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Abstract 

The use of pesticides in agriculture has highly increased during the last 40 years to increase 

crop yields. However, today most pesticides are polluting water, soil, atmosphere and food. 

Pesticides are also impact soil enzymes, which are essential catalysts ruling the quality of soil 

life. In particular, the activity of soil enzymes control nutrient cycles, and, in turn, fertilization. 

Here, we review the effects of pesticides on the activity of soil enzymes in terrestrial 

ecosystems. Enzymes include dehydrogenase, fluorescein diacetate hydrolase, acid 

phosphatase, alkaline phosphatase, phosphatase, -glucosidase, cellulase, urease and aryl-

sulfatase. Those enzymes are involved in the cycles of carbon, nitrogen, sulfur and phosphorus. 

The main points of our analysis are (1) the common inhibition of dehydrogenase in 61 % of 

studies, stimulation of cellulase in 56 % of studies and no response of aryl-sulfatase in 67 % of 

studies. (2) Fungicides have mainly negative effects on enzymatic activities. (3) Insecticides 

can be classified into two groups, the first group represented by endosulfan having an overall 

positive impact while the second group having a negative effect. (4) Herbicides can be 

classified into two groups, one group with few positive effect and another group with negative 

effect. 
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Introduction 

 

Pesticides are widely used in crop production and are known to induce major environmental 

problems in Europe. With an increased pesticide use, questions are rising on potential effects 

regarding public health and environment. Pesticides pollute air, soil, water resources and 

contaminate the food chain. The European Commission has taken into consideration this 

problem by publishing the Directive 2009/128/EC, which establishes a framework to achieve a 

sustainable use of pesticides. This directive aims at reducing the risks and impacts of pesticide 

use on human health and environment by promoting the use of integrated pest management and 

alternative approaches or techniques such as non-chemical alternatives to pesticides. 

Although the Directive 91/414/EEC of 15 July 1991 on the authorization of plant protection 

products has already resulted in the elimination of more than 75 % of active substances from 

the market according to their ineffective- ness or toxicity (Karabelas et al. 2009), a large 

variety of active molecules are still used. Over 150 different pesticides are currently authorized 

in member states of the European Union. In agriculture, these compounds are applied to 

improve crop yield and quality. Globally, about 140.000 tons of pesticides are applied annually 

in the Europe (Eurostat 2007). The European farmers devote a significant portion of their 

budget to buy these agrochemicals. Usually, several pesticides are required during a cropping 

season, thus agricultural soils often contain a mix of different pesticides at different 

concentrations. 

Pesticides include diverse groups of inorganic and organic chemicals. They are divided into 

groups according to their primary target and include herbicides, insecticides, nematicides, 

fungicides and soil fumigants (Gevao et al. 2000). Pesticides can be classified in a number of 

ways: by target pest, their mode of action or chemical family. The main chemical groups are 

organochlorine, organophosphate, carbamate, pyrethroids, triazine and sulfonylurea (Afify et 

al. 2010). There are a large variety of pesticides available on the market, and chemical families 

are more diversified than proposed by these authors (Table 1). Some chemical families of 

pesticides can be efficient as fungicide, herbicide and insecticide, which make it difficult to 

classify them. 

The interaction between soil components and pesticides influences the biochemical processes 

driven by microorganisms. Telluric fungi (Hernandez-Rodriguez et al. 2006; Ronhede et al. 

2007) and bacteria (Dong et al. 2005; Qiu et al. 2006) are able to degrade or mineralize 

pesticides via enzymatic reactions. Pesticides’ effects on soil microorganisms can be 



 

 

determined by the study of functional parameters such as carbon and nitrogen mineralization 

that are governed by enzymatic activities. Those activities play an important role because all 

biochemical transformations in soil depend on or are related to the presence of enzymes. They 

are indicators of biological equilibrium (Frankenberger and Tabatabai 1991), fertility (Schuster 

and Schroder 1990a b; Antonious 2003) and changes in the biological status due to soil 

pollution (Nannipieri and Bollag 1991; Kucharski and Wyszkowska 2000; Trasar- Cepeda et 

al. 2000; Chu et al. 2003; Bending et al. 2004). Finally, the measurement of specific enzymatic 

activities may contribute to understand the metabolic processes involved in the biogeochemical 

cycles of nutrients. Pesticides reaching the soil may disturb local metabolism or enzymatic 

activities (Engelen et al. 1998; Liu et al. 2008; Hussain et al. 2009). Negative impacts of 

pesticides on soil enzymes such as hydrolases, oxidoreductases and dehydrogenase activities 

have been widely reported in the literature (Perucci and Scarponi 1994; Ismail et al. 1998; 

Malkomes and Dietze 1998; Monkiedje and Spiteller 2002; Monkiedje et al. 2002; Menon et 

al. 2005; Caceres et al. 2009). There is also evidence that soil enzymes may pro- vide valuable 

general information on transformation of pesticides in soils (Gianfreda and Bollag 1994; 

Kalam et al. 2004; Gil-Sotres et al. 2005; Hussain et al. 2009). 

Once a pesticide is released into the environment, understanding its behavior becomes of major 

scientific interest. Its evolution is strongly linked to soil’s microbiological composition and 

especially to soil enzymatic activities. The diversity of pedoclimatic contexts, pesticides’ 

nature and experimental protocols (applied doses) in scientific literature make data analysis 

extremely complex (Gevao et al. 2000). Nevertheless, the literature in this area is abundant and 

the authors often provide findings that suggest that enzymatic activities could be indicators of 

soil use and management because of their relationship to soil biology (Yao et al. 2006). Soil 

enzymatic activities are assumed to be early indicators of soil degradation compared to 

chemical or physical parameters (Dick et al. 1994). Among soil enzymatic activities, 

hydrolases are the most commonly measured activities in soils and therefore proposed by many 

authors as potential indicators of soil state (Tabatabai 1994; Deng and Tabatabai 1996; Dick et 

al. 1996; Floch et al. 2011). 

The main aim of this work is to summarize and analyze the rich data accumulated in the 

literature during the last years, concerning pesticide effects on soil enzymatic activities: 

dehydrogenase and a large range of hydrolases. This review attempts to find out or identify 

common determinants explaining variation patterns of soil enzymatic activities in relationship 

with application of different types of pesticides. The patterns of soil enzymatic responses could 
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be then used to reflect experimental designs (most relevant enzymatic activities to be 

monitored, pesticide doses to be applied…) aiming at under- standing the impact of pesticides 

on soil microbes. More generally, they could provide valuable support for decision-making 

(farmers, advisers, public authorities) concerning the choice of pesticides, which are less 

harmful for soil microorganisms. 

Here, we review the effects of pesticides on enzymatic activities and we discuss trends of 

response for each soil enzymes. We also analyze the possible relationships between the 

responses of soil enzymatic and mechanisms action pesticides. 

 

Effect of pesticides on soil enzymatic activities 

 

The literature concerning the effect of pesticides on soil enzymatic activities is abundant and 

sometimes discordant. Some studies were realized in field while others were performed in 

natural microcosms. In the latter case, soil preparation and incubation times were very variable 

in function of authors. Thereby, in order to achieve a comparative analysis, we have chosen to 

examine only the data that refer to microcosm experiments (Fig. 1). These con- trolled 

experiments have indeed the advantage to provide more robust results; the small ecosystem 

size enables high replication in experiments (Srivastava et al. 2004). Soil microcosms allow 

also observing the effects of only one pesticide on soil enzymatic activities and not the 

synergic or antagonist effects of molecules, as it is often the case in field studies where it is 

difficult to dispense of cumulative effects of pesticides resulting of agricultural practices. 

Moreover, only the results observed between 28 and 50 days of incubation were reported here, 

in order to avoid considering transient effects of pesticides on enzymatic activities. 

The synthesis of the review is reported in Table 2. It highlights that the enzymes studied are 

either indicators of overall microbiological activity, or specific hydrolases of carbon, nitrogen, 

phosphorus and sulfur biochemical cycles. In the different studies, the applied doses of pesti- 

cides were given in reference to the field rate (FR, i.e., the approved dose). It appears that 

many studies used 10, 100 up to 1,000 times the recommended field dose in order to simulate 

repeated application or long-term use of pesticides, even if this method is questionable. 

 

  



 

 

Global metabolic activities 

 

Dehydrogenase activity 

 

Dehydrogenase occurs in all living microbial cells, and it is linked with microbial respiratory 

processes (Bolton et al. 1985). This intracellular enzyme is an indicator of overall microbial 

activity of soils. The impact of pesticides on dehydrogenase activity has been widely reported 

in the literature. Pesticides generally appear to have an adverse effect on dehydrogenase 

activity (Table 2). The majority of insecticides are either neutral toward this activity (Caceres 

et al. 2009) or they inhibit it (Beulke and Malkomes 2001; Kalam et al. 2004; Yao et al. 2006; 

Jastrzebska 2011). Only endosulfan seems to stimulate dehydrogenase activity when it goes 

100 to 200 times the standard rate of application (Kalyani et al. 2010; Defo et al. 2011). But 

con- tradictory results show no effect of endosulfan at 200 times the regular dose in soil with 

pH 4.8. Likewise, herbicides, except butachlor (Min et al. 2002; Xia et al. 2011), have a 

repressive effect on dehydrogenase activity, whatever conditions of application, including dose 

and soil pH (Beulke and Malkomes 2001; Bennicelli et al. 2009; Sebiomo et al. 2012). In 

contrast, it was not possible to identify a single type of response of this activity to fungicides: 

the enzyme was alternately stimulated and inhibited. Authors suggested that the absence of 

effect on dehydrogenase activity was probably due to the time of incubation, which was 

insufficient to induce any effect. Nevertheless, the effect of a pesticide on soil microorganisms 

is governed not only by the chemical and physical properties of the pesticide itself, but also by 

the soil type, soil properties, and prevailing environmental conditions (Dick et al. 2000). The 

dehydrogenase was severely inhibited at higher doses of fungicides (Monkiedje et al. 2002; 

Bello et al. 2008). 

Generally, whatever the dose considered, fungicides, herbicides and insecticides show 

inhibitory effects or no effects on the dehydrogenase activity, except endosulfan and 

mancozeb. 

 

Fluorescein diacetate hydrolase 

 

The fluorescein di-acetate hydrolase activity has the potential to broadly represent soil 

enzymatic activities and accumulated biological effects. Fluorescein di-acetate is a substrate 

hydrolysed by a number of different enzymes, such as protease, lipase and esterase and its 
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hydrolysis was observed among a wide array of primary decomposers, bacteria and fungi 

(Janvier et al. 2007). In comparison with dehydrogenase, only few studies have examined the 

response of fluorescein diacetate hydrolase activity to the presence of pesticides in soil. There 

is no clear answer of fluorescein diacetate hydrolase to pesticides’ input, but it seems to be 

more influenced by insecticides (Das et al. 2007; Bishnu et al. 2012) than herbicides (Perucci 

et al. 2000; Zabaloy et al. 2008). Fluorescein diacetate hydrolase activity was stimulated by the 

supply of pesticides of imidazolines (Imazethapyr) and organochlorines (endosulfan) families 

(Perucci et al. 2000; Kalyani et al. 2010), which have been less studied than other families of 

pesticides. The application of organophosphate (chlorpyrifos and ethion) at different doses had 

the same effect on this enzymatic activity (Dutta et al. 2010; Bishnu et al. 2012). 

Unfortunately, the number of experimentations carried out was not sufficient to draw any 

conclusion. It would be interesting to examine whether the response of fluorescein diacetate 

hydrolase is the same with more represented organophosphate pesticides. Slight and transitory 

increases in fluorescein diacetate hydrolase activity were observed at the highest applied 

pesticide rates (tenfold field rate). 

Moreover, the author proposed a new synthetic index, the specific hydrolytic activity, to assess 

microbial activity in reply to xenobiotic treatments, and he considered fluores- cein diacetate 

hydrolase as a suitable tool for measuring the early detrimental effect of pesticides on soil 

microbial biomass, as it is a sensitive and non specific test, which is able to depict the 

hydrolytic activity of soil microbes. No study on the effects of fungicides on fluorescein 

diacetate hydrolase activity has been identified in this review. Fluorescein diacetate hydrolase 

activity in soil is poorly influenced by herbicides or insecticides applications, except 

endosulfan applications, which seems to stimulate this activity. 

 

Carbon cycle enzymatic activities 

 

Cellulase and -glucosidase 

 

-Glucosidase and cellulase are very important enzymes involved in the 

transformation/decomposition of organic matter in soil. Their final product is glucose, an 

important carbon energy source for soil microorganisms (Deng and Tabatabai 1994). 

Very few references are available since the year 2000 concerning the effect of fungicides on 



 

 

cellulase activity. Indeed, only two fungicides have been tested and seem to have no 

pronounced negative effects on this activity (Niemi et al. 2009). Likewise, the herbicides from 

different chemical families (urea, triazine and nitrile) seem   to have no effect on cellulase 

activity even with 10 times the dose of application (Omar and Abdel-Sater 2001; Niemi et al. 

2009). The insecticides are more represented, particularly molecules, which belong to the 

family of organophosphate (monocrotophos, quinalphos, profenofos and selectron). They have 

globally a stimulating effect on this enzymatic activity (Omar and Abdel-Sater 2001; Gundi et 

al. 2007; Niemi et al. 2009). These molecules may destroy soil insects and make substrates 

available to stimulate cellulase activity. Moreover, Gundi et al. (2007) showed that there was a 

link between enzymatic activity of cellulase in soils and cellulolytic fungi in the presence of 

insecticides. Indeed Populations of cellulolytic bacteria in both the black vertisol and red 

alfinsol soils were enhanced with increasing concentration of monocrotophos, quinalphos and 

profenofos. The cellulase activity is either inhibited or insensitive to the fungicides and 

herbicides tested, while the various insecticides tested, except Selectron, have a stimulatory 

effect on the enzyme’s activity. 

According to the data presented in Table 2, the activity of -glucosidase shows two patterns of 

variation in the presence of pesticides: it is either inhibited or stays unchanged. The fungicides 

from amides’ family (mefenoxam et metalaxyl) affect the activity of the - glucosidase 

(Monkiedje et al. 2002). However, the combined supply of a fumigant (methyl bromide) and a 

fungicide (chloropricin) has no effect on this activity. It was observed that herbicides have no 

effect on -glucosidase activity, even when using molecules, which belong to different 

herbicides’ families (linuron and metribuzin) (Niemi et al. 2009). On the contrary, it appears 

that glyphosate and diflufenican applied to a same soil inhibit the -glucosidase activity 

(Tejada 2009). -glucosidase activity do not show a clear response to insecticides, except 

endosulfan, which seems to stimulate the activity of -glucosidase at 200 times the usual dose 

(Defo et al. 2011). It seems that the -glucosidase activity is either inhibited or insensitive to 

the application of pesticides, whether fungicides, insecticides or herbicides, except for the 

results observed by Defo et al. (2011) with endosulfan on acid soil. This observation may be 

related to the strong functional redundancy of -glucosidase activity, since a large number of 

microbial species, whether fungi or bacteria, is able to express this enzymatic activity. 
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Phosphorus cycle enzymatic activities 

 

Acid phosphatase, alkaline phosphatase and phosphatases 

 

Phosphatases include five major groups of enzymes: The phosphomonoesterases, the 

phosphodiesterases, the phosphotriesterases, the pyrophosphatases and the phosphoamidases. 

Among these enzymes, phosphomonoesterases are the most abundant in soils, probably due to 

the low substrate specificity of this group of enzymes (De Cesare et al. 2000). 

Phosphomonoesterases include acid and alkaline phosphatase, which can be distinguished 

according to the optimum pH for their activity. In literature, some authors use the term 

phosphatase without distinguishing between acid and alkaline phosphatase. Phosphatases are a 

broad group of enzymes that are capable of catalysing hydrolysis of esters and anhydrides of 

phosphoric acid (Schmidt and Weary 1962; Schmidt et al. 1962). In soil ecosystems, these 

enzymes are believed to play a critical role in Phosphorus cycle (Schneider et al. 2001). 

Experi- ments show that they are correlated to phosphorus stress and plant growth. Apart from 

being good indicators of soil fertility, phosphatase enzymes play a key role in the soil system 

(Eivazi and Tabatabai 1977; Dick and Tabatabai 1987; Dick et al. 2000). The effect of 

pesticides on phosphatases, in particular on acid and alkaline phosphatase activities (when the 

distinction is made by the authors), is given in Table 2. Several researchers have shown either 

unchanged or decreasing phosphatase activity following various pesticide applications (Kalam 

et al. 2004; Yan et al. 2011). Acid and alkaline phosphatases are mostly found in 

microorganisms and animals (Tabatabai 1980). It appears that the supply of fungicides inhibits 

alkaline phosphatase activity (Rasool and Reshi 2010; Sharma et al. 2010), whereas it 

stimulates the activity of acid phosphatase. This observation is more pronounced in the study 

conducted by Monkiedje et al. (2002), which showed that the application of mefenoxam and 

metalaxyl fungicides in soil at pH 7.2 inhibited alkaline phosphatase activity and stimulated 

acid phosphatase activity. Regarding the phosphatases, only the fungicide metalaxyl seems to 

stimulate this group of enzymes (Sukul 2006). Other fungicides either had no effect or 

inhibited their activity (Bello et al. 2008; Tejada et al. 2011; Yan et al. 2011). Regarding the 

herbicides, most of the time the response of acid and alkaline phosphatase activity is similar, 

and the two activities are either stimulated (imazethapyr) or remain unchanged (aurora 40WG 

and rimsulfuron) (Perucci et al. 2000; Omar and Abdel-Sater 2001; Bacmaga et al. 2012). 

Butachlor appears to stimulate the activity of alkaline phosphatase (Xia et al. 2011). Herbicides 



 

 

severely inhibit phosphatase activities even when they are applied in very different conditions 

in regard to the pesticides dose and soil physicochemical properties (Min et al. 2001; Tejada 

2009). The enzymatic activities of acid and alkaline phosphatase respond differently to 

insecticides. Indeed, the same insecticide may inhibit acid phosphatase and stimulate alkaline 

phosphatase activity, and vice versa (Omar and Abdel-Sater 2001; Cycon´ et al. 2010; Defo et 

al. 2011; Jastrzebska 2011). The difference in behavior of both acid and alkaline phospha- tases 

toward pesticides can be attributed to the structure of soil microbial communities and their 

sensitivity to pesti- cides applications (Klose et al. 2006). Insecticides had inhibitory effects on 

phosphatases (Madhuri and Rangaswamy 2002; Yao et al. 2006). However, the cadusaphos 

(organophosphate insecticide) applied at 10 times the recommended dose seemed to have no 

effect on phosphatase activities (Vavoulidou et al. 2009). Overall, pesticides appear to have an 

inhibitory effect on the enzymatic activities involved in the phosphorus cycle. 

 

Nitrogen cycle enzymatic activity 

 

Urease 

 

Urease is an enzyme that catalyses the hydrolysis of urea into carbon dioxide and ammonia and 

is a key component in the nitrogen cycle in soils. Due to this role, urease activities in soils have 

received a lot of attention since it was first reported by Rotini (1935), a process considered 

vital in the regulation of nitrogen supply to plants after urea fertilization (Makoi and 

Ndakidemi 2008). Soil urease originates mainly from plants (Polacco 1977a, b) and 

microorganisms. It is found both as intra- and extra-cellular enzyme (Blakeley and Zerner 

1984; Burns 1986; Mobley and Hausinger 1989). Most of the referenced studies reported that 

herbicides and fungicides appear to have no effect (Cycon´ et al. 2010; Romero et al. 2010; 

Tejada et al. 2011; Yan et al. 2011; Bacmaga et al. 2012) or reduced effect on urease activity 

(Sukul 2006; Caceres et al. 2009; Tejada 2009). Decreased urease activity in soil due to the 

application of pesticides reduces urea hydrolysis, which is generally beneficial, because it helps 

to maintain nitrogen availability to plants (Antonious 2003). On the contrary, the fungicides 

carbendazim and validamycin enhanced urease activity, respectively, up to 70 % and to 13-21 

% (Qian et al. 2007; Yan et al. 2011). The urease activity appears to be either unaffected or 

inhibited by the addition of pesticides except carbendazim and validamycin, which tend to 

stimulate this enzyme activity. Thus, it is difficult to identify a clear response of this enzymatic 
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activity to pesticides because this enzyme has received little attention during the last 10 years. 

 

Sulfur cycle enzymatic activity 

 

Arylsulfatase 

 

Arylsulfatases are typically widespread in soils (Tabataba and Bremner 1970b, c; Gupta and 

Germida 1988; Ganeshamurthy and Nielsen 1990; Ganeshamurthy and Takkar 1997). They are 

responsible for the hydrolysis of sulfate esters in the soil (Kertesz and Mirleau 2004) and are 

secreted by bacteria into the external environment as a response to sulfur limitation (McGill 

and Cole 1981).The effects of pesticides on arylsulfatase activity in soil are poorly documented 

from the year 2000. Generally, the pesticides do not seem to affect the activity of this enzyme 

(Niemi et al. 2009; Tejada 2009; Vavoulidou et al. 2009). The endosulfan (insecticide) applied 

at elevated  level  (100 ppm) increased significantly arylsulfatase activity. This increase in 

arylsulfatase activity was transitory and declined with the depletion of applied endosulfan. The 

short-term effect of endosulfan may be due to its degradation or its gradual adsorption by the 

soil colloid, making it unavailable for microbes (Kalyani et al. 2010). The same ephemeral 

effect on arylsulfatase was observed with the fungicide metalaxyl (Sukul 2006). It is difficult to 

identify a clear response of this enzymatic activity to pesticides for the same reasons as for 

urease. 

 

Pattern of variation of enzymatic responses to pesticides 

 

Interactions between pesticides and soil enzymes depend on several factors. Concerning 

pesticides, persistence, mode of inhibition, toxicity level, concentration and bioavailability are 

all factors able to influence soil enzyme activities (Schaffer 1993; Gevao et al. 2000). In the 

same way, physicochemical and biological soil characteristics, as well as mode of synthesis, 

expression and inhibition of enzymes are able to modify the expression of soil functions 

(Zimmerman and Ahn 2011). One way to take into account all these parameters is to realize a 

global analysis of the literature, with the aim to identify response profiles of enzyme activities 

subject to pesticide exposure. 

In order to identify main patterns of enzymatic responses to addition of pesticides, the previous 

data were re-analyzed. Thus, based on data of all articles cited in this review, percentages of 



 

 

positive, neutral or negative responses were calculated for each enzymatic activities regardless 

of pesticide (Table 3). Patterns of responses seem to emerge. Indeed, among hydrolases acid 

phosphatase, alkaline phosphatase, phosphatases and urease are overall inhibited by pesticides. 

This inhibition effect is also observed for dehydrogenase activity and is more pronounced 

whatever pesticides given the number of studies measuring this enzyme. Fluorescein di-acetate 

hydrolase and arylsulphatase activities are unaffected by pesticide addition. On the contrary, in 

most cases, cellulase is activated by pesticides and especially by insecticides. The -

glucosidase is the only enzyme of this analysis that has not an evident response. Both negative 

and no significant effect is recorded for the activity. The absence of pattern of variation for b-

glucosidase is probably due to the high redundancy of this activity in microbial communities. 

These patterns should be taken with caution due to simplifications needed to reach a 

generalization; in our case, the variation of pH, field dose and pesticide type were not take 

account. 

A previous review led the author to conclude that the patterns of enzymatic responses were 

difficult to define in function of pesticide applications. This author had used published results 

without attempting to standardize their expression in particular the choice of a time step for the 

observation of the effect or the selection of studies with the closest incubations conditions (here 

sieved soil). It is therefore consistent to find contradictory results. 

 

Relationships between pesticide mechanisms of action and enzymatic responses 

 

The understanding and interpretation of enzymatic responses after pesticides’ addition are very 

difficult. Indeed, the observed responses are the resultant of numerous factors. There are direct 

and/or indirect interactions of pesticides with soil enzymes (Gianfreda and Rao 2008). Among 

them, it can be cited the binding of pesticide with the active site of the enzyme which affect 

their catalytic activities (Tabatabai 1994) or the use of pesticides as a nutriment source by the 

microorganisms which may shift not only the balance between the communities but more 

directly the biosynthesis of enzymes by induction or repression phenomen  (Cycon et al. 2006; 

Tejada 2009; Zabaloy et al. 2012; Chishti et al. 2013). To these, direct phenomena must also be 

added the indirect impacts of pesticides on microbial community structure which lead to 

changes in soil enzymatic activities (Bjornlund et al. 2000; Singh and Walker 2006; Lo 2010). 

These impacts are strongly related to functional redundancy of the target activity (Chaer et al. 

2009; Griffiths and Philippot 2013; Puglisi et al. 2012) and the intrinsic properties of soil, pH, 
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humus, clay content or organic matter that influence the accessibility of pesticides (Chen et al. 

2001; Gundi et al. 2007; Defo et al. 2011; Munoz-Leoz et al. 2013). At present, we lack the 

necessary information on how these different phenomena interact in order to predict a general 

response for a given enzyme. Moreover, the diversity of experimental conditions (various soils, 

nature and application rates of pesticides, time after exposure, target enzyme) make 

comparisons difficult, even if we took the precaution to consider only incubation studies in 

microcosms under controlled conditions. Finally, the impact of differences between 

methodological approaches should not be forgotten as reported by Burns et al. (2013). Sample 

preparation may differ in soil/substrate ratio, pH of the buffer, time and temperature of 

incubation, soil preparation (sieved or not) and soil storage (fresh, dried or frozen), soil pre-

treatment (chemicals), assessment of both intra- and extracellular enzymes, or only 

extracellular enzymes (Dick et al. 2000). Moreover, the assay methods used to measure in situ 

enzymatic activities could be very different based on Para-nitro phenyl substrates adapted from 

(Tabataba and Bremner (1970a) or on microplate fluorimetry assays using the fluorescent 

compound 4-methylumbelliferone (Marx et al. 2001; Pritsch et al. 2004; Drouillon and Merckx 

2005; Niemi and Vepsalainen 2005; Winding and Hendriksen 2007; de Forest et al. 2009; Trap 

et al. 2012). 

Through the analysis of the published works reported in this review, we have tried to underline 

potential relation- ships between the action mechanisms of pesticides and responses of soil 

enzymatic activities. To that purpose, the same method as above was applied, i.e., percentages 

of positive, neutral or negative responses were calculated for each mechanism of action 

whatever enzymes. Mechanisms of action where the number of experiments was \9 were 

excluded (Fig. 2). The general trends highlighted and reported in Fig. 2 have been confronted 

with numerous results from other articles dealing with the impact of pesticides on microbial 

communities. 

Concerning the fungicides, both mechanisms of action presented in Fig. 2 seem to induce an 

overall negative response of enzymatic activities. Indeed, fungi are responsible for 

mineralization of organic matter in soil and release of available carbon; hence, their 

disturbance by fungicides may have a harmful impact on microbial communities and their 

activities. Incidentally, several authors showed under microcosm experiments that fungicides 

applications at higher rates than recommended had deleterious effects on fungal populations, 

while the bacterial populations increased (Monkiedje and Spiteller 2002; Moharram et al. 

2004; Strickland et al. 2004; Cycon et al. 2006; Bending et al. 2007; Cycon  et al. 2010). This 



 

 

switch between fungal and bacterial communities is also explained by the increased levels of 

nutrients and energy sources released from dead fungal hyphae (Cycon et al. 2006; Tejada  et  

al.  2011). Moreover, Munoz-Leoz et al. (2011) demonstrated a decrease in microbial biomass 

in parallel to the decrease in enzymatic activities after fungicide application. This imbalance of 

microbial populations may lead to the global negative response of enzymatic activities 

regarding an incubation time range from 28 to 50 days. In field conditions, many authors found 

the same negative trend on soil enzymes (Niewiadomska 2004; Niewiadomska and Klama 

2005) even at recommend field rate after only 3 years of fungicide treatments (Niemi et al. 

2009). 

For the insecticides, our bibliographic analysis showed that the global enzymatic response is 

different according to the mechanism of action. Insecticides that altered the movement of ions 

across the nerve cell membranes induce rather a positive response of soil enzymatic activities 

while insecticides inhibiting the enzyme acetylcholinesterase of nerve impulses caused rather a 

negative response (Fig. 2). Organochlorine and particularly endosulfan, responsible for global 

positive responses, are the most commonly and widely used insecticides worldwide. With the 

application of endosulfan, an increase in microbial biomass carbon is observed (Kalyani et al. 

2010). This result may be the consequence of bacterial biomass increase despite fungal 

biomass may be reduced (Joseph et al. 2010; Xie et al. 2011). Moreover, whatever the impact 

of endosulfan on the equilibrium of microbial population, many authors reported the ability of 

telluric bacteria or fungi to degrade this insecticide which could induce an increase in microbial 

biomass and/or an activation of enzymatic production (Bhalerao and Puranik 2007; Kataoka et 

al. 2010, 2011; Castillo et al. 2011; Yu et al. 2012). On the contrary, insecticides of the 

organophosphate family create an overall inverse response of enzymatic activities compared to 

endosulfan. Indeed, chlorpyrifos, which is representative of this insecticide type widely 

studied, decreased the soil microbial biomass, bacterial, fungal and actinomycetes populations 

at a concentration corresponding to 20 time the field recommended rate (Shan et al. 2006; 

Vischetti et al. 2007). A same result was found for another molecule, monocrotophos (Zayed et 

al. 2008), and a field experiment confirmed this alteration of microbial community structure 

and functions (Susan et al. 2004). However, other molecules of organophosphate group had no 

adverse effects on soil bacterial and fungal counts (Martinez-Toledo et al. 1992; Tejada 2009) 

or increased slightly these microbial populations (Das and Mukherjee 2000). The results of the 

literature concerning the study of insecticides on microbial communities are consistent with the 

major trends built from the analysis of 50 articles. 
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Finally, concerning herbicide effects on soil enzymes based on their mechanism of action show 

both negative and neutral responses (Fig. 2). Herbicides that inhibit the acetolactate synthase 

enzyme and photosynthesis process have predominately neutral effect on soil enzymatic 

activities. The results of the literature are consistent with the observed trends. The addition of 

atrazine (Radivojevic et al. 2008) or metsulfuron-methyl herbicides (Zabaloy et al. 2008) 

induced, respectively, no effect or minor changes to soil microbial activity, bacterial density 

and functional richness. Effect of long-term atrazine and metolachlor applications at fields 

demonstrated also that structure of total bacterial community and Acidobacterium, 

Actinomycetes, methanotroph groups were not severely affected (Seghers et al. 2003). 

Herbicides that inhibit the 5-enolpyruvylshikimate-3-phosphate synthase are widely 

represented by glyphosate. The application of this molecule leads to negative responses of soil 

enzymatic activity in 77 % of experiments reported in this review (Fig. 2). Studies on 

abundances and structures of microbial communities of soil or rhizosphere demonstrated that 

recommended field rate of glyphosate had a benign effect (Barriuso and Mellado 2012; Hart et 

al. 2009) while at a high concentration were observed a short-term stimulation of bacteria 

(Ratcliff et al. 2006; Weaver et al. 2007). These microbial structure data are in opposition with 

the results of the studies used to build Fig. 2. In fact, the authors who observed the decrease in 

enzymatic activities described in parallel an impact on microbial communities. This 

observation weakens the hypothesis of a potential spread of observations whatever the context. 

 

Conclusion 

 

During last decades, pesticides were increasingly used in agriculture in order to limit crop 

diseases and increase food production. Today we find increasing amounts of pesticides in the 

different environmental compartments: water, air and soil. Several investigations have been 

devoted to study the effect of pesticides on a few parameters of soils. More recently, there have 

been a number of publications, which recommended soil microcosm, or terrestrial model 

ecosystem approaches, to assess the effect of pesticides on multiple ecological process. It is 

difficult to understand the role of pesticides in perturbing the microbial communities and their 

enzymatic activities in soil due to divergent research findings reported in the literature. A 

number of factors could be responsible for those controversial results such as soil properties, 

chemical nature and concentration of pesticides, biological function observed. Even if 

pesticides applied at recommended rates may cause slight and transient changes to populations 



 

 

or activities of soil microorganisms (Johnsen et al. 2001), it is obvious that long-term recurrent 

applications of pesticides are known to interfere with the biochemical balance, which can 

reduce soil fertility and productivity by affecting local metabolism and enzymatic activities. To 

preserve the environment, many of those molecules have been and will be withdrawn from the 

market such as clothianidine, imidaclopride, thiame´thoxame and endosulfan. This work has 

allowed to (i) identify patterns of enzymatic activity response to pesticides’ application, (ii) 

link them with the pesticides’ mechanisms of action, (iii) classify the pesticides according to 

their stimulating, inhibiting or neutral effects on enzymatic activities (iv) bring overall trends 

face to face with literature related to pesticides impacts on microbial com- munities. Those 

observations must be considered with care in regard with the number of papers analyzed and 

the approach used to make conclusions. However, the diversity of contexts and approaches that 

constitute the basis of this analysis can strengthen our conclusions. 

The case of glyphosate weakens the hypothesis of a potential spread of observations whatever 

the context. Nevertheless, the other general trends described appeared to be confirmed. These 

first patterns of response have to be validated by further studies which may rely on the 

development of new technologies such as sensitive molecular- based approaches for measuring 

microbial community structure (e.g., pyrosequencing), as well as the use of real-time PCR or 

proteomic approaches to evaluate the expression level of genes involved in key ecological 

functions. For researchers, the design of experiments related to pesticide effects on soil 

functioning is difficult especially regarding the choice of the enzymatic activities to be 

monitored, the pesticides family and rates to be applied, or the intrinsic parameters of soils. 

Finally, in this review, we attempt to look for general trends of enzymatic responses to 

pesticides, which could be useful for researchers and thus for policy decision markers in order 

to replace agronomy in the center of agriculture. 
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Table 1. Examples of pesticides used in agricultural systems 

 
  



 

 

Table 2. Effect of pesticides on soil enzyme activities in different experimental conditions 
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Table 3. Overall effects of pesticides on enzymatic activities 
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Fig. 1. Agricultural landscapes and microcosms 

 

 

  



 

 

Fig. 2. Effect of pesticide action mechanisms on the overall response of enzymatic activities. 

F1 Affect respiration process and production of energy, F2 Phenylamides affect RNA 

synthesis, H1 Inhibition of acetolactate synthase, H2 Inhibitors of 5-enolpyruvylshikimate-3- 

phosphate synthase, H3 Inhibitors of photosynthesis at photosystem II, I1 Inhibition of the 

enzyme acetylcholinesterase of nerve impulses, I2 Alter the movement of ions across the nerve 

cell membrane 

 

 


