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Abstract
Magnetic resonance imaging (MRI) modalities have achieved an increasingly important role in the clinical work-up of chronic 
kidney diseases (CKD). This comprises among others assessment of hemodynamic parameters by arterial spin labeling (ASL) 
or dynamic contrast-enhanced (DCE-) MRI. Especially in the latter, images or volumes of the kidney are acquired over time 
for up to several minutes. Therefore, they are hampered by motion, e.g., by pulsation, peristaltic, or breathing motion. This 
motion can hinder subsequent image analysis to estimate hemodynamic parameters like renal blood flow or glomerular filtra-
tion rate (GFR). To overcome motion artifacts in time-resolved renal MRI, a wide range of strategies have been proposed. 
Renal image registration approaches could be grouped into (1) image acquisition techniques, (2) post-processing methods, 
or (3) a combination of image acquisition and post-processing approaches. Despite decades of progress, the translation in 
clinical practice is still missing. The aim of the present article is to discuss the existing literature on renal image registra-
tion techniques and show today’s limitations of the proposed techniques that hinder clinical translation. This paper includes 
transformation, criterion function, and search types as traditional components and emerging registration technologies based 
on deep learning. The current trend points towards faster registrations and more accurate results. However, a standardized 
evaluation of image registration in renal MRI is still missing.

Keywords  Kidney disease · Image registration · Dynamic MRI · DCE-MRI · ASL

Introduction

Magnetic resonance imaging (MRI) modalities have 
achieved an increasingly important role in the clinical work-
up of chronic kidney diseases (CKD) [1]. They allow a min-
imal-invasive measurement of a panel of parameters that can 
play an important step for the diagnosis and monitoring of 
renal diseases. This comprises among others assessment of 
kidney volumes [2], microstructure via diffusion weighted 

imaging [3], hemodynamic parameters by arterial spin labe-
ling (ASL) [4], or dynamic contrast-enhanced (DCE-) MRI 
[5]. Especially in the latter, images or volumes of the kidney 
are acquired over time for up to several minutes. Therefore, 
they are hampered by motion, e.g., by pulsation, peristal-
tic, or breathing motion. This motion can hinder subsequent 
image analysis to estimate hemodynamic parameters like 
renal blood flow or glomerular filtration rate.

Image registration in the context of renal imaging in this 
review is the spatial alignment of intra-subject kidneys taken 
in a certain time range (a single imaging session) to improve 
further processing steps for an improvement of the image 
analysis. Some techniques allow inter-subject image regis-
tration to deploy generalized models to advance diagnosis.

Barriers in the development of renal MRI biomarkers 
with respect to CKD are, among others, the limited avail-
ability of software tools to analyze and extract the renal data. 
Furthermore, the lack of access to data from previous studies 
hinders the development benchmarks for such tools.

This is not only limited to renal image registration, but 
is a limiting factor in medical image registration in general. 
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In a recent review, Viergever et al. [6] list of comments and 
observations include the “emerging need of public databases 
of representative expert-annotated images and of validation 
protocol” and “the rare use of registration in diagnostic clini-
cal practice”.

To overcome motion artifacts in time-resolved renal MRI, 
motion correction strategies have been proposed for over 
a decade; however, its translation into clinical practice is 
still missing. Renal image registration approaches could be 
grouped into (1) image acquisition techniques, (2) post-pro-
cessing methods, or (3) a combination of image acquisition 
and post-processing approaches.

The Working Group 2 of the COST (European Coop-
eration in Science and Technology) action PARENCHIMA 
(Magnetic Resonance Imaging Biomarkers for Chronic 
Kidney Disease) (http://www.renal​mri.org) investigates 
renal data analysis algorithms including image registration 
to provide a core software library for a comprehensive and 
standardized approach to renal data analysis. The aim of the 
present article is to discuss the existing literature on renal 
image registration techniques and show today’s limitations 
of the proposed techniques that hinder clinical translation.

Image registration techniques

Image acquisition based

Organ motion in (renal) MRI causes image artifacts due 
to displacement during the quiescent period between each 
data sampling period and the following excitation radio 
frequency (RF), and as a result of spin phase induced by 
motion through magnetic field gradients between an exci-
tation RF pulse and the subsequent data sampling period. 
To correct these during the image acquisition, three gen-
eral approaches can be followed: (1) breathhold strategies 

reducing the amount of movement, (2) using a navigator 
echo pro- and retrospectively trigger the acquisitions, and 
(3) image readouts that suppress motion artifacts. Recent 
work reporting approaches in any of the three categories is 
summarized in Table 1.

In renal perfusion MRI, several approaches use breath-
hold techniques to mitigate kidney movement. These range 
from shallow regular breathing [7], breathhold during the 
first pass of contrast agent in DCE-MRI to repeated breath-
holds as for instance in ASL [8]. For subsequent data analy-
sis like perfusion quantification interpolation or image-based 
post-processing, image registration is used.

Navigator echoes are extra data acquisitions capturing 
motion or motion-related change of phase. Similar to exter-
nal triggering of respiratory motion, these data can be used 
to either trigger data acquisitions prospectively, i.e., only 
data in a certain respiratory phase are accepted or to record 
the breathing pattern and discard those data not within the 
capture window retrospectively. Prospectively gated acqui-
sitions usually take longer to acquire the amount of data 
needed and are usually not used in dynamic imaging as the 
data sampling is hard to control. Retrospectively gating of 
renal perfusion MRI is feasible if the data are acquired at 
high temporal rate, such that the remaining accepted data 
sufficiently capture the signal change over time as shown by 
Attenberger et al. [9].

Center-out imaging readouts such as projection recon-
struction or radial and spiral MRI have been shown to reduce 
motion artifacts. This is attributable in part to oversampling 
of central k-space, which reduces artifacts in a manner simi-
lar to multiple averaging in conventional imaging. In addi-
tion, when the data collection begins at the center of k-space, 
in-plane gradient moments are reduced in the central region 
of k-space, minimizing spin phased induced motion arti-
facts. In renal DCE-MRI, Eikefjord et al. [10] compared 
a radial readout scheme [k-space weighted image contrast 

Table 1   Overview of image acquisition-based motion correction techniques used in renal MRI

Motion correction approach Application References

Breathhold strategies Shallow regular breathing ASL, DCE-MRI Brox et al. [7]
Schewzow et al. [46]

Breathhold during first pass of contrast agent DCE-MRI Melbourne et al. [25]
Repeated breathholds ASL, DCE-MRI Eikefjord et al. [10]

Robson et al. [8]
Schewzow et al. [46]

Pro- and retrospectively trigger Retrospective gating DCE-MRI Attenberger et al. [9]
Image readouts Radial readout (KWIC) DCE-MRI Eikefjord et al. [10]

Propeller DCE-MRI Lietzmann et al. [12, 13]
Radial readout scheme, golden-angle increment and 

iterative reconstruction
DCE-MRI Riffel et al. [14]

Kurugol et al. [15]
Keyhole + compressed sensing ASL Taso et al. [16]

http://www.renalmri.org
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(KWIC) filter] to a Cartesian sampling technique [Fast Low-
Angle Shot (FLASH)]. Patients were instructed for repeated 
breathhold during the whole acquisition. Results showed that 
using the same post-processing scheme and pharmacokinetic 
model, FLASH produced more accurate perfusion and fil-
tration parameters than KWIC did compared with clinical 
reference methods.

A combination of oversampling the k-space center and 
navigator information has been proposed by James Pipe, 
called Periodically Rotated Overlapping ParallEL Lines 
with Enhanced Reconstruction (PROPELLER) MRI [11]. 
In this, a small strip of several rectangular samples’ k-space 
lines is acquired and then consecutively rotated around the 
k-space center. The latter aspect of PROPELLER MRI per-
mits correction for in-plane displacement and rotation, i.e., 
patient motion, image phase due to motion, and through-
plane motion.

This approach has been extended by Lietzmann et al. [12] 
for 2D DCE-MRI. This sequence was parameterized accord-
ing to a T1-weighting using a saturation prepulse. Different 
parametrization of the PROPELLER readout was tested. 
Compared to a widely used TurboFlash DCE-MRI exam, 
reduced motion artifacts could be obtained [13].

Recently, a combination of radial readout scheme, 
golden-angle increment, and iterative reconstruction called 
GRASP was proposed for dynamic kidney imaging by Riffel 
et al. [14]. The latter allows for reconstructing image dynam-
ics at different temporal resolution featuring high-resolution 
morphological images or high temporal dynamic images by 
including different amounts of the acquired radial spokes. 
Riffel et al. demonstrated that a high overall image quality 
score for the best arterial phase and the best renal phase and 
a high diagnostic confidence in the obtained images could 
be obtained. Minimizing residual undersampling artifacts 
could be reached utilizing 55 spokes, while a high tem-
poral resolution is achieved by 13 spokes. There were no 
respiratory motion artifacts in any of the patients. Streak 
artifacts were present in all the patients, but as compared 
to the KWIC did not compromise diagnostic image quality. 
The estimated renal blood flow (RBF) was slightly higher 
(295 ± 78 mL/100 mL/min) than reported in previous MRI-
based studies, but also closer to the physiologically expected 
value.

A similar approach to Riffel et al. was demonstrated in 
a pediatric population using a radial volume interpolated 
breathhold exam (VIBE) sequence and the GRASP recon-
struction framework by Kurugol et al. to estimate single 
kidney GFR [15].

Combining a keyhole technique with compressed sensing 
(CS) image reconstruction in pseudo-continuous ASL was 
recently proposed by Taso et al. [16]. In their work, ASL 
preparation was combined with a variable-density (VD) 
elliptic Poisson-disk segmented Cartesian fast spin-echo 

(FSE) readout including a fully sampled 6 × 6 k-space center 
region. To provide motion robustness, the outer k-space 
was pseudo-randomly undersampled to increase the tem-
poral resolution. To reach an overall k-space sampling, the 
undersampling scheme was changed between repetitions. 
The authors designed a sampling enabling a minimum of 
three shots for each individual volumetric repetition because 
of resolution, slices, and echo train-length constraints. This 
acquisition was then repeated multiple times with variable 
outer k-space sampling. While each repetition was acceler-
ated up to R ≈ 23, the overall k-space coverage led to an 
effective acceleration of R = 3.8. The acquired raw k-space 
data were offline reconstructed using a 4D k-t-CS parallel 
imaging using eigenvalue maps (ESPIRiT) reconstruction 
[17]. In three healthy volunteers, Taso et al. demonstrated 
that whole kidneys’ isotropic free-breathing perfusion meas-
urement using ASL is feasible in about 5 min with image 
quality comparable to a single-slice single-shot fast spin-
echo (SSFSE) and post-processing motion correction.

Image post‑processing‑based

Image post-processing-based renal MRI registration meth-
ods differ according to three key components of image reg-
istration techniques, i.e., criterion function, geometric trans-
formation model, and search method. An overview of image 
registration techniques in renal MRI is given in Table 2.

Objective function

Selection of an objective function (also known as cost func-
tion or loss function) seems to be the most challenging 
decision at implementation of renal registration algorithms. 
Intensity values at the same anatomical points may differ 
considerably for images acquired under different conditions, 
e.g., presence of contrast agent in DCE-MRI or magnetiza-
tion of the inflowing blood in ASL. Thus, subsequent images 
do not differ only due to kidney motion that need to be cor-
rected, but also due to beneficial information that needs 
to be preserved. The most common approach to define an 
objective function is to select an intensity-based similarity 
metric that best measures alignment of two images. Due to 
image differences, the far most widely selected measures are 
mutual information (MI) [7, 18–23] and normalized mutual 
information (NMI) [24, 25]. Other statistically based simi-
larity measures are rarely used, e.g., point similarity meas-
ures that build on top of MI [21, 26]. The correlation ratio 
that assumes functional intensity dependence [27] or cross-
correlation [28] is also applicable.

In contrast to image intensity values, image gradients are 
expected to be less dependent on the expected beneficial 
image differences. Consequently, several groups have devel-
oped algorithms to use gradient information instead of pure 
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intensity information. Not only the magnitude but also the 
direction is used in normalized gradient field (NGF) pro-
posed by Haber and Modersitzki which is applied by several 
other groups [10, 18, 19, 29, 30]. Similar to this is the edge-
based consistency metric [31].

Others have split objective function computation in a 
two-step process, where the first step is image preprocess-
ing that extracts image features relevant to kidney motion 
and the other step is measurement of similarity, using mono-
modality measures. Such example focused on image gradient 
information was presented by Song et al. [32]. They have 
extracted image edges using wavelet edge detection and 
further registered images using a Fourier transform-based 
registration approach.

In some cases, edge information is used only to detect 
the kidney region, to which the search of deformation was 
limited [24], or only the kidney edge region was used [33].

In contrast, some solutions rely on similar appearance of 
successive images and use mono-modality similarity meas-
ures, e.g., sum of squared differences (SSD), and multiple 
reference images [34].

A more sophisticated solution is an intensity correction 
method that reduces image differences not related to kidney 
motion, proposed by Lausch [29]. Here, the intensity cor-
rection reduces effect of different amount of contrast agent 
in the image volumes, enabling the use of SSD similarity 
measure. Similarly, a tracer kinetic model-driven registration 
procedure applies a tracer model to the reference image to 
equalize its intensities with each of the images in a sequence 
before registering them [35–37]. Thus, in contrast to using 
pure intensity-based similarity measures that due to image 

differences need to have multi-modality capabilities, the 
criterion function now employs an additional intensity cor-
rection model and only a simple mono-modality similarity 
measure.

To prevent tissues surrounding the kidneys from influenc-
ing the registration results, registration methods may limit 
the estimation of criterion function to a region of interest 
(ROI). For example, both kidneys move independently 
which will lead to a lower performance when applying a 
global rigid registration rather than two ROIs surrounding 
each kidney which are transformed independently by the 
registration approach [38]. The definition of an ROI links 
image registration with image segmentation. Most often, 
the ROI is defined manually for the reference image as 
delineation of the renal cortex [10, 31, 39]. If needed for 
other images as well, the reference ROI may be replicated 
to other images [20, 40]. The ROI does not always need to 
tightly match a kidney region. The quality of segmentation 
does not affect registration result considerably and only an 
approximate localization of the kidney may be needed [26]. 
Tissues that closely surround the kidneys are not affected by 
contrast agent passage and including them in the ROI may 
actually help the registration process [40]. Often, the defined 
ROI deliberately expand the kidney region [20], and in some 
cases, it turns out that it is sufficient to define the ROI as a 
rectangular region [31].

Geometric transformation model

To register one kidney image to the other, the expected 
geometric changes of the kidney must be modeled by a 

Table 2   Overview of image post-processing registration techniques according to the two key components, the criterion function and the geomet-
ric transformation model

Criterion function

Intensity-based Edge- or gradient-based Fourier transform Intensity correction model

Geometric model 
 Translation Brox et al. [7] Zikic et al. [30] Giele et al. [39] Buonaccorsi et al. [35–37]
 Rigid Rogelj et al. [26] de Senneville et al. [40] Song et al. [32]

Positano et al. [20] Yim et al. [33]
Fei et al. [24] Haber et al. [107]
Brox et al. [7] Sun et al. [31]

 Deformable Zöllner et al. [21]
 B-splines Brox et al. [7]

Anderlik et al. [23]
Tokuda et al. [79]
Sance et al. [22]
Melbourne et al. [25]

 Deformable non-
parametric

Zöllner et al. [21] Hodneland et al. [18, 19] Lausch et al. [29]
Rogelj et al. [26] Eikefjord et al. [10]
Merrem et al. [28]
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geometric model. The geometric changes of kidneys have 
many causes, e.g., breathing, heartbeat, peristalsis, and are 
extremely difficult to track or to describe them geometrically 
[37]. The largest estimate of displacements during normal 
breathing which we have found in the reviewed literature is 
7 mm (LR), 20 mm (SI), and 7 mm (AP) [29], while some 
other estimations are in a similar range [41]. In forced deep 
breathing translations, up to 86 mm are reported [42]. The 
deformation component is more difficult to estimate and 
the extent of expected deformation is currently not clearly 
evaluated, although it has been shown that the kidney shape 
variability can be modeled using an elastic model [43] or 
an active shape model [44]. In clinical practice, it is con-
sidered that the extent of deformation is negligible and a 
rigid model is sufficient for reaching the correct diagnosis 
[20, 40]. Nevertheless, some experiments show that visually 
better results may be obtained using non-rigid approaches, 
although this may not necessary be due to actual kidney 
deformation but also due to consideration of other image 
differences that are not anatomical in nature, e.g., movement 
of the contrast agent.

To select the geometric transformation model, one also 
needs to consider the fact that information obtained from the 
images can be insufficient to reliably map each point on one 
image to the corresponding point on the other image, e.g., 
deformation of a homogeneous region cannot be quantified. 
Furthermore, transformation visible on the images is not 
only due to kidney geometry but also due to other factors, 
e.g., passage of the contrast agent. Consequently, large inten-
sity variations in perfusion scans can lead to an apparently 
changed shape of the kidney in the image, which results in 
errors in the estimation of kidney parameters [30]. Due to 
this, stronger penalization and restriction of volume change 
were proposed for images with contrast differences.

Such restrictions of the geometric transformation can be 
implied by a transformation model and/or by explicit regu-
larization. Low parameter geometric models correspond to 
smooth image deformation, so that additional regulariza-
tion is not needed. Among such, the most often used one 
is a rigid model [24, 32, 41]. Even more limiting is a trans-
lational model [30, 31, 35], which is sometimes accept-
able due to reduced computational time. The affine trans-
formation model is usually not used, since the kidneys do 
not undergo shearing or considerable changes in size what 
would correspond to scaling.

Among non-rigid models, the most commonly used one is 
a B-spline model [7, 9, 22]. It does not require an additional 
explicit regularization, because the extent of deformation 
can be controlled by the density of control points. On the 
contrary, non-parametric models do need explicit regulariza-
tion, which may follow the physical laws of elasticity [10, 
29, 45] or viscosity or consider other usually simplified 
dependencies to enforce smoothness, e.g., Gaussian [21, 28]. 

Smoothness can be imposed not only in the spatial dimen-
sions but also in the temporal dimension [31].

Search method

Image registration is a procedure of finding a transforma-
tion that complies with the given transformation model and 
minimizes the given criterion function. This is generally an 
optimization problem. To increase attraction range, comput-
ing efficiency, and reliability of optimization at unavoidable 
presence of local extrema of criterion functions, the search 
may hierarchically use images of different resolutions [22, 
29, 44] and gradually increase the complexity of transforma-
tion model used, from more restrictive rigid ones to more 
and more detailed deformable ones [22]. It is common that 
non-rigid registration is preceded by a rigid one [22, 23, 28].

The optimization method is selected depending on the 
number of transformation parameters. For low number of 
parameters (rigid, translations only), methods that do not 
require gradient information are used, e.g., Nelder and Mead 
simplex method [24, 35] or Powell method [26]. For larger 
number of parameters, a gradient-based algorithm is used. 
B-spline transformation models are often optimized using 
gradient-descent methods [7] or Broyden–Fletcher–Gold-
farb–Shanno (BFGS) methods [21, 22]. Non-parametric 
methods, where the coordinates of all voxels can be consid-
ered as parameters, are usually implemented using gradient-
descent methods [26, 28], although Newton or quasi-Newton 
solvers are also applicable, including the BFGS method [29]. 
If landmarks or easily distinctive points are recognizable, 
point-based optimization becomes another option. Using 
popular solver like iterative closest point, Newton’s method 
or quasi-Newton methods can solve the non-linear optimiza-
tion [46].

Avoiding the optimization, translations can also be 
obtained directly by analysis in the frequency domain using 
Fourier transformation. A phase difference movement detec-
tion (PDMD) is shown to be efficient and depends on the 
phase spectrum only [39]. Using an optimization method, 
the frequency spectrum also enables to estimate all six 
rigid parameters, including rotations [32]. Fourier-based 
approaches are reported to be very sensitive to the determi-
nation of the mask with which the surrounding tissues are 
removed from the images [40].

For 4D sequences, a selection of a reference frame, to 
which other frames are registered, is important. Often, the 
selection of the reference needs to be made manually [30], 
usually selecting the image in which kidney compartments 
are visible best. Lausch automates the selection by choos-
ing a volume with the maximum average voxel intensity 
[29], while Merrem et al. select the reference randomly 
[28]. In contrast to using the same reference frame for all 
the frames in a sequence, an incremental approach registers 
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only successive frames to each other [39]. An advantage of 
this approach is that subsequent images have similar contrast 
and can be registered using mono-modality criterion func-
tions, while the problem is in accumulation of the registra-
tion error. The problem can be reduced by increasing the 
temporal step and registering multiple successive images to 
the same Ref. [33]. Wright et al. propose another approach 
in which the top of the liver is detected and used to infer the 
kidney position [34]. Then, all images at the most frequent 
position are used as reference for registering other images, 
such that each image is registered to temporally the nearest 
reference. Siva et al. oppose this solution by finding out that 
the magnitude of the kidney motion cannot be reliably esti-
mated from diaphragmatic, liver dome, or abdominal wall 
surrogates [42].

Deep learning approach

In recent years, plenty of papers reporting a use of Deep 
Learning (DL) for medical image analysis have been pub-
lished. These approaches have already demonstrated very 
high potential for efficient medical image processing and 
analysis [47–50] and are believed to play a significant role 
in medical registration [6]. Viergever et al. refer to an earlier 
review on the same topic and show a confrontation between 
trends noticed 20 years ago and recent developments. Their 
reach list of comments and observations include the “emerg-
ing need of public databases of representative expert-anno-
tated images and of validation protocol” and “the rare use of 
registration in diagnostic clinical practice”. They expect that 
the deep learning approaches to registration might dominate 
the field of image registration; on the condition, the valida-
tion protocols and clinical acceptance will be the focus of 
attention, as well.

An extensive overview on DL in medical image anal-
ysis with the focus on MRI [48] contains a short section 
on DL applications to image registration, and there are 26 
papers referred to in that section. The advantages of using 
DL instead of standard deformable registration algorithms 
are in accuracy [51] and speed improvements [47]. Applica-
tion of DL in medical image analysis and image registration 
is reported in various reviews [47, 49, 50, 52] but little in 
renal image registration. However, many papers cited con-
tain essential contributions that can be transferred to the 
kidney image registration task.

In Lv et al., a DL method for abdominal MRI registration 
is described, aimed to obtain motion-free images throughout 
the respiratory cycle [53]. In fact, it is a modification of the 
method of Buerger et al. where a one-dimensional fast Fou-
rier transform was applied along the feet–head direction to 
the center k-space profiles, to compute the projection profiles 
of the 3D volume [54]. From the envelope of the projections 
time-course, the respiratory motion signal was estimated. 

Based on this signal, near motion-free data were identified 
and used to reconstruct the high-quality reference images 
at the end-respiratory acceptance window. The images 
reconstructed from k-space data taken at other phases of the 
respiratory cycle were registered to the reference images. 
Unlike in Buerger et al. where a local adaptive affine regis-
tration algorithm (LREG) was used [54], the motion-induced 
image deformations were corrected with the use of a con-
volutional neural network. The network takes patches from 
stationary and moving object image at the same locations 
and generates two momentum predictions of the patches in 
the x- and y-directions. They are used to generate dense dis-
placement vectors interpolated with cubic B-splines. In the 
training phase, normalized cross-correlation between target 
and moving image patches was used as the similarity meas-
ure in the cost function optimized with the Adam optimizer 
[55], available in the Tensorflow environment [56]. On a 
Nvidia GTX 1080 GPU, the training on data from 2.490 
448 × 448-pixel images of ten healthy subjects took about 
26 h. The elaborated algorithm showed better quality scores 
compared to the LREG method; both gave better results than 
the non-motion-corrected method. The CNN-based image 
reconstruction significantly reduces the registration time, 
from 1 h (LREG) to 1 min.

In general, there are two subtasks of the image registra-
tion pipeline which are solved with the use of deep learn-
ing. In both cases, the neural network works in the regres-
sion mode. First approach refers to the use of a network for 
estimation of similarity measures between the two images 
[57–59]. The estimated differences are then minimized in a 
traditional registration procedure, e.g., through non-linear 
optimization of a geometric transform of image coordinates. 
The similarity measures are learned straight from the image 
data to represent complex relationship between local inten-
sity distributions of the images, apparently not captured by 
traditional handcrafted statistical estimators. In the second 
approach [60, 61], the neural network predicts the param-
eters of the voxel coordinate transformation, and thus, the 
time-consuming iterative optimization is eliminated and the 
registration becomes faster—can be performed in real time. 
The work of Cao et al. integrates both approaches [62].

Yet, another characteristic of the dynamic kidney regis-
tration problem is the contents of images changes in time as 
the contrast medium (magnetized blood in ASL) dynami-
cally spreads out through the tissues. The image intensity 
changes caused by kidney anatomical elements displacement 
due to motion cannot be distinguished from the changes 
originating in blood perfusion, as explained in the Criterion 
Function section. As a result, the images which are being 
matched together become multimodal. The registration of 
multimodal images poses a known challenge to the image 
processing community [51]. The two fundamental problems 
involved in accurate fusion of different modality medical 
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images—definition of representative similarity metrics and 
efficient optimization algorithms for deformation—were 
addressed. A deep convolutional neural network (CNN) 
was proposed to learn the similarity metrics between the 
magnetic resonance and transrectal ultrasound (TR-US) 
volumes, used for prostate cancer diagnosis. It is an excep-
tionally challenging task, as the TR-US and MR volumes 
occupy different field of views and their intensity distribu-
tions lead to substantially different appearance. The inputs to 
the CNN were image patches and the output—an estimate of 
their misplacement. The network was trained using images 
that were manually registered by experts. A Keras–Tensor-
flow environment [63] was used for training with Adam 
optimizer, and the loss function was the mean-square error 
between the CNN-predicted and ground truth registration. 
Strategies for careful generation of image samples for train-
ing and multi-pass optimization for rigid image correction 
were developed. The method was validated and evaluated on 
679 data sets. Superior performance in terms of significantly 
smaller registration errors as compared to mutual informa-
tion-based features and to modality-independent neighbor-
hood descriptors [64] was demonstrated. This example is, 
indeed, encouraging. We believe that the difficult problem 
of kidney image registration can be effectively solved with 
CNNs, by making use of their inherent flexibility in acquir-
ing knowledge hidden in images [65].

A very important and practical topic is considered in a 
study by Tajbakhsh et al. addressing the issue of training 
deep CNNs for medical image analysis [66]. This operation 
takes a very long time, especially when undertaken from 
scratch. Moreover, it requires a large number of training 
examples, which, in the case of supervised learning, should 
be labeled what makes the whole process laborious and 
costly. A very attractive alternative is in CNN re-training—
through a shallow or deep fine-tuning. The knowledge incor-
porated in CNN weights trained on one kind of images can 
be transferred to a CNN aimed to analyze images of another 
type. The feasibility of such transfer was demonstrated in 
some publications devoted to recognition of natural images. 
In Tajbakhsh et al., it was investigated more thoroughly in 
the context of medical applications. Four different applica-
tions and three imaging modalities were considered. The 
experiments have shown that knowledge transfer from natu-
ral to medical images is possible. The re-trained CNNs were 
performing better or at least not worse that those trained 
from scratch. The fine-tuned CNNs were more robust to the 
training set size. A CNN layer-wise fine-tuning was devel-
oped as a practical way to obtain the best CNN performance. 
These results are very promising; searching for optimal ways 
of knowledge transfer from pre-trained neural networks is 
certainly a research direction of high potential.

Another approach to bypass this inaccessibility is the use 
of synthetic data for the training procedure. In particular, 

synthetic data can overcome the issues of limited data set 
size and inaccurate annotations [67, 68]. Recent advances 
in the field of DL demonstrated comparable results in the 
case of photon scatter estimation based on digital phantoms 
[69]. Furthermore, the application of generative adversarial 
networks (GANs) [70] for the synthesis of photo-realistic 
retinal images based on morphological data showed con-
vincing results [71]. A step further is the utilization of the 
so-called cycleGANs (cGANs) [72]. CGANs allow the map-
ping between two domains given unpaired training samples. 
Two mapping functions mapping between the two domains 
are called generators. Two additional networks, called dis-
criminators, aim to distinguish between real images and 
generated images. Russ et al. recently showed an approach 
to generate synthetic CT data sets to train a DL network for 
vessel segmentation using cGANS [73]. Tanner et al. pro-
posed CT to MR image registration using cGANs [74]. Such 
approaches seem promising to solve shortage of annotated 
data, also for DL-based image registration.

Deep learning frameworks for deformable unsupervised 
registration were developed recently for brain MRI [75, 
76] as well as cardiac cine MRI and CT chest images [77]. 
Weakly supervised CNN was proposed for multimodal MR-
TRUS image registration [78]. The benefits in higher reg-
istration accuracy and reduction of computation time have 
been clearly demonstrated. Possibility of neural network 
(NN) transfer learning is an attractive property which should 
be explored to a larger extent. On the other hand, there is a 
very limited activity in the area of kidney image registration 
with the use of deep learning techniques.

Evaluation

Prior to a clinical application, the medical image registra-
tion algorithms for renal MRI need to be carefully validated. 
Validation of registration accuracy, especially for non-rigid 
image registration methods, is considered as a non-trivial 
and difficult task, because the ground truth (i.e., gold stand-
ard) is generally not available. The image registration algo-
rithms are aimed towards solving multiple problems that 
arise during renal image alignment, such as: the rich variety 
in the anatomy and pathology; the lack of fiducial markers 
on the kidneys; the change in the intensity in a MR image 
during data acquisition; the variability in kidney motion and 
geometry in MRI images, and the lack of standard data sets. 
These problems make it very hard to evaluate the accuracy 
of the registration methods and require carefully studied 
validation protocols. To assess the registration accuracy, 
several strategies have been proposed. Evaluation of regis-
tration approaches often relies on the visual inspection by an 
expert user, or a controlled study using computer simulations 
or physical phantoms.
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Visual inspection is often used for the evaluation of the 
image registration quality [41], but it requires a special 
expertise and extensive experience. A color overlay of reg-
istered image has been often used as a way to assess the reg-
istration quality [24]. The quality of the registration has also 
been assessed by visual inspection of checkerboard images 
compiled from fixed images and moving images [7, 22, 23, 
26, 28, 46]. A checkerboard image is obtained by patching 
one square region from the fixed image and another square 
region from the moving image after registration, and these 
patches are visualized in one checkerboard image. If two 
images are correctly registered, the contours of the kidneys 
and other structures should be aligned, and should show 
continuously lines, while the disparities between these two 
images indicate errors. In Zikic et al., visual result is con-
firmed by analyzing the frequency spectrum of the signal 
[30].

Assessment of registration performance in DCE-MRI 
motion correction has been also addressed using pharma-
cokinetic modeling [25, 29, 79]. The goodness-of-fit and 
smoothness of time-curves are frequently used criteria for 
successful registration evaluation of DCE-MRI data [18]. 
The goodness-of-fit of the time series to a pharmacoki-
netic model is expected to be high if the data are smooth 
and, therefore, can be easier fitted by the fitting algorithm. 
Smooth time series data are achieved by a good image reg-
istration. Therefore, in these approaches, the registration 
accuracy is assumed to be coupled to the model fitting and 
the goodness-of-fit can be used as image registration evalua-
tion criteria, respectively. Deviation of estimated voxel-wise 
GFR values of the motion-corrected time-courses of DCE-
MRI of the kidney from Iohexol measurements has been also 
used as an evaluation criterion [18]. In de Senneville et al., 
the evaluation is based on the improvement after movement 
correction using the Patlak–Rutland model [40].

Another applied approach to validate registration results 
is by generating realistic synthetic phantom data sets used as 
a ground truth [32, 35]. In Buonaccorsi et al., for instance, 
a procedure for tracer kinetic model-driven registration for 
DCE-MRI time series data is described and validated against 
a software phantom data set that is set to mimic a full DCE-
MRI image set [35].

Some authors reported an evaluation based on the 
coronal motion: the deviation of the vertical position of 
the kidney [12, 13, 28]. They measured and reported a 
reduction of coronal motion after a deformable registra-
tion. Similar, in Boer et al., as a measure of respiratory 
induced motion, root-mean-square (RMS) vertical mis-
alignment of the top of the kidney was measured manually 
with respect to the first time point on all recorded volumes 
[80]. As another measure of registration error, the whole 
parenchyma time–intensity curve was calculated on all 
images using fat images. In Giele et al., the performance 

of the movement correction is reviewed by an operator, 
and his manual adjustments were recorded and compared 
to the proposed method [39]. However, the aforementioned 
methods measured registration performance in one direc-
tion only, assuming that the horizontal movements were 
minor.

The mean intensity curves of carefully selected ROIs 
and combined with standard deviations have been used 
for an assessment of motion correction [7, 22, 26, 32], but 
usually, these items are just indicative and not absolute. 
In addition, in Zöllner et al. obtained variances within the 
selected ROIs were analyzed by the F test to investigate 
whether there are significant differences between the reg-
istered and unregistered data [21].

In several papers, image quality and artifacts are esti-
mated by the expert readers [14, 39, 81]. The registration 
algorithm was validated against manual registration or seg-
mentation performed by an expert user [20, 32, 82]. The 
target registration error (TRE) can be determined by the 
Jaccard or Dice coefficient measuring the overlap between 
the manual segmented target object. This still requires a 
segmentation of the reference and template image [83]. 
Another evaluation approach includes the distance meas-
ures, like Hausdorff distance, of distinctive landmarks of 
the kidney [84]. The landmarks can be acquired manually 
or automatically.

The movement correction by image registration in ASL 
techniques in the kidney is assessed through the subse-
quent perfusion rates quantification [41]. The authors 
measured the reduction in the estimated medulla perfu-
sion rate before and after image realignments. Similarly, 
evaluation of the registration method for the application 
of quantitative analysis of kinetic parameters is performed 
by estimation of the perfusion and filtration parameters on 
the original input data and the same series after motion 
correction [30].

Some authors are applying landmarks to analyze the 
motion occurring in images before and after their regis-
tration. In Gupta et al., the anterior right ventricular (RV) 
insertion point was manually identified as a landmark, in 
each image [85]. Accuracy of registration was quantified by 
measuring the motion of this landmark between successive 
image pairs, in both unregistered and registered time series.

An evaluation of the registration accuracy by fitting a 
two-compartment model to data (before and after registra-
tion) and calculating Akaike fit error is also presented in the 
literature [28].

As it can be seen in this section, although significant work 
has been done in the field of renal image registration, there 
is much room for the development of validation strategies 
for renal MRI image registration. Due to missing agreement 
on a registration quality measurement, it is difficult to make 
a quantitative comparison between registration algorithms.
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Applications

Motion correction approaches in renal imaging are mainly 
applied to two imaging modalities, namely ASL and DCE-
MRI. Most literature reviewed in the following thereby 
focuses on improving the imaging techniques and yet not 
report on directly on kidney diseases.

Arterial spin labeling

It has been very well acknowledged that the ASL technique 
offers a great potential for noninvasive and exogenous con-
trast agent free renal perfusion quantification [4, 86]. Since 
it is a kind of differential blood perfusion measurement 
technique [87], applying it to kidney function characteriza-
tion is particularly challenging. Even tag and control MR 
images taken within the same acquisition time-period may 
be spatially misaligned due to motion, and their difference 
may feature subtraction artifacts distorting the perfusion 
signal [88]. Moreover, as the acquired signal is small, 
multiple acquisitions are averaged to improve the signal-
to-noise ratio which further increases the time difference 
between images of the same anatomical region and makes 
the images’ mismatch even worse. These effects call on the 
necessity of using effective methods of motion compensa-
tion to reduce artifacts and perfusion region blur. Those 
involve both acquisition-based and image post-processing-
based approaches.

In a repeatability study of renal perfusion measure-
ment using ASL [86], respiratory cycle triggering was 
used. This apparently extends the time of acquisition 
and solves the problem of motion partly. Nevertheless, 
the reduction of motion artifacts was achieved leading to 
repeatable quantification. The strategy of pace-breathing 
and breath holding was used in Gardener et al. with con-
siderable reduction of the artifacts [41]. This, however, 
requires cooperation of the subject and might be impos-
sible to accomplish in many cases.

The use of image background suppression (BGS) pulses 
to reduce unwanted image components, such as noise and 
motion artifacts, was proposed, e.g., by Garcia et al. [89] 
and Alsop et  al. [90]. However, its contribution to an 
improvement of ASL quantification is currently debated 
[4].

An extensive investigation of the feasibility of back-
ground-suppressed renal ASL combined with retrospective 
image registration during the free-breathing acquisition 
is described in Bones et al. [91]. A hypothetical 100% 
suppression of the background signal would eliminate the 
signal of stationary tissue which might cause the registra-
tion task ill-defined [41, 92]. To cope with this effect, fat 

images can be acquired. As suggested in several papers 
[90, 91], fat tissue is suitable for providing the registra-
tion reference—it is characterized by short T1 time and 
thus recovers quickly from BGS pulses. The fat images 
for image registration were acquired in the same pseudo-
continuous ASL (pCASL) acquisition and the effect of 
their use was compared to the use of ASL images them-
selves. Moreover, the background suppression was imple-
mented at five different suppression levels, for qualitative 
and quantitative assessments of its influence on perfusion 
measurement quality. The ASL data sets were collected 
in relaxed, free-breathing conditions of ten healthy volun-
teers, using a 1.5 T MRI scanner equipped with 28-element 
phased-array receiver coil. Two strategies of image regis-
tration were implemented, separately for each kidney. In 
the first approach, ASL images of consecutive repetitions 
(n, e.g., n = 9) were co-registered with the tagged image 
of the first tag-control image pair. A 3D translation regis-
tration was implemented with the use of elastix software 
[93] using the Euler transform and b-spline interpolation. 
In a second approach, the consecutive fat images were 
co-registered with the first one and the correction results 
were transferred to respective ASL images. In addition, the 
equilibrium magnetization image M0, used to compute the 
perfusion-weighted images, was always registered to the 
fat image, to account for too large contrast difference in the 
case of background-suppressed ASL images. The visual 
inspection and quantitative results showed that background 
suppression increased precision without compromising 
accuracy of free-breathing ASL-based kidney perfusion 
measurement. This applies to both ASL image-based 
and fat image-based motion correction schemes. Finally, 
comparison was made with a paced-breathing acquisition 
leading to the conclusion that the proposed free-breathing 
technique with retrospective registration gives comparable 
perfusion estimation quality to this established but imprac-
tical method. Some parts of the implemented post-process-
ing pipeline involve manual operations—setting the kidney 
ROI as an example. For instance, Bones et al. envision that 
machine learning algorithms might be a proper means to 
automate this task [91], but need further investigations.

The study by Nery et al. aimed at the development of 
a robust ASL-based technique for kidney perfusion meas-
urement in pediatric subjects with CKD [38]. A single-
shot background-suppressed 3D gradient- and spin-echo 
(GRASE) flow-sensitive alternating inversion recovery 
(FAIR) ASL acquisition method was implemented in a 1.5 
T MRI scanner. Respiratory triggering was used to activate 
inversion pulses at end expiration. A separate proton-density 
(PD) image was acquired without any inversion or satura-
tion pulses, for conversion of the perfusion-weighted sig-
nal into RBF. The RBF was quantified after retrospective 
image processing, including weighted averaging (to reduce 
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the significance of corrupted ASL scans) and motion correc-
tion. The acquisition protocol was designed to ensure high 
SNR and robustness to motion. Two groups of subjects took 
part in the experiment. Five healthy adult volunteers of the 
first group were asked to remain still and breathe normally 
for the first ASL run, and then alter the amplitude and rate 
of their respiration—in the second run. The second group 
consisted of 11 children with severe CKD as indicated by the 
values of GFR. The effects of three post-processing options 
(no motion correction, image registration, and image regis-
tration combined with weighted averaging) were evaluated 
and compared across all data sets. All images in the satu-
ration-recovery set were registered to the non-background-
suppressed reference PD image. A mutual information 
similarity metric was used with stochastic-gradient-descent 
optimization, both features available in the elastix toolbox 
[93]. This study demonstrated quantitatively the importance 
of motion correction in reduction of artifacts in both T1 and 
RBF maps, and saturation-recovery fit errors, as well as 
increase of temporal signal-to-noise ratio (tSNR) of perfu-
sion-weighted images and improve the repeatability of T1 
and RBF measurements, especially in the pediatric subjects 
who featured high likelihood of kidney movements during 
MR scanning. The renal ASL was considered as a feasible 
method providing robust diagnostic information in case of 
pediatric subjects with severe kidney disease. The registra-
tion method was not characterized in more detail, e.g., suit-
ability of other meta-parameter options available in elastics 
was not discussed.

Shirvani et al., showed recently the feasibility of mul-
tiparametric renal arterial spin labeling (3 T, 3D GRASE, 
FAIR, background suppression, and PD image acquired as 
the reference) with free-breathing acquisition [94]. The con-
trol and labeled images were motion-corrected by perform-
ing retrospective 2D elastic registration. Proprietary vendor 
software was used for this purpose, but neither background 
theory nor algorithm details governing its operation are pre-
sented in this paper. They refer to a work of Wu et al., where 
affine registration method was used, which could adjust for 
bulk motion; however, a non-linear elastic model may be 
more suited to the multi-TI ASL abdominal imaging [95]. 
Unfortunately, no discussion of this retrospective processing 
aspect is included in the work of Shirvani et al.

In Morra-Gutierrez et al., non-rigid diffeomorphic reg-
istration algorithm available in ANTs software [96] was 
employed, with the use of cross-correlation disparity metric 
to minimize residual motion [97]. A simultaneous segmen-
tation-registration algorithm was applied to kidney motion 
correction by Hammon et al. [98]. Intentionally, rigid regis-
tration was implemented, as a means of evaluating registra-
tion errors and using it for sorting out acquisitions which 
do not show adequate quality. No details of the registration 
program used for kidney motion correction are described 

in Dong et al. [99]. A non-linear image registration imple-
mented in Matlab was applied by Wang et al., again with no 
details on the underlying algorithm and similarity metrics 
[100]. Rigid registration with normalized mutual informa-
tion metric was selected in study by Artz et al. [101], to 
apply ASL to native and transplanted kidneys. A non-rigid 
image registration with cross-correlation was chosen to reg-
ister ASL image pairs in healthy volunteers undertaking dif-
ferent breathhold maneuvers in Schewzow et al. [46]. The 
significance of breathing strategies and background suppres-
sion is also discussed and illustrated in Robson et al. [8].

DCE‑MRI

Renal dynamic contrast-enhanced (DCE) MRI provides 
quantitative information on renal perfusion and filtration. 
Dynamic contrast-enhanced MRI (DCE-MRI) makes it 
possible to trace the circulation and distribution of injected 
low-molecular-weight contrast agents. It can be used to char-
acterize microvascular structure and function in a developing 
tumor blood supply network. By fitting tracer kinetic models 
to DCE-MRI time series data, one can estimate the mag-
nitude and spatial distribution of kinetic parameters, e.g., 
Ktrans. [35]. For perfusion measurements to find widespread 
utility in the clinical environment, the exams must be easy 
to implement, robust to patient compliance issues such as 
problems with breath holding, and should be performed at 
clinically relevant resolutions with complete volumetric cov-
erage [34].

It is believed that clinical implementation of this imaging 
technique is hampered by challenges in quantitative image 
analysis as a result of misalignment of the kidneys due to 
respiration and abdominal organ movements [80]. The latest 
articles on application of DCE-MRI to medical diagnosis are 
focused on assessing possibilities of free-breathing image 
acquisition and optimizing its processing pipeline. Both 
acquisition-based means and post-processing registration 
are considered.

In de Boer et al., automatic registration to fat images was 
performing best and allowed extraction of GFR estimates 
correlated with creatinine-based GFR values [80]. The 
authors claim that due to limited manual interaction, this 
method will be easy to implement in clinical practice.

An image post-processing framework was developed in 
Hanson et al. to study the significance of individual post-
processing steps in a pipeline aimed at estimation of GFR 
from DCE images [102]. Twenty healthy volunteers under-
went DCE-MRI examinations and serum biochemistry of 
Iohexol clearance for reference GFR measurements. In total, 
692 different combinations of post-processing steps were 
explored for analysis. The application of classification trees 
and ensemble learning methods was useful for disclosing 
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systematic patterns in the data that were not possible to 
detect by unaided reasoning and manual inspection.

The purpose of the study by Riffel et al. was to evaluate 
a technique for free-breathing dynamic contrast-enhanced 
renal magnetic resonance imaging (MRI) applying a com-
bination of radial k-space sampling, parallel imaging, and 
compressed sensing [14]. There were no respiratory motion 
artifacts in any of the 25 patients, as investigated by two 
blinded radiologists. The renal plasma flow was estimated 
based on a volumetric analysis of the generated DCE perfu-
sion maps, being close to physiologically expected value. 
The authors conclude that dynamic, motion-suppressed 
contrast-enhanced renal MRI can be performed in high 
diagnostic quality during free breathing using a combina-
tion of golden-angle radial sampling, parallel imaging, and 
compressed sensing.

To achieve high temporal and spatial resolution for renal 
DCE-MRI, fast imaging technique was used—3D through-
time radial GRAPPA [34]. Despite high degree of under-
sampling, the images retained excellent quality. Ten patients 
were examined in free breathing and the images were reg-
istered to compensate for kidney motion. Non-linear Image 
Registration Tool (FNIRT) was used for that task [103]. 
Two-compartment model was applied for renal perfusion 
parameter estimation. An accurate high-resolution 3D quan-
titative renal functional mapping of perfusion and filtration 
parameters was obtained.

A combined registration–segmentation method was 
applied in Hodneland et al., for kidney motion correction in 
4D DCE-MRI volumes [18]. The segmentation term affects 
the registration by enforcing time-course similarity of vox-
els. GFR values estimated with this technique show very lit-
tle difference to Iohexol-measured GFR. The authors believe 
that segmentation-driven registration approach has a great 
potential for further development into pharmacokinetic GFR 
model-driven segmentation of the kidneys.

Discussion/conclusion

The aim of this paper was to collect and review approaches 
to correct motion in renal MRI acquisitions. There is a large 
body of techniques ranging from acquisition-based motion 
suppression to post-processing-based image registration 
approaches, or a combination of the two. Besides them, sim-
ple breathhold strategies are used to mitigate organ motion 
and complement both mentioned approaches.

Results reported in the reviewed works state promising 
results; however, two points need to be considered in future 
to remove barriers in the development of renal MRI bio-
markers by reducing errors introduced to motion artifacts 
in, e.g., renal perfusion imaging.

First, the papers do not provide sufficient implementation 
details of the registration to enable reproduction by other 
research groups. Although the objective functions used are 
usually outlined, some details are often missing, e.g., the 
size of Parzen windows when estimating joint probabilities 
or the interpolation methods used. The descriptions of the 
geometric transformation models lack the definition of used 
parameters, except of one paper only [10]. In other cases, 
details such as the number of B-spline control points or size 
of the displacement field smoothing kernel are not given. 
The description of search methods usually lacks details of 
the configuration of the multiresolution pyramids employed, 
e.g., number of resolutions, methods of transitions between 
resolutions, the approach to select the reference frame, or 
even selection of the optimization method used.

It is also noticed that papers often cite other papers where 
the employed methods are originally proposed and even-
tually well described, however, without solid reasoning of 
their selection or usage and setting. This makes the repro-
ducibility of the published work most difficult and hinders 
broader usage and acceptance of the proposed methods. 
Eventually, a consensus is missing.

As a resource for image registration parameters, the 
elastix toolbox [93] provides a database of parameter set-
tings [104] that allow for reproducing results. However, 
parameter settings dedicated for renal image registration 
are not reported yet. Towards consensus building in renal 
image registration attempts towards a parameter database, 
not necessarily based on a tool like elastix alone is needed.

A second important aspect of today’s research in (renal) 
image registration is that the evaluation is always based on 
presumptions and, thus, is unreliable. In most cases, it is 
based on the visual inspection of either registered images 
themselves or DCE time-courses.

In some work, also parameters such as perfusion or GFR 
calculated from the data are used to evaluate the image reg-
istration success, but could be seen as an intrinsic, relative 
evaluation metric, since the calculation of such parameters 
underlies addition sources of error [105]. In this, also good 
correlations of MR-based quantitative parameters with ref-
erence methods not using image registration were reported 
[106]. However, the authors point to image registration to 
further improve results as “3D data also suffered from sig-
nificant intra- and inter-frame motion artifacts”.

In addition, synthetic data sets are reported, but, to some 
extent, are simplified. The only trustworthy way would be to 
use some reliable ground truth, eventually based on expert 
segmentations or markers. Not surprisingly, such ground 
truth seems nonexistent by today. As for the parametriza-
tion also for the evaluation, a database of ground truth data 
is needed to enable researchers to test and benchmark their 
techniques and in the long run to build a consensus on renal 
image registration.
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The introduction of DL techniques into image registration 
enthuses with promised properties of speed and accuracy 
that have been long searched with traditional optimization 
approaches. However, DL relies on extraction of knowledge 
from training data sets, whose limited availability, especially 
in renal MRI, is already the major limitation to validation 
of registration algorithms and their clinical acceptance [6]. 
Registration methods in clinical environments must be able 
to cover diverse situations that include not only variability 
among healthy patients but also pathology cases, which adds 
an additional dimension to the required information content 
of the training databases. Even though the possibility of re-
training and using digital phantoms may reduce required 
extent of the training databases considerably, availability of 
exhaustive enough training data sets is currently our primary 
concern regarding the clinical acceptability of DL methods.

Eventually, renal image registration approaches need to 
prove the additional benefit to the overall goal of estimating 
MR-based biomarkers to diagnose CKD. Today, this is yet 
not provided and needs further investigations. Thereby, the 
evaluation should take care of several aspects. First, the esti-
mated parameters as the final outcome of such analysis pipe-
line are affected by errors in each step. The study of Hanson 
et al., yet the only covering this topic, nicely outlines such 
procedure [102]. Second, these errors, e.g., introduced by 
pharmacokinetic modeling might possibly render larger than 
those by motion corruption. Especially, this might be the 
case when a whole kidney ROI analysis is performed as the 
data are usually smoothed over the ROI and motion is, there-
fore, of minor impact. Respective studies for instance report 
comparable parameter estimates to gold standard techniques 
[106]. However, a benefit of MRI-based perfusion analysis 
is to be able to provide perfusion measurements on voxel-
wise basis allowing to capture tissue perfusion heterogene-
ity. Since kidney motion is usually larger than the voxel size 
(up to 86 mm are reported [42]), image registration seems, 
therefore, reasonable as reported by several studies so far 
[14, 25, 37].

This review shows that although there are some open 
issues mainly related to evaluation, image registration algo-
rithms are being adapted to renal MRI and already contrib-
ute to the renal analysis. In addition to traditional image 
registration methods, a new category of DL methods is also 
already emerging in the renal MRI. Workgroup two of the 
PARENCHIMA COST action CA16103 works towards 
increasing availability of renal MRI data and processing 
algorithms for wider acceptance of renal MRI biomarkers in 
research and clinical practice. This includes collecting image 
database necessary for method development and validation, 
reaching consensus on evaluation strategies and establishing 
a database of evaluated algorithms. In this review, we iden-
tified limitations and uncertainties as well as prospects of 
renal MRI registration methods and applications, in relation 

to papers published on the subject. We expect that a sig-
nificant progress will be made in the field, regarding reli-
ability, accuracy, and processing speed. This will contribute 
to more objective and accurate personalized diagnosis of 
kidney diseases.
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