CAS  Google Scholar 

  33. Huang C, Jiang Z, Hu B (2007) Talanta 73:274–281

    Article  CAS  Google Scholar 

  34. Suryaman D, Hasegawa K (2010) J Hazard Mater 183:490–496

    Article  CAS  Google Scholar 

  35. Keller KE, Larsen MR (2011) J Proteomics 75:317–328

    Article  Google Scholar 

  36. Zehringer M, Herrmann A (2001) Eur Food Res Technol 212:247–251

    Article  CAS  Google Scholar 

  37. Kuang H, Miao H, Hou X, Zhao Y, Shen J, Xu C, Wu Y (2009) Chromatographia 70:995–999

    Article  CAS  Google Scholar 

  38. Wei Y, Han B, Hu X, Lin Y, Wang X (2012) Procedia Eng 27:632–637

    Article  CAS  Google Scholar 

  39. Xu W, Zhou W, Xu P, Pan J, Wu X, Yan Y (2011) Chem Eng J 172:191–198

    Article  CAS  Google Scholar 

  40. Ojamae L, Aulin C, Pedersen H, Kall P (2006) J Colloid Interf Sci 296:71–78

    Article  Google Scholar 

  41. Camilleri P (1984) J Agric Food Chem 32:1122–1124

    Article  CAS  Google Scholar 

  42. Nguyen HA, Grellet J, Ba BB, Quentin C, Saux MC (2004) J Chromatogr B 810:77–83

    CAS  Google Scholar 

  43. Zhou Q, Gao Y, Bai H, Xie G (2010) J Chromatogr A 1217:5021–5025

    Article  CAS  Google Scholar 

  44. Yu X, Sun Y, Jiang C, Sun X, Gao Y, Wang Y, Zhang H, Song D (2012) Talanta 98:257–264

    Article  CAS  Google Scholar 

  45. Wang D, Weston DP, Lydy MJ (2009) Talanta 78:1345–1351

    Article  CAS  Google Scholar 

  46. Gil-García M, Ba rranco-Martínez D, Martínez-Ga lera M, Parrilla-Vázquez P (2006) Rapid Commun Mass Spectrom 20:2395–2403

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the Fundamental Research Funds for the Central Universities (No. DL10DB01).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ligang Chen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, C., Chen, L. Determination of Pyrethroid Pesticides in Environmental Waters Based on Magnetic Titanium Dioxide Nanoparticles Extraction Followed by HPLC Analysis. Chromatographia 76, 409–417 (2013). https://doi.org/10.1007/s10337-013-2393-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10337-013-2393-y

Keywords

Navigation