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Abstract Several studies have linked codeletion of chromo-
some arms 1p/19q in low-grade gliomas (LGG) with positive
response to treatment and longer progression-free survival.
Hence, predicting 1p/19q status is crucial for effective treat-
ment planning of LGG. In this study, we predict the 1p/19q
status from MR images using convolutional neural networks
(CNN), which could be a non-invasive alternative to surgical
biopsy and histopathological analysis. Our method consists of
three main steps: image registration, tumor segmentation, and
classification of 1p/19q status using CNN. We included a total
of 159 LGG with 3 image slices each who had biopsy-proven
1p/19q status (57 non-deleted and 102 codeleted) and preop-
erative postcontrast-T1 (T1C) and T2 images. We divided our
data into training, validation, and test sets. The training data
was balanced for equal class probability and was then aug-
mented with iterations of random translational shift, rotation,
and horizontal and vertical flips to increase the size of the
training set. We shuffled and augmented the training data to
counter overfitting in each epoch. Finally, we evaluated sev-
eral configurations of a multi-scale CNN architecture until
training and validation accuracies became consistent. The re-
sults of the best performing configuration on the unseen test
set were 93.3% (sensitivity), 82.22% (specificity), and 87.7%
(accuracy). Multi-scale CNN with their self-learning capabil-
ity provides promising results for predicting 1p/19q status
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non-invasively based on T1C and T2 images. Predicting 1p/
19q status non-invasively from MR images would allow
selecting effective treatment strategies for LGG patients with-
out the need for surgical biopsy.
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Introduction

Magnetic resonance (MR) imaging is a non-invasive medical
imaging technique that provides outstanding soft tissue con-
trast and has become the standard imaging technique for brain
tumor diagnosis [1]. Gliomas are the most frequent primary
brain tumors originating in the brain [2]. World Health
Organization (WHO) classifies them into four grades based
on their aggressiveness. Low-grade gliomas (LGG), also
named diffuse low-grade and intermediate-grade gliomas
(WHO grades 11 and III), include oligodendrogliomas, astro-
cytomas, and oligoastrocytomas [3—5]. Compared to high-
grade gliomas (HGG: WHO grade 1V, glioblastoma), LGG
are less aggressive tumors with better prognosis. A subgroup
of LGG will progress to glioblastoma (HGG, grade IV), but
other subgroups will progress slower or remain stable [4, 6-8].
In addition, some LGG are sensitive to therapy, and their sur-
vival ranges from 1 to 15 years [6, 8]. Presently, treatment
includes observation, surgery, radiotherapy, and chemothera-
py either separately or in combination [4]. Although histolog-
ical grading of tumors is the gold standard for diagnosis and
subsequent treatment planning, it is known that histopatholog-
ical diagnosis lacks information about other tumor properties
(e.g., genomic biomarkers) that can impact optimal therapy
options [3]. Therefore, other tests of LGG (e.g., molecular
biomarkers testing) are also obtained to improve treatment
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planning. Several studies [9—12] have shown that codeletion
of 1p/19q chromosome arms is a strong prognostic molecular
marker for positive tumor response to chemotherapy and ra-
diotherapy in LGG and associated with longer survival.
Therefore, predicting 1p/19q status is crucial for effective
treatment planning of LGG.

Currently, determining 1p/19q status requires surgical biopsy
typically followed by fluorescence in-situ hybridization (FISH)
[13] to identify chromosomal deletion. Several studies have
shown that imaging can predict 1p19q status from MR images
or positron emission tomography (PET) images. Fellah et al. [9]
presented univariate analysis and multivariate random forest
models to determine 1p/19q status from multimodal MR images
including conventional MR images, diffusion-weighted imaging
(DWI), perfusion-weighted imaging (PWI), and MR spectrosco-
py. DWIL, PWI, and MRI spectroscopy showed no significant
difference between tumors with and without 1p/19q loss in their
study. They concluded that inclusion of DWI, PWI, and MR
spectroscopy was not useful for determining 1p/19q status com-
pared with conventional MR images. Jansen et al. [10] presented
detection of 1p/19q status from ['®F] fluoroethyltyrosine-PET
(FET-PET) images. They derived several biomarkers from
PET images and correlated with 1p/19q status, and showed that
these biomarkers do not reliably predict the status of 1p/19q in
individual patients. Iwadate et al. [11] studied detection of 1p/
19q codeletion from ''C—methionine PET images and concluded
that ''C—methionine PET might help discriminate tumors with
and without 1p/19q codeletion preoperatively. Bourdillion et al.
[12] presented prediction of anaplastic transformation in grade 2
oligodendrogliomas based on MR spectroscopy and 1p/19q sta-
tus. They showed that choline/creatine ratio > 2.4 was associated
with the occurrence of anaplastic transformation in patients with-
out 1p/19q codeletion. On the other hand, no anaplastic transfor-
mation was observed in patients with 1p/19q codeletion.

In this study, we present a robust and non-invasive method
to predict the 1p/19q status of LGG from post-contrast T1-
and T2-weighted MR images using convolutional neural net-
works (CNN).

Material and Methods

We use a combination of two commonly acquired image types,
T2 and post-contrast T1-weighted images, as input to our clas-
sification algorithm. Figure 1 shows examples of LGG image
characteristics in post-contrast T1- and T2-weighted images
with and without 1p/19q codeletion. Our classification algo-
rithm consists of several pre-processing steps: multi-modal im-
age registration, tumor segmentation, data normalization, and
data augmentation. After applying pre-processing steps to data,
we use the segmented images to train a multi-scale CNN for
prediction of 1p/19q status. A flowchart and implementation
details of the multi-scale CNN are shown in Fig. 2.
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Brain Tumor Data

One hundred fifty nine (n = 159) consecutive (01 October 2002—
01 August 2011) pre-operative LGG patients, with stereotactic
MRI images, who had biopsy proven 1p/19q status consisting
either no deletion or co-deletion, were identified from our brain
tumor patient database at Mayo Clinic for this study. The data
included 102 non-deleted and 57 codeleted LGG. The types of
LGG were oligoastrocytoma (n = 97), oligodendrogliomas
(n = 45), and astrocytomas (n = 17). In total, 477 slices (3 slices
per LGG including one centered at the tumor ‘equator’ plus one
slice above and below) were included for this study. Post-contrast
T1- and T2-weighted images were available for all selected pa-
tients. Institutional Review Board (IRB) approval was obtained
for this study, and requirement for patient consent was waived.
All images were acquired for biopsy planning purposes,
and so a very consistent scanning protocol was used, includ-
ing 3-mm-thick T2 images and 1-mm-thick axial spoiled-
gradient recalled images all acquired at 1.5 T or 3 T on either
General Electric Medical System (Waukesha, WI, USA) or
Siemens Medical System (Malvern, PA, USA) scanner.

Pre-Processing
Multi-Modal Image Registration

We registered post-contrast T1-weighted images to T2-
weighted images of the same patient by using the ANTs open
source software library for image registration [14, 15]. We
performed rigid registration using cubic b-spline interpolation
and mutual information metric, which takes into account
translational movements, to align our intra-patient images.

Tumor Segmentation

We used our semi-automatic LGG segmentation software to
segment the tumors in 2D [16]. First, the user selects the slice
where the area of the tumor appears largest, and then draws a
region-of-interest (ROI) that completely encloses the tumor and
some normal tissue. Second, a normal brain atlas [17] and post-
contrast T1-weighted images are registered to T2-weighted im-
ages. Third, the posterior probability of each pixel/voxel be-
longing to normal and abnormal tissues is calculated based on
information derived from the atlas and ROI. Finally, geodesic
active contours [18] use the probability map of the tumor to
shrink the ROI until optimal tumor boundaries are found. With
that, a morphological binary dilation of five pixels is applied to
make sure boundaries are included in the tumor ROL

Data Normalization

After registration and segmentation steps, the dataset of raw
MR image data is normalized to balance intensity values and
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narrow the region of interest. This step aims to finely  the standard deviation of the image intensities (see
tune the input information fed into the CNN. The nor-  Eq. 1).
malization process begins with skull-stripping using

Brain Extraction Tool (BET) [19] based on FSL library L X—p (1)
[20], then followed by standard scoring. Standard scores o

(also called z-scores) are calculated for each image by

subtracting the mean of image intensities from an indi-  where X is image intensities, 1 is mean of the image intensi-

vidual intensities and then dividing the difference by  ties, and o is the standard deviation of the image intensities.
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Fig. 2 A flowchart of the multi-scale CNN architecture. Blue box is the layers. Purple boxes are fully connected layers plus a softmax binary
input image. Yellow boxes are convolutional layers. Green boxes are classifier. Cyan circle shows the output label
rectified linear units (RELU), activations. Red Boxes are max pooling
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Data Augmentation

Using deep networks, in particular CNNSs, there is a high sus-
ceptibility to overfitting. This is a direct result of the large
number of network parameters relative to the number of fea-
tures provided by the MR images. The number of features
available from MR images may not be sufficient to provide
sufficient learning and generalizability to the parameters in the
network, hence, the need to increase the number of MR im-
ages. One approach to address this is through artificially aug-
menting the dataset using label-preserving transformations
[21]. This “data augmentation” consists of generating image
translations, rotations, and horizontal and vertical flipping. We
apply a random combination of these transformations on each
image, hence, creating “new” images. This multiplies our
dataset by several fold and help reduce over-fitting.

Convolutional Neural Networks

Convolutional Neural Networks (CNN) is a type of feed-
forward artificial neural network for learning a hierarchical
representation of image data [22]. Unlike a regular neural
network, the layers of a CNN have neurons arranged in three
dimensions (width, height, and depth) and respond to a small
region of the input image, called receptive field, instead of all
of the neurons in a fully connected manner. Each neuron
learns to detect features from a local region the input image.
This allows capturing features of local structures and preserv-
ing the topology of the input image. The final output layer will
reduce the full image into a single vector of class scores,
arranged along the depth dimension.

The main types of layers needed to build a CNN deep
learning system are: input layer, convolutional layer, activa-
tion layer, pooling layer, and fully connected layer. Most
implementations have many of each type of layer, hence, the
title ‘deep’learning. Each layer is described in more details.

Input layer. This layer holds the raw pixels values of the
input image after applied pre-processing steps.
Convolutional layer. This layer is composed of several
feature maps along the depth dimension, each corre-
sponding to a different convolution filter. All neurons
with the same spatial dimension (width and height) are
connected to the same receptive filed in the input image
or, generally, in the previous layer. This allows capturing
a wide variety of imaging features. The depth of the layer,
1.e., the number of convolution filters, defines the number
of features that can be extracted from each input receptive
field. Each neuron in a feature map shares exactly the
same weights, which define the convolution filter. This
allows reducing the number of weights, and thus increas-
ing the generalization ability of the architecture.
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Activation layer. This layer applies an activation function
to each neuron in the output of the previous layer. For
example, rectified linear unit (RELU) where
RELU(x) = max(0,x) is the most common activation
function used in CNNs architectures and fires the real
value of the output and thresholds at zero. This layer does
not change the size of the previous layer. It simply re-
places negative values with 0.

Pooling layer. Placed after an activation layer, and this
layer down-samples along spatial dimensions (width
and height). It selects the invariant imaging features by
reducing the spatial dimension of the convolution layer.
The most popular type is max pooling, which selects the
maximum value of its inputs as the output, thus preserv-
ing the most prominent filter responses.

Fully connected layer. As with neural networks, this layer
connects all neurons in the previous layer to this layer
with a weight for each such connection. If used as the
output, each output nodes represents the ‘score’ for each
possible class.

To allow learning of complex relationships and to achieve a
more hierarchical representation of the input image, multiple
convolutional-pooling layers are stacked to form a deep archi-
tecture of multiple non-linear transformations. This allows
learning a hierarchy of complex features carrying predictive
power for image classification tasks.

Multi-Scale CNN Parameters

In our study, we use a CNN architecture that consists of dif-
ferent sizes of convolutional filters to train on our dataset (see
Fig. 2). This can be considered as multi-scale CNN that learns
global and local imaging features with different convolutional
filter sizes and concatenates their output before the classifica-
tion step. The parameters of each layer are seen in the boxes in
Fig. 2. For example, the size of the first convolutional layer in
the first branch is 128 x 200 x 200 and corresponds to depth of
layer, 128 filters, and size of filters 200 x 200 in 2D spatial
space (X, y). Default stride size is 1 px in x and y. Specific
strides for each layer are shown in the boxes. Since every
tumor has a different shape and size, we embedded each 2D
tumor slice into standard background (zero intensity level) of
size 205 x 205 px, which is the smallest that encompasses the
largest tumor size in our data set.

In our architecture, probability of tumor slices belonging to
each class were computed with softmax classifier and the pa-
rameters of the CNN were updated by minimizing a negative
log likelihood loss function [23]. We used a stochastic gradi-
ent descend (SGD) [24] algorithm with mini batches of 32
samples in our study. The SGD algorithm with mini batches
is commonly used to train neural networks on large datasets
because it efficiently finds good values without high
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computation or memory requirements. Specifically, only a
small batch of training data at a time is used at each update
of weights instead of using all training samples to compute the
gradient of the loss function. The learning rate was initially set
to 0.001 and decreased 50% at every 50 epoch. The training
was stopped when the change in validation loss smaller 0.02
for 10 consecutive epochs.

Implementation and Experiments
Implementation

Our code is based on the Keras package [25], built on top of
Theano library; a Python library. Keras can leverage graphical
processing units (GPUs) to accelerate the deep learning algo-
rithms. We trained our CNN architecture on an NVIDIA GTX
970 GPU card. The training took about 10 min to 2 days
depending on the amount of the used data. For example, using
30-fold augmented data as the training data at each epoch took
about 2 days to train the network.

Experiments

We divided our data (n = 477 slices) into training and test sets.
A total of 90 slices (45 non-deleted and 45 codeleted) were
randomly selected from the data at the beginning, as a test set,
and were never seen by the CNN during the training. From the
remaining data (n = 387), 252 slices that were balanced for
equal class probability (n = 126 codeleted +126 non-deleted)
were randomly selected at each epoch for training. Twenty
percent of the training set was separated as validation set
(n = 68) during the training. The data augmentation was ap-
plied to the training set (n = 7560 for 30-fold augmentation) at
each epoch to increase the training samples and to achieve
generalization ability.

We used the performance of our CNN architecture on val-
idation set to tune the hyper-parameters of the CNN. Since our
architecture includes multi-size of convolutional filters and
multi-branch CNN, it takes into account a range of values
for hyperparameters in the architecture. For further tuning of
hyperparameters, we first investigated the contribution of each
image channel for prediction of 1p/19q status. Therefore, we
experimented three configurations of our multi-scale CNN
based on combinations of input images without data augmen-
tation, i.e., T1 only (configuration 1), T2 only (configuration
2), and T1 and T2 combined (configuration 3). We selected
the best configuration (configuration 3) among these based on
their performance on the test set. Next, we trained the best
configuration from above with multiple folds k€ {10, 20,
30} of data augmentation to tune the & hyper-parameter of
the data augmentation. To evaluate the influence of different
optimizers on learning, we compared the performances of our
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Fig. 3 Loss plots are shown for the training and validation sets on the
original data for configuration 4

CNN architecture using four different optimizers: SGD, root
mean square propagation (RMSprop), improved adaptive gra-
dient algorithm (AdaDelta), and adaptive moment estimation
(Adam). Configuration 4 was defined as the one using the best
performing parameters and data augmentation. For each con-
figuration, sensitivity, specificity, and accuracy were comput-
ed as follows:

sensitivity or true positive rate (TPR):

TP

TPR = ——
TP + FN

where TP is true positives, FN is false negatives specificity
(SPC), or true negative rate:

N

PC=——"
SPC TN + FP

where TN is true negatives, FP is false positives and accuracy
(ACC):

TP + TN

ACC =
TP + FP + TN + FN

We also compared the performance of our method to the
performance of a classical machine-learning algorithm using

Table 1  Statistics for test set

Configurations Sensitivity Specificity Accuracy
1 80.0% 46.7% 63.3%

2 86.7% 64.4% 75.6%

3 84.4% 73.3% 78.9%

4 93.3% 82.2% 87.7%

Table shows sensitivity, specificity, and accuracy for each configuration
of multi-scale CNN for the test set. Configurations: / using T1C only and
no augmentation (NA), 2 using T2 only and NA, 3 using T1C and T2
combined (T1 T2) and NA, 4 using T1 T2 and 30-fold AG and further
training.
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Table 2 Statistics for optimizers

Configurations Sensitivity Specificity Accuracy
SGD 93.3% 82.2% 87.7%
RMSprop 84.4% 84.4% 84.4%
AdaDelta 82.2% 84.4% 83.3%
Adam 88.8% 82.2% 85.5%

The performance of the best CNN configuration using four different
optimizers on the test dataset was shown.

support vector machine (SVM) classifier with greedy feature
selection. Using seven selected features (from intensity-based
features, local binary patterns, Gabor filters, Laplacian of
Gaussian, gray-level co-occurrence matrix, and boundary
sharpness), the SVM classifier was trained and tested on the
same data.

Results

Figure 3 shows that the multi-scale CNN is overfitting to
the original (limited size) training data, when data aug-
mentation is not used, as the distance between the train-
ing and validation losses increases over time. The accu-
racy approaches 100% after 50 epochs for the training
set and the loss gets closer to zero, but the performance
of trained CNN without data augmentation remains be-
low 80% for the test data (see Table 1). As seen in the
Table 1, the performance of CNN with data augmenta-
tion (configuration 4) is better than the other configura-
tions without data augmentation.

Data augmentation of original data with k=30-fold (ACC =
89.5) gave the better accuracy on the validation dataset com-
pared to the ones using k=10-fold (ACC = 85.5) and k=20-fold
(ACC =83.3) augmentations. Compared to training on the
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data without augmentation, accuracy and loss in Fig. 5 fluc-
tuate and are noisier due to variations introduced with data
augmentation. The results of the SVM classifier using texture
features on the test set were 80% (sensitivity), 82% (specific-
ity), and 81% (accuracy), which are inferior than the results of
multi-scale CNN (configuration 4).

Table 2 compares the performance of the best performing
configuration using four different optimizers. As seen in
Table 2, the influence of optimizers on learning is not much
and SGD gives better performance on the test data compared
to other optimizers. Figure 4 shows the performance of the
best performing CNN configuration 4 on the training data.
Fluctuations seen in Fig. 4 are due to randomly introduced
augmented data at each epoch. Table 1 shows the performance
of multi-scale CNN configurations on the test dataset. Figure 5
shows the validation loss of the best performing CNN (con-
figuration 4) on the validation set. As seen in Figs. 4 and 5, the
training and validation losses converge to same value of about
0.2 over time. Table 3 shows the confusion matrix of 1p19q
status on test set for the best performing CNN (configuration
4). False negatives are higher than false positives.

Discussion

In this study, we present a robust and non-invasive meth-
od to predict 1p/19q chromosomal arm deletion from
post-contrast T1- and T2-weighted MR images using
multi-scale CNN approach. As mentioned in previous
studies [4, 6-8], a subset of LGG are sensitive to therapy
and have longer progress-free survival while others may
progress to HGG. Although histologic grade is the most
important factor in therapeutic decision-making, it lacks
information about other tumor properties that can impact
optimal therapy options and recent reports suggest

Training Loss on Augmented data
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Fig. 4 Accuracy (leff) and loss (right) plots are shown for the training of the best performing configuration (4) on the augmented data
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Validation Loss on Augmented data
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Fig. 5 Validation loss is shown on the validation set for the best
performing configuration (configuration 4) using data augmentation

genomic marker may be more predictive than histologic
grade [26]. Adding other information such as 1p/19 chro-
mosomal arms deletion, which has been associated with
positive response to therapy, could help improve thera-
peutic decision-making.

An important challenge in applying deep learning methods
to medical images is having an adequate number of data sets.
Our multi-scale CNN reached to 100% sensitivity, specificity,
and accuracy in training set without data augmentation (see
Fig. 3), but had less than 80% specificity and accuracy for the
(unseen) test set (see Table 1). This demonstrated that our
algorithm did not truly learn the distinctive imaging features,
but rather, overfit to the training examples. As seen in Table 1,
configuration 4 using augmented data to train our multi-scale
CNN approach perform better than the other configurations on
the unseen test dataset. Fluctuations as seen in Fig. 4 are re-
sults of introducing new augmented training data at each ep-
och. As seen in the results, augmenting a randomly selected
set of the original training data, which is described in the
experiment section, at each epoch improves generalization
ability of the multi-scale CNN and prevents overfitting. As
seen in Table 1, configuration 4 yields the best performance
on the test dataset. The performance of configuration 4 in the
training and validation datasets is in the same order with its
performance in the test dataset. This highlights the generaliz-
ability of configuration 4 and its minimal overfitting.

Table 3  Confusion matrix of classification of 1p19q status on test set
for the best CNN (configuration 4)

n=90 Predicted labels
Co-deleted Non-deleted
Actual labels Co-deleted 42 3
Non-deleted 8 37

The misclassification rate on the test dataset is about 11%.
Some part of this error might be due to the error rate intro-
duced by the FISH test that was used to determine the 1p/19
status. Scheie et al. [13] showed that the reliability of FISH
test was 95% and 87.5% for the detection of 1p and 19q
deletions, respectively.

As seen in Fig. 5, the loss on validation dataset for configu-
ration 4 stops fluctuating and stabilizes with slight changes after
400 epochs for several epochs. This means that the network is
not learning much any more and had converged to a steady state.
As seen in Table 2, SGD optimizer gave superior performance
on the test dataset compared to other three optimizers.

As seen in our results, deep learning algorithm performs
better than the classical machine-learning algorithm using
SVM. As mentioned before, Fellah et al. [9] presented the first
study that determined the 1p/19q status from DWI, PWI, MR
spectroscopy, and conventional MR images. Their misclassifi-
cation rates were 48 and 40% for using only the conventional
MR images and using all multimodal images, respectively.
Compared to their results, our best-performing configuration
(4) shows better performance in our dataset, with 93.3% sensi-
tivity, 82.2% specificity, and 87.7% accuracy in the unseen test
dataset. Moreover, our data was evaluated in a larger dataset
(159 LGG vs. 50 LGG). However, it is hard to make the direct
comparison since we used different datasets. To the best of our
knowledge, our study is the first in using the deep learning to
predict 1p19q from MR images in LGGs.

Although the original data size was limited, artificially aug-
menting data helped increase the volume of our data. It may be
that further performance gains will be realized with larger
patient populations with more heterogeneous data.
Furthermore, including weight regularization such as L1 or
L2 in the network might improve generalizability of our net-
works. Further studies with larger patient populations are re-
quired to investigate these and confirm our current findings.

Conclusions

Our multi-scale CNN approach provides promising results for
predicting 1p/19q codeletion status non-invasively, based on
post-contrast T1 and T2 images. Data augmentation helps
counter overfitting and provides learning the invariant patterns
in the images. Our presented method could be further improved
and potentially used as an alternative to surgical biopsy and
pathological analysis for predicting 1p/19q codeletion status.

Acknowledgements This work was supported by National Institutes of
Health 1TU01CA160045.

Compliance with Ethical Standards

Conflict of Interest The authors declare that there is no conflict of interest.

@ Springer



476

J Digit Imaging (2017) 30:469-476

Open Access This article is distributed under the terms of the Creative
Commons Attribution 4.0 International License (http://
creativecommons.org/licenses/by/4.0/), which permits unrestricted use,
distribution, and reproduction in any medium, provided you give appro-
priate credit to the original author(s) and the source, provide a link to the
Creative Commons license, and indicate if changes were made.

References

1. DeAngelis LM. Brain tumors. N Engl J Med. 2001;344(2):114-23.
doi:10.1056/nejm200101113440207.

2. Cha S. Update on brain tumor imaging: from anatomy to physiol-
ogy. AJINR Am J Neuroradiol. 2006;27(3):475-87.

3. Kleihues P, Burger PC, Scheithauer BW. The new WHO classifi-
cation of brain tumours. Brain Pathol. 1993;3(3):255-68.

4. Network TCGAR. Comprehensive, integrative genomic analysis of
diffuse lower-grade gliomas. New England Journal of Medicine.
2015;372(26):2481-98.

5. Louis DN, Ohgaki H, Wiestler OD, Cavenee WK, Burger PC, Jouvet
A et al. The 2007 WHO classification of Tumours of the central
nervous system. Acta Neuropathologica. 2007;114(2):97-109.

6. van den Bent MJ, Brandes AA, Taphoorn MJ, Kros IM,
Kouwenhoven MC, Delattre JY et al. Adjuvant procarbazine,
lomustine, and vincristine chemotherapy in newly diagnosed ana-
plastic oligodendroglioma: long-term follow-up of EORTC brain
tumor group study 26951. Journal of clinical oncology : official
journal of the American Society of Clinical Oncology.
2013;31(3):344-50.

7. van den Bent MJ. Practice changing mature results of RTOG study
9802: another positive PCV trial makes adjuvant chemotherapy part
of standard of care in low-grade glioma. Neuro Oncol. 2014;16(12):
1570-4. doi:10.1093/neuonc/nou297.

8. Macdonald DR, Gaspar LE, Cairncross JG. Successful chemother-
apy for newly diagnosed aggressive oligodendroglioma. Annals of
neurology. 1990;27(5):573—-4.

9. Fellah S, Caudal D, De Paula AM, Dory-Lautrec P, Figarella-
Branger D, Chinot O et al. Multimodal MR imaging (diffusion,
perfusion, and spectroscopy): is it possible to distinguish
Oligodendroglial tumor grade and 1p/19q Codeletion in the
Pretherapeutic diagnosis? Am J Neuroradiol. 2013;34(7):1326-33.

10. Jansen NL, Schwartz C, Graute V, Eigenbrod S, Lutz J, Egensperger
R et al. Prediction of oligodendroglial histology and LOH 1p/19q
using dynamic [18F]FET-PET imaging in intracranial WHO grade II
and III gliomas. Neuro-Oncology. 2012;14(12):1473-80.

11. Iwadate Y, Shinozaki N, Matsutani T, Uchino Y, Saeki N:
Molecular imaging of 1p/19q deletion in oligodendroglial tumours
with 11C—methionine positron emission tomography. Journal of
Neurology, Neurosurgery & Psychiatry, 2016.

@ Springer

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.
26.

Bourdillon P, Hlaihel C, Guyotat J, Guillotton L, Honnorat J,
Ducray F et al. Prediction of anaplastic transformation in low-
grade oligodendrogliomas based on magnetic resonance spectros-
copy and 1p/19q codeletion status. J Neuro-Oncol. 2015;122(3):
529-37.

Scheie D, Andresen PA, Cvancarova M, Bo AS, Helseth E,
Skullerud K et al. Fluorescence in situ hybridization (FISH) on
touch preparations: a reliable method for detecting loss of hetero-
zygosity at 1p and 19q in oligodendroglial tumors. The American
journal of surgical pathology. 2006;30(7):828-37.

Avants BB, Tustison NJ, Song G, Cook PA, Klein A, Gee JC. A
reproducible evaluation of ANTs similarity metric performance in
brain image registration. Neuroimage. 2011;54(3):2033-44.
Avants BB, Tustison NJ, Stauffer M, Song G, Wu B, Gee JC. The
insight toolkit image registration framework. Front Neuroinform.
2014;8:44.

Akkus Z, Sedlar J, Coufalova L, Korfiatis P, Kline TL, Warner JD
et al. Semi-automated segmentation of pre-operative low grade gli-
omas in magnetic resonance imaging. Cancer Imaging. 2015;15:12.
Rohlfing T, Zahr NM, Sullivan EV, Pfefferbaum A. The SRI24
Multi-channel atlas of normal adult human brain structure.
Human brain mapping. 2010;31(5):798-819.

Marquez-Neila P, Baumela L, Alvarez L. A morphological ap-
proach to curvature-based evolution of curves and surfaces. IEEE
Trans Pattern Anal Mach Intell. 2014;36(1):2—17. doi:10.1109/
tpami.2013.106.

Smith SM. Fast robust automated brain extraction. Human Brain
Mapping. 2002;17(3):143-55. doi:10.1002/hbm.10062.

Jenkinson M, Beckmann CF, Behrens TE, Woolrich MW, Smith
SM. Fsl. Neuroimage. 2012;62(2):782-90.

Krizhevsky A, Ilya Sutskever, and Hinton GE: Imagenet classifica-
tion with deep convolutional neural networks. Advances in Neural
Information Processing Systems, 2012.

Lecun Y, Bottou L, Bengio Y, Haffner P: Gradient-based learning
applied to document recognition. Proceedings of the IEEE 86(11):
2278-324, 1998.

Ypsilantis PP, Siddique M, Sohn HM, Davies A, Cook G, Goh V,
et al.: Predicting response to neoadjuvant chemotherapy with PET
imaging using convolutional neural networks. PLoS ONE 10(9),
2015

Tsuruoka Y, Ji T, Ananiadou S: Stochastic gradient descent training
for L1-regularized log-linear models with cumulative penalty.
Proceedings of the Joint Conference of the 47th Annual Meeting
of the ACL and the 4th International Joint Conference on Natural
Language Processing of the AFNLP Association for Computational
Linguistics p. 477-85, 2009.

Keras CF. Github (https:/github.com/fchollet/keras), 2015.
Eckel-Passow JE, Lachance DH, Molinaro AM, Walsh KM,
Decker PA, Sicotte H et al. Glioma groups based on 1p/19q, IDH,
and TERT promoter mutations in tumors. New England Journal of
Medicine. 2015;372(26):2499-508.


http://dx.doi.org/10.1056/nejm200101113440207
http://dx.doi.org/10.1093/neuonc/nou297
http://dx.doi.org/10.1109/tpami.2013.106
http://dx.doi.org/10.1109/tpami.2013.106
http://dx.doi.org/10.1002/hbm.10062
https://github.com/fchollet/keras

	Predicting Deletion of Chromosomal Arms 1p/19q in Low-Grade Gliomas from MR Images Using Machine Intelligence
	Abstract
	Introduction
	Material and Methods
	Brain Tumor Data
	Pre-Processing
	Multi-Modal Image Registration
	Tumor Segmentation
	Data Normalization
	Data Augmentation

	Convolutional Neural Networks
	Multi-Scale CNN Parameters


	Implementation and Experiments
	Implementation
	Experiments

	Results
	Discussion
	Conclusions
	References


