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Abstract
To develop a convolutional neural network (CNN) algorithm that can predict the molecular subtype of a breast cancer based on
MRI features. An IRB-approved study was performed in 216 patients with available pre-treatment MRIs and immunohistochem-
ical staining pathology data. First post-contrast MRI images were used for 3D segmentation using 3D slicer. A CNN architecture
was designed with 14 layers. Residual connections were used in the earlier layers to allow stabilization of gradients during
backpropagation. Inception style layers were utilized deeper in the network to allow learned segregation of more complex feature
mappings. Extensive regularization was utilized including dropout, L2, feature map dropout, and transition layers. The class
imbalance was addressed by doubling the input of underrepresented classes and utilizing a class sensitive cost function.
Parameters were tuned based on a 20% validation group. A class balanced holdout set of 40 patients was utilized as the testing
set. Software code was written in Python using the TensorFlow module on a Linux workstation with one NVidia Titan X GPU.
Seventy-four luminal A, 106 luminal B, 13 HER2+, and 23 basal breast tumors were evaluated. Testing set accuracy was measured
at 70%. The class normalized macro area under receiver operating curve (ROC) was measured at 0.853. Non-normalized micro-
aggregated AUC was measured at 0.871, representing improved discriminatory power for the highly represented Luminal A and
Luminal B subtypes. Aggregate sensitivity and specificity was measured at 0.603 and 0.958. MRI analysis of breast cancers
utilizing a novel CNN can predict the molecular subtype of breast cancers. Larger data sets will likely improve our model.
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Introduction

Breast cancer is the most common cancer afflicting women
worldwide and the second most common cause of cancer

deaths amongwomen in the USA [1]. These tumors are highly
heterogeneous with multiple identified subtypes demonstrat-
ing a wide spectrum of intrinsic biologic diversity with asso-
ciated biologic response, prognosis, and therefore variable
treatment regimens [2].

Mammography is the gold standard for breast cancer
screening as it is the most cost-effective imaging modality;
however, magnetic resonance imaging (MRI) has gained pop-
ularity in recent years as the most sensitive imaging technique,
excelling in diagnosis, preoperative planning, and prognosti-
cation of breast cancers [3–5].

Given disease heterogeneity, tissue sampling is the gold
standard with immunohistochemistry (IHC) used as surrogate
genetic testing to determine breast cancer subtype. Based on
gene expression, cancer cells express various receptors, such as
estrogen receptor (ER), progesterone receptor (PR), and the
human epidermal growth factor receptor (HER2) [2]. Mainly,
four intrinsic breast cancer subtypes have been described: lu-
minal A (hormone receptor positive, HER2 negative), luminal
B (hormone receptor positive, HER2 positive), HER2-enriched
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type (hormone receptor negative, HER2 positive), and triple-
negative subtype (hormone receptor negative, HER2 negative)
[2, 6, 7].

Despite advantages with the use of IHC surrogates, the
range of agreement between its use in predicting breast cancer
subtype and explicit genetic testing is between 41 and 100%
[8]. Given the wide spectrum of prognosis and indicated treat-
ment strategies based on tumor subtype, a need exists for more
accurate diagnosis to aid in an individualized treatment plan
[9–11].

Due to rapid advancements in quantitative radiology
methods (i.e., radiomics), tumor biology and genetics can be
evaluated in a more precise, predictive, and cost-effective
way. Quantitative radiomics extracts data from routine medi-
cal imaging and analyzes high fidelity complex imaging fea-
tures, unperceivable to the human eye [12]. Radiogenomics is
the process of linking the radiomics to the hidden genotypic
configuration of a tumor or tissue [13]. In simple terms,
radiogenomics of breast cancer using MRI works on the prin-
ciple of analyzing various intrinsic features including dynamic
contrast enhancement (DCE) kinetics, which often define tu-
mor heterogeneity, to predict molecular subtype [14–17].

Advances in computer technology have brought machine
learning to the forefront of undertaking complex clinical chal-
lenges. Application of initial machine learning techniques to
evaluate radiogenomics of breast MRI has shown promising
results [18–26]. However, the currently available published
literature is based on data using human extracted imaging
phenotypic features to guide machine learning and subse-
quently predicting molecular subtypes using semi-automated
methods.

Recently, a subset of machine learning namedConvolutional
Neural Networks (CNN) has made great strides in medical
imaging analysis. As oppose to traditional machine learning,
which primarily relies on human extracted feature analy-
sis, neural networks depend on the input of raw data and
allow the computer to automatically construct predictive
statistical models through increasingly complex layers and
self-optimization [27].

The purpose of this study is to develop a CNN algorithm to
predict various molecular subtypes of breast cancer using a
breast MRI tumor dataset.

Materials and Methods

An Institutional Review Board approved retrospective study
was performed. Two hundred sixteen patients with known
breast cancer diagnosis who underwent preoperative MRI pri-
or to any treatment and who had available IHC staining pa-
thology data were identified for this study. Subtypes were
classified by IHC staining surrogates as luminal A (ER and/
or PR+, HER2-), luminal B (ER and/or PR+, HER2+), HER2

(ER and PR-, HER2+), or basal (ER-, PR-, HER2-) (30–32).
Tumors were considered HER-2 positive only if scored 3+ by
IHC or if HER-2 amplification yielded a ratio ≥ 2.0 on the
basis of fluorescence in situ hybridization (FISH). [6, 28–30].

MRI Acquisition

MRI was performed on a 1.5-T (121 cases, 56%) or 3.0-T (95
cases, 44%) commercially available system (Signa Excite, GE
Healthcare) using an eight-channel breast array coil. The im-
aging sequence included a triplane localizing sequence
followed by a sagittal fat-suppressed T2-weighted sequence
(TR/TE, 4000–7000/85; section thickness, 3 mm; matrix,
256 × 192; FOV, 18–22 cm; no gap). A bilateral sagittal T1-
weighted fat-suppressed fast spoiled gradient-echo sequence
(17/2.4; flip angle, 35°; bandwidth, 31–25 Hz) was then per-
formed post rapid bolus injection (gadobenate dimeglumine/
Multihance; Bracco Imaging; 0.1 mmol/kg) delivered through
an IV catheter. Image acquisition started after contrast material
injection and was obtained consecutively with each acquisi-
tion time of 120 s. Section thickness was 2–3 mm using a
matrix of 256 × 192 and a field of view of 18–22 cm.
Frequency was in the anteroposterior direction. After the ex-
amination, post-processing was performed including subtrac-
tion of the unenhanced images from the first contrast-
enhanced images on a pixel-by-pixel basis and reformation
of sagittal images to axial images.

Data Annotation

After the breast MRIs were obtained, a fellowship trained
breast imaging radiologist subsequently reviewed the MRI
images. Anonymized first post-contrast MRI DICOM images
were downloaded to a password protected external hard-drive
and loaded into 3D Slicer 4.0 (www.slicer.org), an open-
source software platform for medical image informatics and
analysis. Binary three-dimensional segmentations were ap-
plied to the input images. The molecular subtype of each pa-
tient’s breast cancer as obtained from the EMR was recorded
as the ground truth class label. Histogram normalization of the
MRI data was performed to center the non-air pixels around 0
with unit standard deviation (Fig. 1).

Image Processing

Data augmentation employed by this study involved several
real-time modifications to the source images at the time of
training. Thesemodifications included random affine transfor-
mation of the original image, which alters each mass slightly
utilizing a rigid transformation effectively making the same
mass appear as a unique input to the network. Given a three-
dimensional affine matrix, random affine warping was per-
formed by utilizing random rotation by ± 30°, 90°, and 90°
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across the Z, Y, and X axes respectively. Additionally, a ran-
dom shear value of 0.1 was applied to each axis. These pa-
rameters were confirmed on visual inspection as applying
enough of a warp to simulate a different lesion without mak-
ing the lesion appear unrealistic (Fig. 2). The choice to apply
data augmentation to 50% of the example images was made to
prevent inducing bias of the network towards recognition of
augmented data over real data. Additional augmentation in-
cluded addition of a random Gaussian noise matrix, random
contrast jittering, and random brightness. The network was
thus allowed to learn to marginalize random noise introduced
by minor warps in the input volume as well as slight differ-
ences in acquisition parameters. Network inputs consisted of
32 × 32 pixel bounding boxes containing the size normalized
lesions.

CNN Architecture

The CNN was implemented by a series of 3 × 3 convolutional
kernels to maximize computational efficiency while preserving
nonlinearity [31] (Fig. 3). After an initial standard convolutional
layer, a series of residual layers are utilized in the network.
Originally described by He et al. [32], residual neural networks
can stabilize gradients during back propagation, leading to im-
proved optimization and facilitating greater network depth.
Downsampling of feature map size was implemented by means
of a concatenated average and max pooling operation to de-
crease size by 75%. All nonlinear functions utilize the rectified
linear unit (ReLU) which allows training of deep neural net-
works by stabilizing gradients on backpropagation [33].
Additionally, batch normalization was used between the

Fig. 2 Results of data
augmentation: Images of a single
input example nodule with
multiple random affine warps
applied for data augmentation.
This alters each mass slightly
utilizing a rigid transformation
effectively making the same mass
appear as a unique input to the
network. Affine parameters were
confirmed on visual inspection as
applying enough of a warp to
simulate a different lesion without
making the lesion appear
unrealistic

Fig. 1 Results of MRI normalization: Histogram normalization of the MRI data was performed to center the non-air pixels around 0 with unit standard
deviation
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convolutional and ReLU layers to enhance network training by
stabilizing the loss landscape [34]. Upon downsampling, the
number of feature channels is doubled, preventing a represen-
tation bottleneck. Dropout with a keep probability of 50% was
applied to the first fully connected layer to limit overfitting and
add stochasticity to the training process [35].

In addition to the customized network described above
(Table 1), several additional network architectures were tested.
This includes the following: (1) a ResNet 52 network archi-
tecture, initialized both randomly and with pre-trained weights
from Imagenet; (2) custom built networks, initialized from
random weights, and with varying numbers of convolutional
layers based on the Inception v4 architecture; (3) 100 layer
network based on a randomly initialized Dense Net architec-
ture. Performance for the networks was best when initializing
weights randomly across the board. Additionally, three-
dimensional networks were tested by alternating between
using inception style layers, residual style layers, and hybrid
wide residual layers. We found for this project than when
using greater than 14 hidden layers in two-dimensional resid-
ual networks, or greater than 8 3D inception style layers,

overfitting occurred. Additionally, three-dimensional net-
works universally suffered from overfitting even with as low
as 4 hidden layers, likely due to the small training set size.

Training was implemented using the parameterized Adam
optimizer, combined with the Nesterov accelerated gradient
described by Dozat [36–38]. Parameters were initialized to
equalize input and output variance utilizing the heuristic de-
scribed by Glorot et al. [39]. L2 regularization was implement-
ed to prevent overfitting of data by limiting the squared mag-
nitude of the kernel weights. Final hyperparameter settings
included a learning rate set to 1e-3, keep probability for drop-
out of 50%, moving average weight decay of 0.999, and L2
regularization weighting of 1e-4. The class imbalance was ad-
dressed by doubling the input of underrepresented classes and
utilizing a class sensitive cost function. Parameters were tuned
based on a 20% validation group. A class balanced holdout set
of 40 patients was utilized as the testing set. Software code for
this study was written in Python using the TensorFlow module
(1.4). Experiments and CNN training were performed on a
Linux workstation with NVIDIA Titan X Pascal GPU with
12 GB on chip memory, i7 CPU and 32 GB RAM.

Table 1 The Network architecture: Dimensions of all of the
intermediate layers of the convolutional neural network. The first
column contains the input layer names. The second column displays the
size of the input feature map. The middle column describes the type of

filter applied followed by a column describing the filter size if applicable.
The final column displays the name of the output layer, which serves as
the input for the next layer. Residual layers contain two feature maps per
layer

Input layer Input layer dimensions Filter type Filter size Output layer

Input 64 × 64 × 3 Convolutional 3 × 3 × 8 Hidden layer 1

Hidden layer 1 32 × 32 × 8 Residual 3 × 3 × 16 Hidden layer 2/3

Hidden layer 2/3 16 × 16 × 16 Residual 3 × 3 × 32 Hidden layer 4/5

Hidden layer 4/5 8 × 8 × 32 Residual 3 × 3 × 32 Hidden layer 5/6

Hidden layer 5/6 8 × 8 × 32 Residual 3 × 3 × 64 Hidden layer 6/7

Hidden layer 6/7 4 × 4 × 64 Residual 3 × 3 × 64 Hidden layer 8/9

Hidden layer 8/9 4 × 4 × 64 Residual 3 × 3 × 64 Hidden layer 10/11

Hidden layer 10/11 4 × 4 × 64 Linear × 16 Hidden layer 12

Hidden layer 12 1 × 16 Linear 16 × 8 Hidden layer 13

Hidden layer 13 1 × 8 Softmax 8 × 4 Classification

Fig. 3 Network architecture: Dimensions of all of the intermediate layers
of the convolutional neural network. The top row of numbers contains
filter types and sizes utilized. The bottom row displays the size of the
input feature maps. Each successive decrease in feature map size is
accomplished by applying a concatenated average and max pooling

operation as the first layer in each residual operation. BConv^ filter
types correspond to a standard convolutional layer followed by batch
normalization and ReLu nonlinearity. BRes^ filter types correspond to
residual layers with two embedded convolutional operations followed
by batch normalization and ReLu nonlinearity
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Results

Subtypes were classified by IHC staining surrogates as lumi-
nal A (ER and/or PR+, HER2-), luminal B (ER and/or PR+,
HER2+), HER2 (ER and PR-, HER2+), or basal (ER -, PR -,
HER2-) (30–32). Using this classification, 74 Luminal A, 106
Luminal B, 13 HER2+, and 23 basal breast tumors were
evaluated.

Testing set accuracy was measured at 70%. The class nor-
malizedmacro area under receiver operating curve (ROC)was
measured at 0.853. Non-normalized micro-aggregated AUC
was measured at 0.871, representing improved discriminatory
power for the highly represented Luminal A and Luminal B
subtypes. Aggregate sensitivity and specificity was measured
at 0.603 and 0.958.

Discussion

The CNN algorithm used in our study achieved an overall
accuracy of 70% in predicting breast cancer subtype. This
feasibility study applied radiogenomics using a novel CNN
algorithm to predict tumor subtype based on a breastMRI data
set. Future advances with a larger data set will likely improve
the predictive strength of our model, with the potential to rival
accuracy of standard genetic testing in determining breast can-
cer subtype.

Preoperative breast MRI has become increasingly preva-
lent as its role in diagnosis and treatment planning of breast
cancer expands [3]. With the increasing ubiquity of breast
MRI, several prior studies have applied radiogenomics to pre-
dict subtype using semi-automated techniques. Agner et al.
demarcated triple-negative cancers from other molecular sub-
types on DCE-MRI using a computer-aided diagnosis (CAD)
system [20]. They retrospectively studied 76 breast lesions
using quantitative feature extraction with a feed forward fea-
ture selection and linear discriminate analysis. Triple-negative
tumors were found to be more heterogeneous in both texture
and enhancement, with a higher degree of tumor tissue com-
pactness. The area under the receiver operating characteristic
(ROC) curve for subtype determination was 0.73 (95% CI
0.59, 0.87) in triple-negative versus non-triple-negative sub-
type, 0.74 (95% CI 0.60, 0.88) in triple-negative versus ER-
and HER2-positive subtype, 0.77 (95 CI 0.63, 0.91) in triple-
negative versus ER-positive subtype, and 0.74 (95% CI 0.58,
0.89) for triple-negative versus HER2-positive subtype.While
this model improves on discriminating aggressive triple-
negative breast cancer subtype, it relies on humanMRI feature
extraction.

Tumor enhancement dynamics association with luminal
type B molecular subtype was explored by Mazurowski
et al. [21]. Forty-eight patients with breast cancer were col-
lected from the Cancer Genome Atlas and Cancer Imaging

Archive. Twenty-three imaging features were extracted using
computer vision algorithms after initial lesion delineation by a
trained breast radiologist. Luminal B subtypes were found to
have higher lesion enhancement to background parenchymal
enhancement ratio (P = 0.0015).

Similarly, computational MR imaging features of luminal
type A and B molecular subtypes were retrospectively evalu-
ated using semi-automatically extracted imaging features by
Grimm et al. [22]. Initial annotations were made by fellowship
trained breast imagers and subsequently 56 features were ex-
tracted using computer vision algorithms. Tumor to
fibroglandular tissue and the peak enhancement were shown
to be main factors in discriminating subtype, with multivariate
models able to predict luminal A (P = 0.0007) and luminal B
(P = 0.0063), but not HER2 positive (P = 0.2465) or basal
subtype (P = 0.1014).

In a retrospective review of 60 breast cancers, Fan et al.
studied 90 features derived from DCE-MRI and selected an
optimal set of 24 features for subtype classification using
trained multi-class logistic regression classifier computer soft-
ware [17]. The prediction model demonstrated high accuracy
in overall classification (AUC = 0.869) and in discriminating
between luminal A, luminal B, HER2, and triple-negative
subtypes (AUC= 0.867, 0.786, 0.888, and 0.923 respective-
ly). Although significant strides have been made in the im-
provement of breast cancer subtype prediction based on MRI
features, these semi-automated techniques rely on specific hu-
man extracted feature analysis.

MRI contrast enhancement patterns have shown promise in
determining breast cancer subtype. A retrospective study in-
cluding 186 patients evaluated the distribution pattern of ki-
netic parameters of DCE-MRI across breast cancer molecular
subtypes. No significant difference in delayed phase kinetics
was identified. However, a significantly decreased percentage
of washout pattern was observed in ER/PR positive/HER2
negative and triple-negative cancers [25]. Blaschke et al. ret-
rospectively reviewed 112 patients with newly diagnosed in-
vasive ductal carcinoma who underwent DCE-MRI [26].
Kinetic analyses showed significantly increased contrast up-
take in HER2-positive molecular subtype, with > 100% up-
take at early phase in HER2-positive versus luminal A/B
(93.8 ± 0.92 vs. 77.3 ± 7.2; P < 0.01) and HER2-positive ver-
sus triple-negative (93.8 ± 0.92 vs. 81.3 ± 8.2; P < 0.05).
While significant patterns in kinetic analyses of breast tumors
have demonstrated predictive strength, these methods contin-
ue to rely on limited human extracted MRI features.

Although the previously mentioned studies have shown
promising results in breast MRI data analysis, these methods
are dependent on feature engineering using semi-automated
feature extraction. Feature engineering works by implementing
domain knowledge to build feature extractors, which simplify
the complex data and create more comprehensible patterns to
be applied to algorithms. These methods are limited in their
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function, as they are dependent on accurate human extraction
of crucial features.

In contrast, CNN algorithms are trained in a manner that
allows automatic extraction of features from the input feed
that are crucial to the defined problem domain. This process
improves its ability to study the input features in an end-to-end
manner, using complex, stacked layers to predict a desired
output. Therefore, CNN feature extraction is not a variable
with each new MRI and thus results are consistent.

To date, only one other study utilized CNN to classify
molecular subtypes using an MRI data set [40]. Study by
Zhu et al. used VGGNet pre-trained on ImageNet. They used
the feature maps of several convolution layers and fully con-
nected layers, by training supervised machine learning algo-
rithm on those feature maps. Their evaluation was limited to
classifying one molecular subtype (Luminal A) versus the rest
(grouped into one) yielding AUC of 0.64. Our study evaluated
four molecular subtype classification yielding higher AUC of
0.85.

There are a few limitations of our study. This is a feasibility
study from a single institution, with a relatively small sample
size. It has been shown that the performance of a CNN in-
creases logarithmically with increasing data sets [41]. In addi-
tion, patients in this study underwentMRI imaging at different
magnetic field strengths (1.5 or 3.0 T), potentially affecting
the image quality. However, selection bias is likely negligible
given that the choice of patients undergoing MRI on a 1.5 or
3.0 Tmagnet was randomly determined purely based on avail-
ability of the scanner. Lack of external validation poses anoth-
er limitation, which we plan to overcome in our future projects
using external validation datasets as well as prospective vali-
dation studies. Lastly, defining various molecular subtypes
using genetic analysis is an economically and technically chal-
lenging process. Alternative means using IHC as a surrogate is
widely used including in our study. However, the range of
agreement between predicting these subtypes using IHC and
standard genetic testing can be variable and ranges between 41
and 100% [42]. Thus, this is a potential limitation given that
our study used IHC surrogate to define molecular subtype
instead of genetic analysis.

In conclusion, MRI analysis of breast cancers utilizing a
novel CNN can predict the molecular subtype of breast cancers.
Larger data sets will likely improve our model. Personalized
breast cancer risk stratification may be possible with a CNN
plus MRI data instead of gene expression profiling.
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