Skip to main content

Advertisement

Log in

Ag@MnxOy: an effective catalyst for photo-degradation of rhodamine B dye

  • Original Paper
  • Published:
Environmental Chemistry Letters Aims and scope Submit manuscript

Abstract

Water pollution by the textile industry is a major issue. Therefore, there is a need for methods to remove organic dyes from industrial effluents. Various metal oxides have been used as catalysts for the degradation of dyes. The catalytic efficiency of metal oxides can be enhanced by doping metal oxides with metals. Here we report the synthesis and characterization of nano-sized mixed valence manganese oxide (Mn x O y ) and silver-doped mixed valence manganese oxide (Ag@Mn x O y ). We study their photo-catalytic efficiency for the photo-degradation of the rhodamine B dye under light irradiation. Mn x O y was prepared using KMnO4, MnSO4 and NH3, and Ag@Mn x O y was prepared using AgNO3 and Calotropis gigantea plant extract. The prepared materials were characterized by X-ray diffractometry, scanning electron microscopy and Fourier transform infrared spectroscopy. Results show that doping with Ag enhanced the photo-catalytic performance of Mn x O y from 11 to 28% and 45 to 91% degradation of rhodamine B dye in 15 and 120 min, respectively. This enhancement is explained by the fact that Ag doping prevents the recombination of photoexcited electrons and positive holes, thus enhancing the photo-catalytic activity of Mn x O y .

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Andronic L, Enesca A, Vladuta C, Duta A (2009) Photocatalytic activity of cadmium doped TiO2 films for photocatalytic degradation of dyes. Chem Eng J 152:64–71. doi:10.1016/j.cej.2009.03.031

    Article  CAS  Google Scholar 

  • Ansari SA, Khan MM, Ansari MO, Cho MH (2015) Silver nanoparticles and defect-induced visible light photocatalytic and photoelectrochemical performance of Ag@m–TiO2 nanocomposite. Sol Energy Mater Sol Cells 141:162–170. doi:10.1016/j.solmat.2015.05.029

    Article  CAS  Google Scholar 

  • Ayed L, Chaieb K, Cheref A, Bakhrouf A (2010) Biodegradation and decolorization of triphenylmethane dyes by Staphylococcus epidermidis. Desalination 260:137–146. doi:10.1016/j.desal.2010.04.052

    Article  CAS  Google Scholar 

  • Chen C, Wang Z, Ruan S, Zou B, Zhao M, Wu F (2008) Photocatalytic degradation of C.I. Acid Orange 52 in the presence of Zn-doped TiO2 prepared by a stearic acid gel method. Dyes Pigments 77:204–209. doi:10.1016/j.dyepig.2007.05.003

    Article  CAS  Google Scholar 

  • Chen G, Si X, Yu J, Bai H, Zhang X (2015) Doping nano-Co3O4 surface with bigger nanosized Ag and its photocatalytic properties for visible light photodegradation of organic dyes. Appl Surf Sci 330:191–199. doi:10.1016/j.apsusc.2015.01.011

    Article  CAS  Google Scholar 

  • Das M, Bhattacharyya KG (2014) Oxidation of rhodamine B in aqueous medium in ambient conditions with raw and acid-activated MnO2, NiO, ZnO as catalysts. J Mol Catal A Chem 391:121–129. doi:10.1016/j.molcata.2014.04.019

    Article  CAS  Google Scholar 

  • Deng Y, Zhang T, Au C, Yin S (2014) Oxidation of p-chlorotoluene to p-chlorobenzaldehyde over manganese-based octahedral molecular sieves of different morphologies. Catal Commun 43:126–130. doi:10.1016/j.catcom.2013.09.026

    Article  CAS  Google Scholar 

  • Dharmarathna S, King’ondu CK, Pedrick W, Pahalagedara L, Suib SL (2012) Direct sonochemical synthesis of manganese octahedral molecular sieve (OMS-2) nanomaterials using cosolvent systems their characterization, and catalytic applications. Chem Mater 24:705–712. doi:10.1021/cm203366m

    Article  CAS  Google Scholar 

  • Ding Y, Shen X, Sithambaram S, Gomez S, Kumar R, Crisostomo VMB, Suib SL (2005) Synthesis and catalytic activity of cryptomelane-type manganese dioxide nanomaterials produced by a novel solvent-free method. Chem Mater 17:5382–5389. doi:10.1021/cm051294w

    Article  CAS  Google Scholar 

  • El-Bahy ZM, Ismail AA, Mohamed RM (2009) Enhancement of titania by doping rare earth for photodegradation of organic dye (Direct Blue). J Hazard Mater 166:138–143. doi:10.1016/j.jhazmat.2008.11.022

    Article  CAS  Google Scholar 

  • Elmorsi TM, Riyad YM, Mohamed ZH, Abd El Bary HMH (2010) Decolorization of Mordant red 73 azo dye in water using H2O2/UV and photo-Fenton treatment. J Hazard Mater 174:352–358. doi:10.1016/j.jhazmat.2009.09.057

    Article  CAS  Google Scholar 

  • Gaya UI, Abdullah AH (2008) Heterogeneous photocatalytic degradation of organic contaminants over titanium dioxide: a review of fundamentals, progress and problems. J Photochem Photobiol C Photochem Rev 9:1–12. doi:10.1016/j.jphotochemrev.2007.12.003

    Article  CAS  Google Scholar 

  • Ghosh R, Shen X, Villegas JC, Ding Y, Malinger K, Suib SL (2006) Role of manganese oxide octahedral molecular sieves in styrene epoxidation. J Phys Chem B 110:7592–7599. doi:10.1021/jp056961n

    Article  CAS  Google Scholar 

  • Hu B, Chen C, Frueh SJ, Jin L, Joesten R, Suib SL (2010) Removal of aqueous phenol by adsorption and oxidation with doped hydrophobic cryptomelane-type manganese oxide (K–OMS-2) nanofibers. J Phys Chem C 114:9835–9844. doi:10.1021/jp100819a

    Article  CAS  Google Scholar 

  • Huang D, Ma J, Yu L, Wu D, Wang K, Yang M, Papoulis D, Komarneni S (2015) AgCl and BiOCl composited with NiFe-LDH for enhanced photo-degradation of rhodamine B. Sep Purif Technol 156:789–794. doi:10.1016/j.seppur.2015.11.003

    Article  CAS  Google Scholar 

  • Ilyas M, Sadiq M (2007) Liquid phase aerobic oxidation of benzyl alcohol catalyzed by Pt/ZrO2. Chem Eng Technol 30:1391–1399. doi:10.1002/ceat.200700072

    Article  CAS  Google Scholar 

  • Ilyas M, Saeed M (2011) Synthesis and characterization of manganese oxide and investigation of its catalytic activities for oxidation of benzyl alcohol in liquid phase. Int J Chem React Eng 9:A75

    Google Scholar 

  • Ilyas M, Siddique M, Saeed M (2013) Liquid-phase aerobic oxidation of benzyl alcohol catalyzed by mechanochemically synthesized manganese oxide. Chin Sci Bull 8(19):2354–2359. doi:10.1007/s11434-013-5833-z

    Article  Google Scholar 

  • Ilyas M, Saeed M, Sadiq M, Siddique M (2014) Mixed-valence manganese oxide catalyzed oxidation of benzyl alcohol and cyclohexanol in liquid phase. Prog React Kinet Mech 39(4):375–390. doi:10.3184/146867814X14139853537970

    Article  CAS  Google Scholar 

  • Jamal A, Rahman MM, Khan SB, Faisal M, Akhtar K, Rub MA, Asiri AM, Al-Youbi AO (2012) Cobalt doped antimony oxide nano-particles based chemical sensor and photo-catalyst for environmental pollutants. Appl Surf Sci 261:52–58. doi:10.1016/j.apsusc.2012.07.066

    Article  CAS  Google Scholar 

  • Jermwongratanachai T, Jacobs G, Ma WP, Shafer WD, Gnanamani MK, Gao P, Kitiyanan B, Davis BH, Klettlinger JLS, Yen CH, Cronauer DC, Kropf AJ, Marshall CL (2013) Fischer–Tropsch synthesis: comparisons between Pt and Ag promoted Co/Al2O3 catalysts for reducibility, local atomic structure, catalytic activity, and oxidation–reduction (OR) cycles. Appl Catal A Gen 464:165–180. doi:10.1016/j.apcata.2013.05.040

    Article  Google Scholar 

  • Jo WK, Kumar SK, Isaacs MA, Lee AF, Karthikeyan S (2017) Cobalt promoted TiO2/GO for the photocatalytic degradation of oxytetracycline and Congo Red. Appl Catal B Environ 201:159–168. doi:10.1016/j.apcatb.2016.08.022

    Article  CAS  Google Scholar 

  • Kumar R, Sithambaram S, Suib SL (2009) Cyclohexane oxidation catalyzed by manganese oxide octahedral molecular sieves-effect of acidity of the catalyst. J Catal 262:304–313. doi:10.1016/j.jcat.2009.01.007

    Article  CAS  Google Scholar 

  • Lia J, Shafi K, Ulman A, Loos K, Yang NL, Cui MH, Vogt T, Estournes C, Locke DC (2004) Mixed iron–manganese oxide nanoparticles. J Phys Chem B 108(39):14876–14883. doi:10.1021/jp049913w

    Article  Google Scholar 

  • Liu Z, Ma C, Cai Q, Hong T, Guo K, Yan L (2017) Promising cobalt oxide and cobalt oxide/silver photocathodes for photoelectrochemical water splitting. Sol Energy Mater Sol Cells 161:46–51. doi:10.1016/j.solmat.2016.11.026

    Article  CAS  Google Scholar 

  • Luo S, Duan L, Sun B, Wei M, Li X, Xu A (2015) Manganese oxide octahedral molecular sieve (OMS-2) as an effective catalyst for degradation of organic dyes in aqueous solutions in the presence of peroxymonosulfate. Appl Catal B Environ 164:92–99. doi:10.1016/j.apcatb.2014.09.008

    Article  CAS  Google Scholar 

  • Makwana VD, Son YC, Howell AR, Steven SL (2002) The role of lattice oxygen in selective benzyl alcohol oxidation using OMS-2 catalyst: a kinetic and isotope-labeling study. J Catal 210:46–52. doi:10.1006/jcat.2002.3680

    Article  CAS  Google Scholar 

  • Mohamed MM, Al-Esaimi MM (2006) Characterization, adsorption and photocatalytic activity of vanadium-doped TiO2 and sulfated TiO2 (rutile) catalysts: degradation of methylene blue dye. J Mol Catal A Chem 255:53–61. doi:10.1016/j.molcata.2006.03.071

    Article  CAS  Google Scholar 

  • Rahman QI, Ahmad M, Misra SK, Lohani M (2013) Effective photocatalytic degradation of rhodamine B dye by ZnO nanoparticles. Mater Lett 91:170–175. doi:10.1016/j.matlet.2012.09.044

    Article  CAS  Google Scholar 

  • Rauf MA, Meetani MA, Hisaindee S (2011) An overview on the photocatalytic degradation of azo dyes in the presence of TiO2 doped with selective transition metals. Desalination 276(1–3):13–27. doi:10.1016/j.desal.2011.03.071

    Article  CAS  Google Scholar 

  • Saeed M, Ilyas M, Siddique M (2013) Oxidative degradation of oxalic acid in aqueous medium using manganese oxide as catalyst at ambient temperature and pressure. Arab J Sci Eng 38:1739–1748. doi:10.1007/s13369-013-0545-x

    Article  CAS  Google Scholar 

  • Saeed M, Ilyas M, Siddique M (2015) Kinetics of lab prepared manganese oxide catalyzed oxidation of benzyl alcohol in the liquid phase. Int J Chem Kinet 47(7):447–460. doi:10.1002/kin.20922

    Article  CAS  Google Scholar 

  • Saeed M, Siddique M, Usman M, Haq A, Khan SG, Raouf A (2017) Synthesis and characterization of zinc oxide and evaluation of its catalytic activities for oxidative degradation of rhodamine B dye in aqueous medium. Z Phys Chem. doi:10.1515/zpch-2016-0921

    Google Scholar 

  • Sahu MK, Patel RK (2016) Novel visible-light-driven cobalt loaded neutralized red mud (Co/NRM) composite with photocatalytic activity toward methylene blue dye degradation. J Ind Eng Chem 40:72–82. doi:10.1016/j.jiec.2016.06.008

    Article  CAS  Google Scholar 

  • Sithambaram S, Nyutu EK, Suib SL (2008) OMS-2 catalyzed oxidation of tetralin: a comparative study of microwave and conventional heating under open vessel conditions. Appl Catal A Gen 348:214–220. doi:10.1016/j.apcata.2008.06.046

    Article  CAS  Google Scholar 

  • Song S, Ying H, He Z, Chen J (2007) Mechanism of decolorization and degradation of CI Direct Red 23 by ozonation combined with sonolysis. Chemosphere 66:1782–1788. doi:10.1016/j.chemosphere.2006.07.090

    Article  CAS  Google Scholar 

  • Sriskandakumar T, Opembe N, Chen C, Morey A, King’ondu C, Suib SL (2009) Green decomposition of organic dyes using octahedral molecular sieve manganese oxide catalysts. J Phys Chem A 113:1523–1530. doi:10.1021/jp807631w

    Article  CAS  Google Scholar 

  • Tehrani-Bagha AR, Mahmoodi NM, Menger FM (2010) Degradation of a persistent organic dye from colored textile wastewater by ozonation. Desalination 260:34–38. doi:10.1016/j.desal.2010.05.004

    Article  CAS  Google Scholar 

  • Vahdat A, Bahrami SH, Arami M, Motahari A (2010) Decomposition and decoloration of a direct dye by electron beam radiation. Radiat Phys Chem 79:33–35. doi:10.1016/j.radphyschem.2009.08.012

    Article  CAS  Google Scholar 

  • Vartooni AR, Nasrollahzadeh M, Niasari MS, Atarod M (2016) Photocatalytic degradation of azo dyes by titanium dioxide supported silver nanoparticles prepared by a green method using Carpobrotus acinaciformis extract. J Alloys Compd 689:15–20. doi:10.1016/j.jallcom.2016.07.253

    Article  Google Scholar 

  • Wang LC, He L, Liu YM, Cao Y, He HY, Fan KN, Zhuang JH (2009) Effect of pretreatment atmosphere on CO oxidation over α-Mn2O3 supported gold catalysts. J Catal 264:145–153. doi:10.1016/j.jcat.2009.04.006

    Article  CAS  Google Scholar 

  • Xu M, Wang Y, Geng J, Jing D (2017) Photodecomposition of NOx on Ag/TiO2 composite catalysts in a gas phase reactor. Chem Eng J 307:181–188. doi:10.1016/j.cej.2016.08.080

    Article  CAS  Google Scholar 

  • Yang X, Xu L, Yu X, Guo Y (2008) One-step preparation of silver and indiumoxide co-doped TiO2 photocatalyst for the degradation of rhodamine B. Catal Commun 9:1224–1229. doi:10.1016/j.catcom.2007.11.008

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Financial support of The World Academy of Sciences (TWAS) under COMSTECH-TWAS Grants Program is highly acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammad Saeed.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saeed, M., Ahmad, A., Boddula, R. et al. Ag@MnxOy: an effective catalyst for photo-degradation of rhodamine B dye. Environ Chem Lett 16, 287–294 (2018). https://doi.org/10.1007/s10311-017-0661-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10311-017-0661-z

Keywords

Navigation