Skip to main content

Advertisement

Log in

Temporal course of perfusion in human masseter muscle during isometric contraction assessed by arterial spin labeling at 3T

  • Research Article
  • Published:
Magnetic Resonance Materials in Physics, Biology and Medicine Aims and scope Submit manuscript

Abstract

Object

Examination of blood perfusion in the masseter muscle in the course of repetitive isometric contraction by arterial spin-labeling (ASL) MR imaging and additional T2 relaxation time measurements during and after masseter muscle activation.

Materials and methods

Anatomical and ASL imaging was performed (3 T) in the masseter muscle of seven healthy volunteers before and after sustained clenching (30s) at maximum voluntary contraction (MVC). Several cycles of clenching were repeated in an overall period of 11 min. ASL imaging was performed by an adapted FAIR-TrueFISP technique. Time to peak and time to baseline were systematically analyzed in recorded perfusion curves. T2 relaxation times were estimated using a multi-echo spin-echo sequence. The influence of MVC on T2 was statistically analyzed.

Results

In all cases, perfusion imaging and assessment of T2 relaxation time was feasible. Mean perfusion values at rest calculated from all volunteers were 97.9±17.1ml/min/100 g (right masseter) and 83.0 ± 18.1ml/min/100 g (left masseter). The percentage mean perfusion increase in all volunteers immediately after clenching ranged between 114 and 154%. Mean time to peak was 13.7 s (range: 8.0–26.7 s; SD 5.6 s), and mean time to baseline was 25.6 s (range: 18.7–37.0 s; SD 5.4 s). No significant influence of MVC on T2 relaxation time was found, although a tendency to T2 increase after each clenching stress was observed.

Conclusion

Clear contraction-related perfusion changes of the masseter muscle could be assessed in high spatial and temporal resolution by means of ASL. In contrast, no significant T2 changes were measured. ASL imaging could serve as supplementing tool for studying masticatory function and dysfunction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wigmore DM, Damon BM, Pober DM, Kent-Braun JA (2004) MRI measures of perfusion-related changes in human skeletal muscle during progressive contractions. J Appl Physiol 97(6): 2385–2394

    CAS  PubMed  Google Scholar 

  2. Kinugasa R, Kawakami Y, Fukunaga T (2006) Quantitative assessment of skeletal muscle activation using muscle functional MRI. Magn Reson Imaging 24(5): 639–644

    PubMed  Google Scholar 

  3. Disler DG, Cohen MS, Krebs DE, Roy SH, Rosenthal DI (1995) Dynamic evaluation of exercising leg muscle in healthy subjects with echo planar MR imaging: work rate and total work determine rate of T2 change. J Magn Reson Imaging 5(5): 588–593

    CAS  PubMed  Google Scholar 

  4. Price TB, Kennan RP, Gore JC (1998) Isometric and dynamic exercise studied with echo planar magnetic resonance imaging (MRI). Med Sci Sports Exerc 30(9): 1374–1380

    CAS  PubMed  Google Scholar 

  5. Nygren AT, Kaijser L (2002) Water exchange induced by unilateral exercise in active and inactive skeletal muscles. J Appl Physiol 93(5): 1716–1722

    PubMed  Google Scholar 

  6. Reid RW, Foley JM, Jayaraman RC, Prior BM, Meyer RA (2001) Effect of aerobic capacity on the T(2) increase in exercised skeletal muscle. J Appl Physiol 90(3): 897–902

    CAS  PubMed  Google Scholar 

  7. Gan Y, Sasai T, Nishiyama H, Ma X, Zhang Z, Fuchihata H (2000) Magnetic resonance imaging of human mandibular elevator muscles after repetitive maximal clenching exercise. Arch Oral Biol 45(3): 247–251

    CAS  PubMed  Google Scholar 

  8. Banci M, Rinaldi E, Ierardi M, Tiberio NS, Boccabella GL, Barbieri C, Scopinaro F, Morelli S, DeSantis M (1998) 99mTc SESTAMIBI scintigraphic evaluation of skeletal muscle disease in patients with systemic sclerosis: diagnostic reliability and comparison with cardiac function and perfusion. Angiology 49(8): 641–648

    CAS  PubMed  Google Scholar 

  9. Kalliokoski KK, Kuusela TA, Nuutila P, Tolvanen T, Oikonen V, Teras M, Takala TE, Knuuti J (2001) Perfusion heterogeneity in human skeletal muscle: fractal analysis of PET data. Eur J Nucl Med 28(4): 450–456

    CAS  PubMed  Google Scholar 

  10. Nakamura Y, Torisu T, Noguchi K, Fujii H (2005) Changes in masseter muscle blood flow during voluntary isometric contraction in humans. J Oral Rehabil 32(8): 545–551

    CAS  PubMed  Google Scholar 

  11. Andersen P, Saltin B (1985) Maximal perfusion of skeletal muscle in man. J Physiol 366: 233–249

    CAS  PubMed  PubMed Central  Google Scholar 

  12. de Lussanet QG, van Golde JC, Beets-Tan RG, Post MJ, Huijberts MS, Schaper NC, Kessels AG, van Engelshoven JM, Backes WH (2007) Dynamic contrast-enhanced MRI of muscle perfusion combined with MR angiography of collateral artery growth in a femoral artery ligation model. NMR Biomed 20(8): 25–717

    Google Scholar 

  13. Runge VM (2000) Safety of approved MR contrast media for intravenous injection. J Magn Reson Imaging 12(2): 205–213

    CAS  PubMed  Google Scholar 

  14. Calamante F, Williams SR, van Bruggen N, Kwong KK, Turner R (1996) A model for quantification of perfusion in pulsed labelling techniques. NMR Biomed 9(2): 79–83

    CAS  PubMed  Google Scholar 

  15. Martirosian P, Klose U, Mader I, Schick F (2004) FAIR true-FISP perfusion imaging of the kidneys. Magn Reson Med 51(2): 353–361

    PubMed  Google Scholar 

  16. Richardson RS, Haseler LJ, Nygren AT, Bluml S, Frank LR (2001) Local perfusion and metabolic demand during exercise: a noninvasive MRI method of assessment. J Appl Physiol 91(4): 1845–1853

    CAS  PubMed  Google Scholar 

  17. Marro KI, Hyyti OM, Vincent MA, Kushmerick MJ (2005) Validation and advantages of FAWSETS perfusion measurements in skeletal muscle. NMR Biomed 18(4): 226–234

    PubMed  Google Scholar 

  18. Boss A, Martirosian P, Claussen CD, Schick F (2006) Quantitative ASL muscle perfusion imaging using a FAIR-TrueFISP technique at 3.0T. NMR Biomed 19(1): 125–132

    PubMed  Google Scholar 

  19. Boss A, Martirosian P, Graf H, Claussen CD, Schlemmer HP, Schick F (2005) High resolution MR perfusion imaging of the kidneys at 3 Tesla without administration of contrast media. Rofo 177(12): 1625–1630

    CAS  PubMed  Google Scholar 

  20. Kwong KK, Chesler DA, Weisskoff RM, Donahue KM, Davis TL, Ostergaard L, Campbell TA, Rosen BR (1995) MR perfusion studies with T1-weighted echo planar imaging. Magn Reson Med 34(6): 878–887

    CAS  PubMed  Google Scholar 

  21. Kim SG (1995) Quantification of relative cerebral blood flow change by flow-sensitive alternating inversion recovery (FAIR) technique: application to functional mapping. Magn Reson Med 34(3): 293–301

    CAS  PubMed  Google Scholar 

  22. Deimling M, Heid O (1994) Magnetization prepared true FISP imaging. In: Proceedings of the 2nd annual meeting of the society of magnetic resonance. San Francisco, p 495

  23. Ohlmann B, Rammelsberg P, Henschel V, Kress B, Gabbert O, Schmitter M (2006) Prediction of TMJ arthralgia according to clinical diagnosis and MRI findings. Int J Prosthodont 19(4): 333–338

    PubMed  Google Scholar 

  24. Zhou J, van Zijl PC (1999) Perfusion imaging using FAIR with a short predelay. Magn Reson Med 41(6): 1099–1107

    CAS  PubMed  Google Scholar 

  25. Ordidge RJ, Wylezinska M, Hugg JW, Butterworth E, Franconi F (1996) Frequency offset corrected inversion (FOCI) pulses for use in localized spectroscopy. Magn Reson Med 36(4): 562–566

    CAS  PubMed  Google Scholar 

  26. Gold GE, Han E, Stainsby J, Wright G, Brittain J, Beaulieu C (2004) Musculoskeletal MRI at 3.0T: relaxation times and image contrast. AJR Am J Roentgenol 183(2): 343–351

    PubMed  Google Scholar 

  27. Raynaud JS, Duteil S, Vaughan JT, Hennel F, Wary C, Leroy-Willig A, Carlier PG (2001) Determination of skeletal muscle perfusion using arterial spin labeling NMRI: validation by comparison with venous occlusion plethysmography. Magn Reson Med 46(2): 305–311

    CAS  PubMed  Google Scholar 

  28. MacFall JR, Wehrli FW, Breger RK, Johnson GA (1987) Methodology for the measurement and analysis of relaxation times in proton imaging. Magn Reson Imaging 5(3): 209–220

    CAS  PubMed  Google Scholar 

  29. Delcanho RE, Kim YJ, Clark GT (1996) Haemodynamic changes induced by submaximal isometric contraction in painful and non-painful human masseter using near-infra-red spectroscopy. Arch Oral Biol 41(6): 585–596

    CAS  PubMed  Google Scholar 

  30. Larsson R, Oberg PA, Larsson SE (1999) Changes of trapezius muscle blood flow and electromyography in chronic neck pain due to trapezius myalgia. Pain 79(1): 45–50

    PubMed  Google Scholar 

  31. Pell GS, King MD, Proctor E, Thomas DL, Lythgoe MF, Gadian DG, Ordidge RJ (2003) Comparative study of the FAIR technique of perfusion quantification with the hydrogen clearance method. J Cereb Blood Flow Metab 23(6): 689–699

    PubMed  Google Scholar 

  32. Frank LR, Wong EC, Haseler LJ, Buxton RB (1999) Dynamic imaging of perfusion in human skeletal muscle during exercise with arterial spin labeling. Magn Reson Med 42(2): 258–267

    CAS  PubMed  Google Scholar 

  33. Richardson RS, Haseler LJ, Nygren AT, Bluml S, Frank LR (2001) Local perfusion and metabolic demand during exercise: a noninvasive MRI method of assessment. J Appl Physiol 91(4): 1845–1853

    CAS  PubMed  Google Scholar 

  34. Van Leeuwen BE, Barendsen GJ, Lubbers J, de Pater L (1992) Calf blood flow and posture: Doppler ultrasound measurements during and after exercise. J Appl Physiol 72(5): 1675–1680

    CAS  PubMed  Google Scholar 

  35. Murrant CL, Sarelius IH (2000) Coupling of muscle metabolism and muscle blood flow in capillary units during contraction. Acta Physiol Scand 168(4): 531–541

    CAS  PubMed  Google Scholar 

  36. Thompson BC, Fadia T, Pincivero DM, Scheuermann BW (2007) Forearm blood flow responses to fatiguing isometric contractions in women and men. Am J Physiol Heart Circ Physiol 293(1): 805–812

    Google Scholar 

  37. Korfage JA, Brugman P, Van Eijden TM (2000) Intermuscular and intramuscular differences in myosin heavy chain composition of the human masticatory muscles. J Neurol Sci 178(2): 95–106

    CAS  PubMed  Google Scholar 

  38. Osada T, Katsumura T, Murase N, Sako T, Higuchi H, Kime R, Hamaoka T, Shimomitsu T (2003) Post-exercise hyperemia after ischemic and non-ischemic isometric handgrip exercise. J Physiol Anthropol Appl Hum Sci 22(6): 299–309

    Google Scholar 

  39. Kim YJ, Kuboki T, Tsukiyama Y, Koyano K, Clark GT (1999) Haemodynamic changes in human masseter and temporalis muscles induced by different levels of isometric contraction. Arch Oral Biol 44(8): 641–650

    CAS  PubMed  Google Scholar 

  40. Varela JM, Castro NB, Biedma BM, Da Silva Dominguez JL, Quintanilla JS, Munoz FM, Penin US, Bahillo JG (2003) A comparison of the methods used to determine chewing preference. J Oral Rehabil 30(10): 990–994

    CAS  PubMed  Google Scholar 

  41. Damon BM, Gregory CD, Hall KL, Stark HJ, Gulani V, Dawson MJ (2002) Intracellular acidification and volume increases explain R(2) decreases in exercising muscle. Magn Reson Med 47(1): 14–23

    CAS  PubMed  Google Scholar 

  42. Chikui T, Shiraishi T, Tokumori K, Inatomi D, Hatakenaka M, Yuasa K, Yoshiura K (2010) Assessment of the sequential change of the masseter muscle by clenching: a quantitative analysis of T1, T2, and the signal intensity of the balanced steady-state free precession. Acta Radiol 51(6): 669–678

    PubMed  Google Scholar 

  43. Kinugasa R, Kawakami Y, Fukunaga T (2006) Mapping activation levels of skeletal muscle in healthy volunteers: an MRI study. J Magn Reson Imaging 24(6): 1420–1425

    PubMed  Google Scholar 

  44. Wu WC, Wang J, Detre JA, Ratcliffe SJ, Floyd TF (2008) Transit delay and flow quantification in muscle with continuous arterial spin labeling perfusion-MRI. J Magn Reson Imaging 28(2): 445–452

    PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nina F. Schwenzer.

Additional information

C. Schraml and N. F. Schwenzer contributed equally.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schraml, C., Schwenzer, N.F., Martirosian, P. et al. Temporal course of perfusion in human masseter muscle during isometric contraction assessed by arterial spin labeling at 3T. Magn Reson Mater Phy 24, 201–209 (2011). https://doi.org/10.1007/s10334-011-0254-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10334-011-0254-y

Keywords

Navigation