Skip to main content
Log in

Magnetic semiconductor nano-photocatalysts for the degradation of organic pollutants

  • Review
  • Published:
Environmental Chemistry Letters Aims and scope Submit manuscript

Abstract

Photocatalytic degradation of organic pollutants using suspended and dispersed semiconductor nano-photocatalysts in wastewater holds unique advantages, including high activity, low cost, solar utilization, and complete mineralization. But the recovery and reuse of photocatalysts are difficult because the fine particles are easily discharged in waters. Immobilization of photocatalysts on supports such as glass and zeolite results in decreased activities due to the low specific area and slow mass transfer. Furthermore, a large amount of the photocatalysts will result in colored contamination. Therefore, it is necessary to develop photocatalysts with a separation function for the reusable and cyclic application. In order to take advantage of the high activity and enable the semiconductor nano-photocatalysts to be reused, the concept of magnetic photocatalysts with separation function was raised. We review the photocatalytic principle, structure, and application of the magnetic semiconductor catalysts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abramson S, Srithammavanh L, Siaugue JM, Horner O, Xu X, Cabuil V (2009) Nanometric core-shell-shell γ-Fe2O3/SiO2/TiO2 particles. J Nanopart Res 11:459–465

    Article  CAS  Google Scholar 

  • Ambashta RD, Sillanpāā M (2010) Water purification using magnetic assistance: A review. J Hazard Mater 180:38–49

    Article  CAS  Google Scholar 

  • Anpo M, Shima T, Kodama S, Kubokawa Y (1987) Photocatalytic hydrogenation of propyne with water on small-particle titania: size quantization effects and reaction intermediates. J Phys Chem 91:4305–4310

    Article  CAS  Google Scholar 

  • Ao Y, Xu J, Fu D, Shen X, Yuan C (2008a) A novel magnetically separable composite photocatalyst: titania-coated magnetic activated carbon. Sep Purif Technol 61:436–441

    Article  CAS  Google Scholar 

  • Ao Y, Xu J, Fu D, Shen X, Yuan C (2008b) A simple route for the preparation of anatase titania-coated magnetic porous carbons with enhanced photocatalytic activity. Carbon 46:596–603

    Article  CAS  Google Scholar 

  • Ao Y, Xu J, Shen X, Fu D, Yuan C (2008c) Magnetically separable composite photocatalyst with enhanced photocatalytic activity. J Hazard Mater 160:295–300

    Article  CAS  Google Scholar 

  • Ao Y, Xu J, Zhang S, Fu D (2009) Synthesis of a magnetically separable composite photocatalyst with high photocatalytic activity under sunlight. J Phys Chem Solids 70:1042–1047

    Article  CAS  Google Scholar 

  • Atsuya T, Mutsuo S (1997) Photocatalyst particles containing ferromagnetic metal particles and method for synthesis thereof. U.S. Patent 5703002

  • Aziz AA, Yong KS, Ibrahim S, Pichiah S (2012) Enhanced magnetic separation and photocatalytic activity of nitrogen doped titania photocatalyst supported on strontium ferrite. J Hazard Mater 199–200:143–150

    Google Scholar 

  • Bard AJ (1979) Photoelectrochemistry and heterogeneous photocatalysis at semiconductors. J Photochem 10:59–75

    Article  CAS  Google Scholar 

  • Bard AJ (2010) Inner-sphere heterogeneous electrode reactions, electrocatalysis and photocatalysis: the challenge. J Am Chem Soc 132:7559–7567

    Article  CAS  Google Scholar 

  • Belessi V, Lambropoulou D, Konstantinou I, Zboril R, Tucek J, Jancik, Albanis T, Petridis D (2009) Structure and photocatalytic performance of magnetically separable titania photocatalysts for the degradation of propachlor. App Catal B 87:181–189

  • Beydoun D, Amal R, Low G, McEvoy S (1998) A preliminary investigation into the synthesis of titania-coated magnetite as a novel photocatalyst. In Proceedings of the Third World Congress on Particle Technology. Paper No. 385. Brighton, UK

  • Beydoun D, Amal R, Low GKC, McEvoy S (2000) Novel photocatalyst: Titania-coated magnetite, activity and photodissolution. J Phys Chem B 104:4387–4396

    Article  CAS  Google Scholar 

  • Beydoun D, Amal R, Low G, McEvoy S (2002) Occurrence and prevention of photodissolution at the phase junction of magnetite and titanium dioxide. J Mol Catal A 180:193–200

    Article  CAS  Google Scholar 

  • Cha HG, Kim SG, Lee KJ, Jung MH, Kang YS (2011) Single-crystalline porous hematite nanorods: photocatalytic and magnetic properties. J Phys Chem C 115:19129–19135

    Article  CAS  Google Scholar 

  • Chae SY, Park MK, Lee SK, Kim TY, Kim SK, Lee WI (2003) Preparation of size-controlled TiO2 nanoparticles and derivation of optically transparent photocatalytic films. Chem Mater 15:3326–3331

    Article  CAS  Google Scholar 

  • Chang CF, Man CY (2011) Titania-coated magnetic composites as photocatalysts for phthalate photodegradation. Ind Eng Chem Res 50:11620–11627

    Article  CAS  Google Scholar 

  • Chen F, Zhao C (1999) Preparation and photocatalytic properties of a novel kind of loaded photocatalyst of TiO2/SiO2/γ-Fe2O3. Catal Lett 58:245–247

    Article  CAS  Google Scholar 

  • Chen F, Xie Y, Zhao J, Lu G (2001) Photocatalytic degradation of dyes on a magnetically separated photocatalyst under visible and UV irradiation. Chemosphere 44:1159–1168

    Article  CAS  Google Scholar 

  • Chen Y, Chen L, Shang N (2009) Photocatalytic degradation of dimethyl phthalate in an aqueous solution with Pt-doped TiO2-coated magnetic PMMA microspheres. J Hazard Mater 172:20–29

    Article  CAS  Google Scholar 

  • Choi KH, Wang KK, Shin EP, Oh SL, Jung JS, Kim HK, Kim YR (2011) Water-soluble magnetic nanoparticles functionalized with photosensitizer for photocatalytic application. J Phys Chem C 115:3212–3219

    Article  CAS  Google Scholar 

  • Chung YS, Park SB, Kang DW (2004) Magnetically separable titania-coated nickel ferrite photocatalyst. Mater Chem Phys 86:375–381

    Article  CAS  Google Scholar 

  • Cornell RM, Schwertmann U (2003) The iron oxides: structure, properties, reactions, occurrences and uses, 2nd edn. Wiley-VCH, Weinheim

    Google Scholar 

  • Fu W, Yang H, Li M, Li M, Yang N, Zou G (2005) Anatase TiO2 nanolayer coating on cobalt ferrite nanoparticles for magnetic photocatalyst. Mater Lett 59:3530–3534

    Article  CAS  Google Scholar 

  • Fu W, Yang H, Chang L, Hari-Bala LiM, Zou G (2006a) Anatase TiO2 nanolayer coating on strontium ferrite nanoparticles for magnetic photocatalyst. Colloids Surf A Physicochem Eng Aspects 289:47–52

    Article  CAS  Google Scholar 

  • Fu W, Yang H, Li M, Chang L, Yu Q, Xu J, Zou G (2006b) Preparation and photocatalytic characteristics of core-shell structure TiO2/BaFe12O19 nanoparticles. Mater Lett 60:2723–2727

    Article  CAS  Google Scholar 

  • Fujishima A, Honda K (1972) Electrochemical photolysis of water at a semiconductor electrode. Nature 238:37–38

    Article  CAS  Google Scholar 

  • Gad-Allah TA, Kato S, Satokawa S, Kojima T (2009) Treatment of synthetic dyes wastewater utilizing a magnetically separable photocatalyst (TiO2/SiO2/Fe3O4): parametric and kinetic studies. Desalination 244:1–11

    Article  CAS  Google Scholar 

  • Gao Y, Chen B, Li H, Ma Y (2003) Preparation and characterization of a magnetically separated photocatalyst and its catalytic properties. Mater Chem Phys 80:348–355

    Article  CAS  Google Scholar 

  • Hankare PP, Patil RP, Jadhav AV, Garadkar KM, Sasikala R (2011) Enhanced photocatalytic degradation of methyl red and thymol blue using Titania–alumina–zinc ferrite nanocomposite. Appl Catal B 10:333–339

    Google Scholar 

  • Hay A T (1873) Electrical protection for boilers, U.S. Patent 140196

  • Hiroshi F, Yukiko H, Michichiro Y, Shoichi A (1994) Magnetic photocatalyst. JP 6154620 (A)

  • Hsu TF, Hsiung TL, Wang J, Huang CH, Wang HP (2010) In situ XANES studies of TiO2/Fe3O4@C during photocatalytic degradation of trichloroethylene. Nucl Instrum Methods Phys Res A 619:98–101

    Article  CAS  Google Scholar 

  • Huang H, Huang G, Chen HL, Lee YD (2006) Immobilization of TiO2 nanoparticles on Fe-filled carbon nanocapsules for photocatalytic applications. Thin Solid Films 515:1033–1037

    Article  CAS  Google Scholar 

  • Kostedt WL, Byrne HE, Mazyck DW (2010) A high surface area magnetic photocatalyst with controlled pore size. Environ Prog Sustain 29:10–16

    CAS  Google Scholar 

  • Kurinobu S, Tsurusaki K, Natui Y, Kimata M, Hasegawa M (2007) Decomposition of pollutants in wastewater using magnetic photocatalyst particles. J Magn Magn Mater 310:e1025–e1027

    Article  CAS  Google Scholar 

  • Lee S, Drwiega J, Wu C, Mazyck D, Sigmund W M (2004) Anatase TiO2 nanoparticle coating on barium ferrite using titanium bis-ammonium lactato dihydroxide and its use as a magnetic photocatalyst. Chem Mater 16:1160–1164

    Google Scholar 

  • Lee SW, Drwiega J, Mazyck D, Wu CY, Sigmund WM (2006) Synthesis and characterization of hard magnetic composite photocatalyst (barium ferrite silica titania) and its photoactivity. Mater Chem Phys 96:483–488

    Article  CAS  Google Scholar 

  • Li G, Wong KH, Zhang X, Hu C, Yu JC, Chan RCY, Wong PK (2009) Degradation of Acid Orange 7 using magnetic AgBr under visible light: the roles of oxidizing species. Chemosphere 76:1185–1191

    Google Scholar 

  • Linsebigler AL, Lu G, Yates JT (1995) Photocatalysis on TiO2 surfaces: principles, mechanisms and selected results. Chem Rev 95:735–778

    Article  CAS  Google Scholar 

  • Liu SQ (2012) Magnetic nano-photocatalysts: preparation, structure, and application. In: Lichtfouse E, Schwarzbauer J, Robert D (eds) Environmental chemistry for a sustainable world, vol 1. Springer, pp 99–117. doi:10.1007/978-94-007-2442-6_4

  • Liu H, Jia Z, Ji S, Zheng Y, Li M, Yang H (2011) Synthesis of TiO2/SiO2@Fe3O4 magnetic microspheres and their properties of photocatalytic degradation dyestuff. Catal Today 175:293–298

    Article  CAS  Google Scholar 

  • Lou M, Bowden D, Brimblecomb P (2009a) Preparation of black sand-based magnetic photocatalysts for photocatalytic oxidation of aqueous phenol. App catal B 87:1–8

    Article  Google Scholar 

  • Lou M, Bowden D, Brimblecomb P (2009b) Removal of dyes from water using a TiO2 photocatalyst supported on black sand. Water Air Soil Pollut 198:233–241

    Article  Google Scholar 

  • Margulies DT, Parker FT, Spada FE, Goldman RS, Li J, Sinclair R, Berkowitz AE (1996) Anomalous moment and anisotropy behavior in Fe3O4 films. Phys Rev B 53:9175–9187

    Article  CAS  Google Scholar 

  • Neuberger T, Schopf B, Hofmann H, Hofmann M, Rechenberg B (2005) Superparamagnetic nanoparticles for biomedical applications: possibilities and limitations of a new drug delivery system. J Magn Magn Mater 293:483–496

    Article  CAS  Google Scholar 

  • Rana S, Misra RDK (2005) The anti-microbial activity of titania-nickel ferrite composite nanoparticles. J Miner Metal Mater Soc 57:65–69

    Google Scholar 

  • Rey A, Quiñones DH, Álvarez PM, Beltrán FJ, Plucinski PK (2012) Simulated solar-light assisted photocatalytic ozonation of metoprolol over titania-coated magnetic activated carbon. Appl Catal B 111–112:246–253

  • Rose A, Beydoun D, Low G, Mcevoy S (2003) Photocatalyst, US Patent 6558553

  • Shchukin DG, Ustinovich EA, Sviridov DV, Kulak AI (2004) Titanium and iron oxide-based magnetic photocatalysts for oxidation of organic compounds and sulfur dioxide. High Energy Chem 38:167–173

    Article  CAS  Google Scholar 

  • Song X, Gao L (2007) Fabrication of bifunctional titania/silica-coated magnetic spheres and their photocatalytic activities. J Am Ceram Soc 90:4015–4019

    CAS  Google Scholar 

  • Tan GQ, Zheng YQ, Miao HY, Xia A, Ren HJ (2012) Controllable microwave hydrothermal synthesis of bismuth ferrites and photocatalytic characterization. J Am Ceram Soc 95. doi:10.1111/j.1551-2916.2011.04775.x

  • Tawkaew S, Supothina S (2008) Preparation of agglomerated particles of TiO2 and silica-coated magnetic particle. Mater Chem Phys 108:147–153

    Article  CAS  Google Scholar 

  • Teja AS, Koh PY (2009) Synthesis, properties and applications of magnetic iron oxide nanoparticles. Prog Cryst Growth Charact Mater 55:22–45

    Article  CAS  Google Scholar 

  • Voogt FC, Palstra TTM, Niesen L, Rogojanu OC, James MA, Hibma T (1998) Superparamagnetic behavior of structural domains in epitaxial ultrathin magnetite films. Phys Rev B 57:R8107–R8110

    Article  CAS  Google Scholar 

  • Wang C, Ao Y, Wang P, Hou J, Qian J (2010) A facile method for the preparation of titania-coated magnetic porous silica and its photocatalytic activity under UV or visible light. Colloids and Surfaces A: Physicochem. Eng. Aspects 360:184–189

    Article  CAS  Google Scholar 

  • Watson S, Scott J, Beydoun D, Amal R (2005) Studies on the preparation of magnetic photocatalysts. J Nanoparticle Res 7:691–705

    Article  CAS  Google Scholar 

  • Xu M, Bao S, Zhang X (2005) Enhanced photocatalytic activity of magnetic TiO2 photocatalyst by silver deposition. Mater Lett 59:2194–2198

    Article  CAS  Google Scholar 

  • Xu S, Shangguan W, Yuan J, Chen M, Shi J (2007a) Preparations and photocatalytic properties of magnetically separable nitrogen-doped TiO2 supported on nickel ferrite. Appl Catal B 71:177–184

    Article  CAS  Google Scholar 

  • Xu S, Shangguan W, Yuan J, Chen M, Shi J (2007b) Preparation and photocatalytic properties of magnetically separable TiO2 supported on nickel ferrite. Chin J Chem Eng 15:190–195

    Article  CAS  Google Scholar 

  • Xu J, Ao Y, Fu D, Yuan C (2008a) Low-temperature preparation of anatase tinania-coated magnetite. J Phys Chem Solids 69:1980–1984

    Article  CAS  Google Scholar 

  • Xu S, Feng D, Li D, Shangguan W (2008b) Preparation of magnetic photocatalyst TiO2 supported on NiFe2O4 and effect of magnetic carrier on photocatalytic activity. Chin J Chem 26:842–846

    Article  CAS  Google Scholar 

  • Yavuz CT, Prakash A, Mayo JT, Colvin VL (2009) Magnetic separations: from steel plants to biotechnology. Chem Eng Sci 64:2510–2521

    Article  CAS  Google Scholar 

  • Ye M, Zhang Q, Hu Y, Ge J, Lu Z, He L, Chen Z, Yin Y (2010) Magnetically recoverable core–shell nanocomposites with enhanced photocatalytic activity. Chem Eur J 16:6243–6250

    Article  CAS  Google Scholar 

  • Zhang B, Zhang J, Chen F (2008) Preparation and characterization of magnetic TiO2/Zn Fe2O4/TiO2 photocatalysts by a sol–gel method. Res Chem Intermed 34:375–380

    Article  Google Scholar 

  • Zhang H, Hou R, Lu Z, Duan X (2009a) A novel magnetic nanocomposite involving anatase titania coating on silica-modified cobalt ferrite via lower temperature hydrolysis of a water-soluble titania precursor. Mater Res Bull 44:2000–2008

    Article  CAS  Google Scholar 

  • Zhang L, Wang Z, Zhou L, Shang M, Sun S (2009b) Fe3O4 coupled BiOCl: A highly efficient magnetic photocatalyst. Appl Catal B 90:458–462

    Article  CAS  Google Scholar 

  • Zhang Q, Gong W, Wang J, Ning X, Wang Z, Zhao X, Ren W, Zhang Z (2011) Size-dependent magnetic, photoabsorbing, and photocatalytic properties of single-crystalline Bi2Fe4O9 semiconductor nanocrystals. 115:25241–25246

  • Zhou Y, Yao HB, Zhang Q, Gong JY, Liu SJ, Yu SH (2009) Hierarchical FeWO4 microcrystals: solvothermal synthesis and their photocatalytic and magnetic properties. Inorg Chem 48:1082–1090

    Article  CAS  Google Scholar 

  • Zhou H, Zhang C, Wang X, Li H, Du Z (2011) Fabrication of TiO2-coated magnetic nanoparticles on functionalized multi-walled carbon nanotubes and their photocatalytic activity. Synth Met 161:2199–2205

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions, the Opening Project of Key Laboratory of Green Catalysis of Sichuan Institutes of High Education (No. LYJ1109) and the Project of Suzhou Environmental Protection Bureau (No. B201106), China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shou-Qing Liu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, SQ. Magnetic semiconductor nano-photocatalysts for the degradation of organic pollutants. Environ Chem Lett 10, 209–216 (2012). https://doi.org/10.1007/s10311-011-0348-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10311-011-0348-9

Keywords

Navigation