Skip to main content
Log in

Efficient hydrogen peroxide decomposition to oxygen and water catalysed by a ruthenium pincer complex

  • Original Paper
  • Published:
Environmental Chemistry Letters Aims and scope Submit manuscript

Abstract

Hydrogen peroxide decomposition is a major issue in medicine, energy, and environmental sciences. For example, findings could lead to the development of efficient H2O2 removal systems to clean wastewaters. Here I tested several homogeneous catalysts for H2O2 decomposition. I found that a dihydride version of a ruthenium complex coordinated by a phosphorous–nitrogen–phosphorus pincer ligand with isopropyl substituents on the phosphorus (PNPiPr) was superior to the hydride chloride congener. This is in line with previous activity studies with PNPiPr ruthenium catalysts. Moreover, no additives are necessary, further enhancing the potential scope of this system. By the use of the homogeneous catalyst Ru(H)2(PNPiPr)CO, it is possible to obtain turnover frequencies reaching 180,000 h−1 and turnover numbers more than 14,000 in a neutral hydrogen peroxide aqueous solution at 25 °C. Overall, findings reveal an efficient and stable system for hydrogen peroxide decomposition to oxygen and water under mild conditions.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alberico E, Nielsen M (2015) Towards a methanol economy based on homogeneous catalysis: methanol to H2 and CO2 to methanol. Chem Commun 51:6714–6725. doi:10.1039/C4CC09471A

    Article  CAS  Google Scholar 

  • Alberico E, Sponholz P, Cordes C et al (2013) Selective hydrogen production from methanol with a defined iron pincer catalyst under mild conditions. Angew Chem Int Ed 52:14162–14166. doi:10.1002/anie.201307224

    Article  CAS  Google Scholar 

  • Baratta W, Bossi G, Putignano E, Rigo P (2011) Pincer and diamine Ru and Os diphosphane complexes as efficient catalysts for the dehydrogenation of alcohols to ketones. Chem A Eur J 17:3474–3481. doi:10.1002/chem.201003022

    Article  CAS  Google Scholar 

  • Bielinski EA, Lagaditis PO, Zhang Y et al (2014) Lewis acid-assisted formic acid dehydrogenation using a pincer-supported iron catalyst. J Am Chem Soc 136:10234–10237. doi:10.1021/ja505241x

    Article  CAS  Google Scholar 

  • Campos M, Siriwatcharapiboon W, Potter RJ, Horswell SL (2013) Selectivity of cobalt-based catalysts towards hydrogen peroxide formation during the reduction of oxygen. Catal Today 202:135–143. doi:10.1016/j.cattod.2012.05.015

    Article  CAS  Google Scholar 

  • Clarke ZE, Maragh PT, Dasgupta TP et al (2006) A family of active iridium catalysts for transfer hydrogenation of ketones. Organometallics 25:4113–4117. doi:10.1021/om060049z

    Article  CAS  Google Scholar 

  • De Boer JW, Brinksma J, Browne WR et al (2005) Cis-Dihydroxylation and epoxidation of alkenes by [Mn2O(RCO2)2(tmtacn)2]: tailoring the selectivity of a highly H2O2-efficient catalyst. J Am Chem Soc 2:7990–7991

    Article  Google Scholar 

  • Gunanathan C, Milstein D (2011) Metal–ligand cooperation by aromatization–dearomatization: a new paradigm in bond activation and “Green” catalysis. Acc Chem Res 44:588–602. doi:10.1021/ar2000265

    Article  CAS  Google Scholar 

  • Kakuda S, Peterson RL, Ohkubo K et al (2013) Enhanced catalytic four-electron dioxygen (O2) and two-electron hydrogen peroxide (H2O2) reduction with a copper(II) complex possessing a pendant ligand pivalamido group. J Am Chem Soc 135:6513–6522. doi:10.1021/ja3125977

    Article  CAS  Google Scholar 

  • Koehne I, Schmeier TJ, Bielinski EA et al (2014) Synthesis and structure of six-coordinate iron borohydride complexes supported by PNP ligands. Inorg Chem 53:2133–2143. doi:10.1021/ic402762v

    Article  CAS  Google Scholar 

  • Kohl SW, Weiner L, Schwartsburd L et al (2009) Consecutive thermal H2 and light-induced O2 evolution from water promoted by a metal complex. Science 324:74–77. doi:10.1126/science.1168600

    Article  CAS  Google Scholar 

  • Kundu P, Sinha AK, Bhattacharyya TK, Das S (2013) MnO2 nanowire embedded hydrogen peroxide monopropellant MEMS thruster. J Microelectromech Syst 22:406–417. doi:10.1109/JMEMS.2012.2226929

    Article  CAS  Google Scholar 

  • Kuriyama W, Matsumoto T, Ogata O et al (2012) Catalytic hydrogenation of esters. development of an efficient catalyst and processes for synthesising (R)-1,2-propanediol and 2-(l-Menthoxy)ethanol. Org Process Res Dev 16:166–171. doi:10.1021/op200234j

    Article  CAS  Google Scholar 

  • Li Y, Nielsen M, Li B et al (2015a) Ruthenium-catalyzed hydrogen generation from glycerol and selective synthesis of lactic acid. Green Chem 17:193–198. doi:10.1039/C4GC01707B

    Article  CAS  Google Scholar 

  • Li Y, Sponholz P, Nielsen M et al (2015b) Iridium-catalyzed hydrogen production from monosaccharides, disaccharide, cellulose, and lignocellulose. ChemSusChem 8:804–808. doi:10.1002/cssc.201403099

    Article  CAS  Google Scholar 

  • Lisanti MP, Martinez-Outschoorn UE, Lin Z et al (2011) Hydrogen peroxide fuels aging, inflammation, cancer metabolism and metastasis: the seed and soil also needs “fertilizer”. Cell Cycle 10:2440–2449. doi:10.4161/cc.10.15.16870

    Article  CAS  Google Scholar 

  • Milstein D (2010) Discovery of environmentally benign catalytic reactions of alcohols catalyzed by pyridine-based pincer Ru complexes, based on metal–ligand cooperation. Top Catal 53:915–923. doi:10.1007/s11244-010-9523-7

    Article  CAS  Google Scholar 

  • Monney A, Barsch E, Sponholz P et al (2014) Base-free hydrogen generation from methanol using a bi-catalytic system. Chem Commun 50:707–709. doi:10.1039/C3CC47306F

    Article  CAS  Google Scholar 

  • Musa S, Fronton S, Vaccaro L, Gelman D (2013) Bifunctional ruthenium(II) PCP pincer complexes and their catalytic activity in acceptorless dehydrogenative reactions. Organometallics 32:3069–3073. doi:10.1021/om400285r

    Article  CAS  Google Scholar 

  • Nielsen M, Kammer A, Cozzula D et al (2011) Efficient hydrogen production from alcohols under mild reaction conditions. Angew Chem Int Ed 50:9593–9597. doi:10.1002/anie.201104722

    Article  CAS  Google Scholar 

  • Nielsen M, Junge H, Kammer A, Beller M (2012) Towards a green process for bulk-scale synthesis of ethyl acetate: efficient acceptorless dehydrogenation of ethanol. Angew Chem Int Ed 51:5711–5713. doi:10.1002/anie.201200625

    Article  CAS  Google Scholar 

  • Nielsen M, Alberico E, Baumann W et al (2013) Low-temperature aqueous-phase methanol dehydrogenation to hydrogen and carbon dioxide. Nature 495:85–89. doi:10.1038/nature11891

    Article  CAS  Google Scholar 

  • Páez CA, Liquet DY, Calberg C et al (2011) Study of photocatalytic decomposition of hydrogen peroxide over ramsdellite-MnO2 by O2-pressure monitoring. Catal Commun 15:132–136. doi:10.1016/j.catcom.2011.08.025

    Article  Google Scholar 

  • Roos K, Siegbahn PEM (2013) Activation of dimanganese class Ib ribonucleotide reductase by hydrogen peroxide: mechanistic insights from density functional theory. Inorg Chem 52:4173–4184. doi:10.1021/ic3008427

    Article  CAS  Google Scholar 

  • Spasyuk D, Smith S, Gusev DG (2012) From esters to alcohols and back with ruthenium and osmium catalysts. Angew Chem Int Ed 51:2772–2775. doi:10.1002/anie.201108956

    Article  CAS  Google Scholar 

  • Sponholz P, Mellmann D, Cordes C et al (2014) Efficient and selective hydrogen generation from bioethanol using ruthenium pincer-type complexes. ChemSusChem 7:2419–2422. doi:10.1002/cssc.201402426

    Article  CAS  Google Scholar 

  • Tsai MC, Rick J, Hwang BJ (2013) Design of Pt-based bimetallic alloys for the oxidation of H2O2: a combined computational and experimental approach. ChemCatChem 5:1709–1712. doi:10.1002/cctc.201200816

    Article  CAS  Google Scholar 

  • Wang Z, Bush RT, Sullivan LA, Liu J (2013) Simultaneous redox conversion of chromium (VI) and arsenic (III) under acidic conditions. Environ Sci Technol 47:6486–6492

    CAS  Google Scholar 

  • Yoon DS, Won K, Kim YH et al (2007) Continuous removal of hydrogen peroxide with immobilised catalase for wastewater reuse. Water Sci Technol 55:27–33. doi:10.2166/wst.2007.016

    Article  CAS  Google Scholar 

Download references

Acknowledgments

M.N. thanks Leibniz-Institut für Katalyse e.V., the Danish Council for Independent Research (#12-131997), and Marie Curie FP7 International Outgoing Fellowship (IOF, #327565) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Nielsen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nielsen, M. Efficient hydrogen peroxide decomposition to oxygen and water catalysed by a ruthenium pincer complex. Environ Chem Lett 14, 359–365 (2016). https://doi.org/10.1007/s10311-016-0576-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10311-016-0576-0

Keywords

Navigation