Skip to main content
Log in

Effects of antagonistic fungi, plant growth-promoting rhizobacteria, and arbuscular mycorrhizal fungi alone and in combination on the reproduction of Meloidogyne incognita and growth of tomato

  • Disease Control
  • Published:
Journal of General Plant Pathology Aims and scope Submit manuscript

Abstract

Antagonistic fungi (Aspergillus niger CA and Penicillium chrysogenum CA1), plant growth-promoting rhizobacteria (PGPR) (Burkholderia cepacia 4684 and Bacillus subtilis 7612) and AM fungi (Glomus intraradices KA and Gigaspora margarita AA) were assessed alone and in combination for their effects on the growth of tomato and on the reproduction of Meloidogyne incognita in glasshouse experiments. Application of antagonistic fungus, PGPR, or AM fungus alone or in combination significantly increased the length and shoot dry mass of plants both with and without nematodes. The increase in shoot dry mass caused by Gl. intraradices KA in plants without nematodes was greater than that caused by PGPR or antagonistic fungi. Similarly, the increase in shoot dry mass caused by Bu. cepacia 4684 in plants with nematodes was greater than that caused by P. chrysogenum CA1. Application of Bu. cepacia 4684 caused a 36.1% increase in shoot dry mass of nematode-inoculated plants followed by Ba. subtilis 7612 (32.4%), A. niger CA (31.7%), Gl. intraradices KA (30.9%), Gi. margarita AA (29.9%) and P. chrysogenum CA1 (28.8%). Use of Bu. cepacia 4684 with A. niger CA caused a highest (65.7%) increase in shoot dry mass in nematode-inoculated plants followed by Ba. subtilis 7612 plus A. niger CA (60.9%). Burkholderia cepacia 4684 greatly reduced (39%) galling and nematode multiplication, and the reduction was even greater (73%) when applied with A. niger CA. Antagonistic fungi had no significant effect on root colonization caused by AM fungi. Applying Bu. cepacia 4684 with A. niger CA may be useful in the biocontrol of M. incognita on tomato.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Akhtar MS, Siddiqui ZA (2008a) Biocontrol of a root-rot disease complex of chickpea by Glomus intraradices, Rhizobium sp and Pseudomonas straita. Crop Protec 27:410–417

    Article  Google Scholar 

  • Akhtar MS, Siddiqui ZA (2008b) Glomus intraradices, Pseudomonas alcaligenes, and Bacillus pumilus: Effective agents for the control of root-rot disease complex of chickpea (Cicer arietinum L.). J Gen Plant Pathol 74:53–60

    Article  Google Scholar 

  • Akköprü A, Demir S (2005) Biological control of Fusarium wilt in tomato caused by Fusarium oxysporum f. sp. lycopersici by AMF Glomus intraradices and some rhizobacteria. J Phytopathol 153:544–550

    Article  Google Scholar 

  • Allen MF (1996) The ecology of arbuscular mycorrhizas: a look back into 20th century and a peak into the 21st. Mycol Res 100:769–782

    Article  Google Scholar 

  • Bagyaraj DJ, Manjunath A, Reddy DDR (1979) Interaction of vesicular arbuscular mycorrhizas with root knot nematodes in tomato. Plant Soil 51:397–403

    Article  Google Scholar 

  • Barea JM, Azcón R, Azcón-Aguilar C (2002) Mycorrhizosphere interactions to improve plant fitness and soil quality. Antonie Van Leeuwenhoek 81:343–351

    Article  PubMed  CAS  Google Scholar 

  • Barron GL (1977) The nematode-destroying fungi. Topics in Mycobiology No. 1. Canadian Biological Publications. Guelph, Ontario, Canada

    Google Scholar 

  • Bevivino A, Sarrocco S, Dalmastri C, Tabacchioni S, Cantale C, Chiarini L (1998) Characterization of a free-living maize-rhizosphere population of Burkholderia cepacia: effect of seed treatment on disease suppression and growth promotion of maize. FEMS Microbiol Ecol 27:225–237

    Article  CAS  Google Scholar 

  • Bhatti DS, Jain RK (1977) Estimation of loss in okra, tomato and brinjal yield due to Meloidogyne incognita. Indian J Nematol 7:37–41

    Google Scholar 

  • Broadbent P, Baker KFM, Franks N, Holland J (1977) Effect of Bacillus sp on increased growth of seedlings in steamed and non-treated soil. Phytopathology 67:1027–1034

    Article  Google Scholar 

  • Chiarini L, Bevivino A, Tabacchioni S, Dalmastri C (1998) Inoculation of Burkholderia cepacia, Pseudomonas fluorescens and Enterobacter sp on Sorghum bicolor: root colonization and plant growth promotion of dual strain inocula. Soil Biol Biochem 30:81–87

    Article  CAS  Google Scholar 

  • Daubaras DL, Danganan CE, Hübner A, Ye RW, Hendrickson W, Chakrabarty AM (1996) Biodegradation of 2, 4, 5-trichlorophenoxyacetic acid by Burkholderia cepacia strain AC1100: evolutionary insight. Gene 179:1–8

    Article  PubMed  CAS  Google Scholar 

  • De Freitas JR, Banerjee MR, Germida JJ (1997) Phosphate-solubilizing rhizobacteria enhance the growth and yield but not phosphorus uptake of canola (Brassica napus L.). Biol Fert Soils 24:358–364

    Article  Google Scholar 

  • Demir S, Akköprü A (2005) Using of arbuscular mycorrhizal fungi (AMF) for biocontrol of soil-borne fungal pathogens. In: Chincholkar SB, Mukerji KG (eds) Biological control of plant diseases: current concepts. Howarth Press, Binghamton, pp 124–138

    Google Scholar 

  • Domsch KH, Gams W, Anderson TH (1980) Compendium of soil fungi. Academic Press, London, UK

    Google Scholar 

  • Eapen SJ, Beena B, Ramana KV (2005) Tropical soil microflora of spice-based cropping systems as potential antagonists of root-knot nematodes. J Invert Pathol 88:218–225

    Article  Google Scholar 

  • Giovannetti M, Mosse B (1980) An evaluation of techniques for measuring vesicular arbuscular mycorrhizal infection in roots. New Phytol 84:489–500

    Article  Google Scholar 

  • Gokte N, Swarup G (1988) On the potential of some bacterial biocides against root-knot and cyst nematodes. Indian J Nematol 18:152–153

    Google Scholar 

  • Good JM (1968) Relation of plant parasitic nematodes to management practices. In: Smart GC, Perry VG (eds) Tropical nematology. University of Florida Press, Gainesville, pp 113–138

    Google Scholar 

  • Guetsky R, Shtienberg D, Elad Y, Fischer E, Dinoor A (2002) Improving biological control by combining biocontrol agents each with several mechanisms of disease suppression. Phytopathology 92:976–985

    Article  PubMed  Google Scholar 

  • Joy AE, Parke JL (1995) Biocontrol of Alternaria leaf blight on American ginseng by Burkholderia cepacia AMMD. In: Bailey WG, Whitehead C, Procter JTA, Kyle JT (eds) Challenges of the 21st century. Proceedings of the international ginseng conference, Vancouver, 1994, Simon Fraser University, Burnaby, pp 93–100

  • Kerry BR (1984) Nematophagous fungi and the regulation of nematode populations in soil. Helminthol Abstr Ser B Plant Nematol 53:1–14

    Google Scholar 

  • Kiewnick S, Sikora RA (2006) Biological control of the root-knot nematode Meloidogyne incognita by Paecilomyces lilacinus strain 251. Biol Control 38:179–187

    Article  Google Scholar 

  • Kokalis-Burelle N, Vavarina CS, Rosskopf EN, Shelby RA (2002) Field evaluation of plant growth promoting rhizobacteria amended transplant mixes and soil solarization for tomato and pepper production in Florida. Plant Soil 238:257–266

    Article  CAS  Google Scholar 

  • Masadeh B, von Alten H, Grunewaldt-Stoecker G, Sikora RA (2004) Biocontrol of root-knot nematodes using the arbuscular mycorrhizal fungus Glomus intraradices and the antagonist Trichoderma viride in two tomato cultivars differing in their suitability as hosts for the nematodes. J Plant Dis Protec 111:322–333

    Google Scholar 

  • Merriman PR, Price RD, Kollmorgen JF, Piggott T, Ridge EH (1974) Effect of seed inoculation with Bacillus subtilis and Streptomyces griseus on the growth of cereals and carrots. Austral J Agric Res 25:219–226

    Article  Google Scholar 

  • Meyer SLF, Massoud SI, Chitwood DJ, Roberts DP (2000) Evaluation of Trichoderma virens and Burkholderia cepacia for antagonistic activity against root-knot nematode, Meloidogyne incognita. Nematology 2:871–879

    Article  Google Scholar 

  • Morgan-Jones G, Rodríguez-Kábana R (1988) Fungi colonizing cysts and eggs. In: Poinar GO, Jansson HB (eds) Diseases of nematodes, vol II. CRC Press, Boca Raton, pp 39–58

    Google Scholar 

  • Mueller JG, Devereux R, Santavy DL, Lantz SE, Willis SG, Pritchard PH (1997) Phylogenetic and physiological comparisons of PAH-degrading bacteria from geographically diverse soils. Antonie Van Leeuwenhoek 71:329–343

    Article  PubMed  CAS  Google Scholar 

  • Nelson LM (2004) Plant growth promoting rhizobacteria (PGPR): prospects for new inoculants. Crop Manage. doi:10.1094/Cm-2004-0301-05-RV

  • Ozgonen H, Bicici M, Erkilic A (1999) The effect of salicylic acid and endomycorrhizal fungus Glomus intraradices on plant development of tomato and Fusarium wilt caused by Fusarium oxysporum f. sp. lycopersici. Turkish J Agric Forest 25:25–29

    Google Scholar 

  • Papavizas GC (1985) Trichoderma and Gliocladium: biology, ecology and potential for biocontrol. Annu Rev Phytopathol 23:23–54

    Article  Google Scholar 

  • Parke JL, Gurian-Sherman D (2001) Diversity of the Burkholderia cepacia complex and implications for risk assessment of biological control strains. Annu Rev Phytopathol 39:225–258

    Article  PubMed  CAS  Google Scholar 

  • Porter WM (1979) The “most probable number” method for enumerating infective propagules of vesicular-arbuscular mycorrhizal fungi in soil. Austral J Soil Res 17:515–519

    Article  Google Scholar 

  • Reddy PP (1974) Studies on the action of amino acids on the root-knot nematode Meloidogyne incognita. PhD dissertation, University of Agricultural Sciences Banglore, India

  • Reddy DDR (1985) Analysis of crop losses in tomato due to Meloidogyne incognita. Indian J Nematol 15:55–59

    Google Scholar 

  • Riker AJ, Riker RS (1936) Introduction of research of plant diseases. John S Swift, St. Louis, p 117

  • Sharma PD (2001) Microbiology. Rastogi and Co., Meerut, p 359

    Google Scholar 

  • Siddiqui ZA (2006) PGPR: prospective biocontrol agents of plant pathogens. In: Siddiqui ZA (ed) PGPR: biocontrol and biofertilization, Springer, Dordrecht, pp 111–142

  • Siddiqui ZA, Akhtar MS (2008) Synergistic effects of antagonistic fungi and a plant growth promoting rhizobacterium, an arbuscular mycorrhizal fungus, or composted cow manure on populations of Meloidogyne incognita and growth of tomato. Biocon Sci Technol 18:279–290

    Article  Google Scholar 

  • Siddiqui ZA, Mahmood I (1995) Biological control of Heterodera cajani and Fusarium udum on pigeon pea by Bacillus subtilis, Bradyrhizobium japonicum and Glomus fasciculatum. Fundam Appl Nematol 18:559–566

    Google Scholar 

  • Siddiqui ZA, Mahmood I (1996) Biological control of Heterodera cajani and Fusarium udum on pigeon pea by Glomus mosseae, Trichoderma harzianum and Verticillium chlamydosporium. Israel J Pl Sc 44:49–56

    Google Scholar 

  • Siddiqui IA, Ali NI, Zaki MJ, Shaukat SS (2001a) Evaluation of Aspergillus species for the biocontrol of Meloidogyne javanica in mungbean. Nematol Medit 29:115–121

    Google Scholar 

  • Siddiqui ZA, Iqbal A, Mahmood I (2001b) Effects of Pseudomonas fluorescens and fertilizers on the reproduction of Meloidogyne incognita and growth of tomato. Appl Soil Ecol 16:179–185

    Article  Google Scholar 

  • Siddiqui IA, Shaukat SS, Khan A (2004) Differential impact of some Aspergillus species on Meloidogyne javanica biocontrol by Pseudomonas fluorescens strain CHA0. Lett Appl Microbiol 39:74–83

    Article  PubMed  CAS  Google Scholar 

  • Singh P, Siddiqui ZA (2008) Biocontrol of root-knot nematode Meloidogyne incognita by the isolates of Bacillus on tomato. Arch Phytopathol Plant Protec (in press)

  • Smith SE, Read DJ (1997) Mycorrhizal symbiosis, 2nd edn. Academic Press, London, UK

    Google Scholar 

  • Southey JF (1986) Laboratory method for work with plant and soil nematodes, 6th edn. Ministry of Agriculture, Fisheries & Food, Her Majesty’s Stationary Office, London, UK

  • Suresh CK (1980) Interaction between vesicular arbuscular mycorrhiza and root knot nematode in tomato. MSc thesis, University of Agricultural Sciences, Banglore, India

  • Tabacchioni S, Bevivino A, Chiarini L, Visca P, Del Gallo M (1993) Characteristics of two rhizosphere isolates of Pseudomonas cepacia and their potential plant-growth-promoting activity. Microb Releases 2:161–168

    CAS  Google Scholar 

  • Tian B, Yang J, Zhang K-Q (2007) Bacteria used in the biological control of plant-parasitic nematodes: populations, mechanisms of action, and future prospects. FEMS Microbiol Ecol 61:197–213

    Article  PubMed  CAS  Google Scholar 

  • Turner JT, Backman PA (1986) Quantum 4000 (Bacillus subtilis) as a bacterial seed treatment of peanuts. Biol Cult Tests Control Plant Dis 1:49

    Google Scholar 

  • Van Peer R, Niemann GJ, Schippers B (1991) Induced resistance and phytoalexin accumulation in biological control of Fusarium wilt of carnation by Pseudomonas sp. strain WCS417r. Phytopathology 81:728–734

    Article  Google Scholar 

  • Wei G, Kloepper JW, Tuzun S (1991) Induction of systemic resistance of cucumber to Colletotrichum orbiculare by select strains of plant growth-promoting rhizobacteria. Phytopathology 81:1508–1512

    Article  Google Scholar 

  • Weller DM (1988) Biological control of soilborne plant pathogens in the rhizosphere with bacteria. Annu Rev Phytopathol 26:379–407

    Article  Google Scholar 

  • Yuen GY, Schroth MN, McCain AH (1985) Reduction of Fusarium wilt of carnation with suppressive soils and antagonistic bacteria. Plant Dis 69:1071–1075

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zaki A. Siddiqui.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Siddiqui, Z.A., Sayeed Akhtar, M. Effects of antagonistic fungi, plant growth-promoting rhizobacteria, and arbuscular mycorrhizal fungi alone and in combination on the reproduction of Meloidogyne incognita and growth of tomato. J Gen Plant Pathol 75, 144–153 (2009). https://doi.org/10.1007/s10327-009-0154-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10327-009-0154-4

Keywords

Navigation