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Abstract In this paper, region-difference filters for the segmen-
tation of liver ultrasound (US) images are proposed. Region-
difference filters evaluate maximum difference of the average of
two regions of the window around the center pixel.
Implementing the filters on the whole image gives region-
difference image. This image is then converted into binary im-
age and morphologically operated for segmenting the desired
lesion from the ultrasound image. The proposedmethod is com-
pared with the maximum a posteriori-Markov random field
(MAP-MRF), Chan-Vese active contour method (CV-ACM),
and active contour region-scalable fitting energy (RSFE)
methods.MATLAB code available online for the RSFEmethod
is used for comparison whereas MAP-MRF and CV-ACM
methods are coded in MATLAB by authors. Since no compar-
ison is available on common database for the performance of
the three methods, therefore, performance comparison of the
three methods and proposed method was done on liver US
images obtained from PGIMER, Chandigarh, India and from
online resource. A radiologist blindly analyzed segmentation
results of the 4 methods implemented on 56 images and had
selected the segmentation result obtained from the proposed
method as best for 46 test US images. For the remaining 10
US images, the proposed method performance was very near to
the other three segmentation methods. The proposed segmenta-
tion method obtained the overall accuracy of 99.32% in com-
parison to the overall accuracy of 85.9, 98.71, and 68.21%

obtained by MAP-MRF, CV-ACM, and RSFE methods, re-
spectively. Computational time taken by the proposed method
is 5.05 s compared to the time of 26.44, 24.82, and 28.36 s taken
by MAP-MRF, CV-ACM, and RSFE methods, respectively.
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Introduction

The liver is one of the most important organs of the human
body. Liver failure may lead to a life-threatening condition es-
pecially if diagnosed late. Only about 10% of liver failure cases
are detected at an early stage. Liver cancer is one of the most
common cancer types in developing countries like Africa and
East Asia [1]. Proper diagnosis of the liver at an early stage is
utmost needed. Liver diagnosis can be done using different
imaging modalities available like MRI, CT, ultrasound, PET,
etc. Among all medical imaging modalities, ultrasound imaging
is usually preferred over other modalities because ultrasound
imaging is non-invasive in nature. Also, ultrasound imaging
has real-time imaging capabilities and the scanning machine is
economical and portable. The radiologist examines the ultra-
sound image of the liver, and on the basis of echogenicity dif-
ferences, the radiologist is able to differentiate between the nor-
mal and abnormal regions of the liver and also able to predict
the type of lesion [2]. However, usually, ultrasound images are
contaminated with speckled noise which makes the texture of
different regions too complex and intermixed and therefore in-
terpretation of the lesions becomes difficult and correct interpre-
tation needs lot of experience.Wrong interpretation of the lesion
may become critical and hence a system is needed that may
interpret or assists in interpreting the lesion correctly [2]. For
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the development of a system that can detect and classify lesions
from ultrasound images, research has been done on different
aspects. Many researchers concentrate themselves for the devel-
opment of the CAD system that can classify lesions into differ-
ent classes [2–6], whereas some research has been focused on
segmentation of lesions from ultrasound images [7–10]. In this
paper, we have focussed on segmentation of B-mode liver ul-
trasound images containing focal liver lesions.

Image segmentation is the process of partitioning the image
into disjoint regions such that the pixels present in the same
region have some similarity whereas the pixels present in dif-
ferent regions have some dissimilarity. Segmentation methods
can be classified as supervised segmentation methods or unsu-
pervised segmentation methods. Some of the most common
supervised segmentation methods are k-nearest neighbors
[11], maximum likelihood method, active contour methods [7,
12–19], artificial neural network (ANN) [20], and support vec-
tor machine (SVM) [21, 22] whereas most common unsuper-
vised segmentation methods are based on clustering methods
like K-means clustering, fuzzy C-mean (FCM) clustering, hier-
archical clustering, andMarkov random field (MRF). Presently,
most of the segmentation algorithms are concentrated on the
active contour method (ACM) [7, 12, 14, 15, 23–27] and MRF
[28–38]. Active contour methods are the curve evolution
methods. They can be classified into two types as region-
based ACM [12, 16–19] and edge-based ACM [14, 15].
Caselles et al. [15] proposed the geodesic active contour meth-
od (GACM). It is the edge-basedACM that uses image gradient
for edge detection and hence is sensitive to speckle noise and
weak edges. After Caselles, a large number of literature can be
found on edge-based ACM for segmentation [39, 40]. Chan
and Vese [12] proposed a CV method. It is a region-based
ACM and is less sensitive to weak edges and speckle noise
but is computationally expensive and faces a problem when
regions to be segmented have similarly distributed segments.

Markov random field (MRF) is the method of modeling
disjoint regions of an image using a probabilistic model.
Segmentation is achieved by first classifying the pixels into
different regions and then estimating the parameters of the
probabilistic model for each object. Panjwani et al. [41] pro-
posed MRF models for segmenting textures with color map.
Salzenstein and Pieezynski [42] proposed the concept of fuzz-
iness in modeling MRF models. Xin Liu et al. [38] proposed
an efficient way of segmentation by combining the two steps
of estimation of MRF model parameters and segmentation of
image into a single step.

The FCM method is the clustering method in which image
is divided into clusters on the basis of some features like
intensity, texture, etc. To make the FCM method robust, local
spatial information of pixels are also considered with the gen-
eral FCMmethod [43–51]. Inclusion of kernel-based methods
with the FCM method makes segmentation more accurate
under noisy conditions [52–57].

In this paper, we have proposed region-difference filters for
the segmentation of liver ultrasound images. Region-
difference filters evaluate the maximum difference of the av-
erage of the two regions of the window around the center
pixel. Implementing the filters on the whole image gives the
region-difference image. This image is then converted into
binary image and is morphologically operated for segmenting
the desired lesion from the ultrasound image.

This paper is structured as follows. Section BMethodology^
presents the proposed methodology for the segmentation of
liver ultrasound images. To evaluate the performance of the
proposed method, performance parameters considered are
discussed in section BQualitative and Quantitative Evaluation
of the Proposed Method^. Section BExperimental Results and
Discussion^ presents the experiments conducted on liver
ultrasound images. Segmentation results are also discussed in
section BExperimental Results and Discussion^. Finally,
concluding remarks are given in section BConclusion^.

Methodology

In this paper, filters for the segmentation of the focal liver
lesion from liver ultrasound images are proposed. For the seg-
mentation, first, a single pixel is selected manually from the
region anywhere inside the lesion; then, using the proposed
filters, difference of the average intensity on the two halves
of each of the filters is evaluated. Out of the four difference
values obtained corresponding to four filters, one which gives
the highest difference is selected. Implementing the filters on
the whole image gives the region-difference image. This image
is then converted into a binary image whose skeleton is then
obtained using morphological tools. Selecting all the nearest
edges that encloses the manually selected pixel gives the edge
of the focal liver lesion. The region on the inner side of the
edges obtained gives the desired lesion to be segregated from
the liver ultrasound image. Due to the involvement of overall
difference of the region intensities, the proposedmethod is able
to detect weak edges or boundaries having very little difference
between the two regions separated by the edge or the boundary.

Complete description of the proposed filters and proposed
segmentation method are given in the following sub-sections.
Sub-section BAlpha-Trimmed Mean Filter^ gives the brief in-
troduction to the alpha-trimmed mean filter. Region-difference
filters proposed in the paper are introduced and described in
section BRegion-Difference Filters^. Sub-section BEdge
Detection from Region-Difference Image^ describes the proce-
dure to detect the edges of the lesion from the region-difference
image obtained by the implementation of the region-difference
filters on the liver ultrasound images. Stepwise procedure for
the implementation of the proposed segmentation method is
then described in section BImplementation of the Proposed
Method^.
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Alpha-Trimmed Mean Filter

Alpha-trimmed filter is the filter that evaluates the average of
the elements after removing the outlier elements. It works
somewhere in between the average and median filter. To eval-
uate the alpha-trimmed mean value of the M elements, ele-
ments are sorted in ascending order, and then alpha times M
(αM) number of elements are removed from both sides of the
sorted elements. Average of the remaining elements will be
the alpha-trimmed mean value of the M elements. The value
of alpha lies between 0 and 0.5. Since alpha-trimmed mean
value is obtained after removing elements having extreme
values, therefore, it proves to be the effective method for en-
hancing the ultrasound images contaminated with speckled
noise. Alpha-trimmed mean filter has been used for removing
speckle noise from ultrasound images [58–61]. Remzi Oten
et al. [61] proposed adaptive alpha-trimmed mean filters ca-
pable of selecting the best value of alpha for the filters.

Region-Difference Filters

To detect the difference in the two regions of an image effi-
ciently, four N × N sized filters are proposed in this paper.
Since these filters are used to evaluate quantitatively the dif-
ference between the two regions of the image, therefore, these
filters are named as region-difference (RD) filter in this paper
and are denoted as RD1, RD2, RD3, and RD4. All the four RD
filters are divided into three regions by assigning values +1, 0,
and −1 to the elements of the window. As shown in Fig. 1, all
the four filters are similar with each other but are aligned at an
angle of 0, 45, 90, and 135°.

Stepwise procedure to evaluate the difference between the
two regions of the image is described below:

1. Consider a sub-image, Is of size N × N from the image, I.
2. Follow the following procedure for all the four RD filters:

a. Multiply RD filter with the sub-image Is.
b. Evaluate alpha-trimmed mean value for all the pixels

of Is having value greater than zero. Let it be AM1.
c. Evaluate alpha-trimmed mean value for all the pixels

of Is having value smaller than zero. Let it be AM2.
d. Take the absolute difference of the absolute values

obtained in step 2(b) and step 2(c).
3. Step 2 gives four absolute difference values correspond-

ing to four RD filters. Maximum of the four absolute
difference values is selected and is replaced with the cen-
ter pixel of the sub-image, Is.

Region-difference image can be obtained by following the
same procedure detailed above for the whole image I. For the
efficient implementation of the RD filters, proper size,N of the
filters need to be selected. Filters with smaller value of N can

detect regions with very small variations in pixel intensities
but at the same time may get affected with impulse noise
present in the image, whereas filters with high value of N
ignore regions with small variations in pixel intensities but
works efficiently in the presence of impulse noise. From the
experiments done on different ultrasound images for various
values of N, value of N is selected as 5.

Edge Detection from Region-Difference Image

From the region-difference image, it is observed that pixel at-
tains the value of zero if the two regions around the concerned
pixel in the original image are identical whereas pixel value is
large if the two regions around the concerned pixel in the orig-
inal image are largely different. To ignore the small variations
between the pixels of the two regions, region-difference image
is converted into binary image by assigning value 1 to all pixels
of the image above some threshold value and by assigning
value 0 to all the remaining pixels of the image.

From the region-difference image, it is also observed that at
the boundary of the two regions in the original image, region-
difference image forms a thick edge with highest intensity in
the middle of the edge and intensity gradually decreases to-
wards the two sides of the edges. It is observed that the highest
intensity pixel in the edge is the pixel that lies exactly at the
boundary of the two regions and thus extracting the location of
the highest intensity pixels from all the edges will give exact
edges of different regions present in the original image. Since
skeleton of the binary image gives the lines that pass through
the center of the object, therefore, to find the skeleton of the
binary image obtained from the region-difference image, a
morphological operation is operated on the binary image.
Since binary image consists of thick edges, therefore, square
structuring element of size 3 × 3 serves the purpose of forming
the desired skeleton of the image. [62, 63] gives details of the
structuring element and skeleton procedure used in the pro-
posed algorithm.

Implementation of the Proposed Method

Stepwise procedure to implement the proposed methodology
for the segmentation of FLLs from liver ultrasound images is
given below:

1. Read ultrasound image, I.
2. Get a single point,P from the desired object or lesion to be

segmented.
3. Obtain region-difference image of the image I by passing

the image through the region-difference filters.
4. Detect edges of different regions present in the original

image.
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5. Select the nearest edge around the pixel selected in step 2
in all direction. This gives the edge of the desired FLL to
be detected from the given ultrasound images.

6. Region that lies on the inner side of the edges detected in
step 5 is the region of FLL to be segmented.

Figure 2 shows the implementation of the proposed method-
ology to segment cyst FLL from the liver ultrasound image.
Figure 2a is the original image of the liver ultrasound image
having a focal liver lesion indicated by an arrow. A point is
selected manually inside this lesion. Figure 2b shows the
region-difference image obtained after the implementation of
step 3 of the methodology. Region-difference image is then con-
verted into binary image by setting the threshold value as 10.
Figure 2c is the skeleton obtained on the application of morpho-
logical operation on the binary image. In the skeleton, edge of the
desired lesion to be segmented is observed and is indicated by an
arrow. Figure 2d, e shows the edge detected and region segment-
ed by implementing the proposed method. Figure 2f represents
the superimposition of the segmented region on the original im-
age. It shows the position of the region shown in Fig. 2e with
respect to the original image. From Fig. 2f, it is observed that the
segmentation method completely segregates the desired lesion
from the liver ultrasound image. Figure 3 shows the implemen-
tation of the proposed method on another liver ultrasound image
having hemangioma focal liver lesion.

Qualitative and Quantitative Evaluation
of the Proposed Method

Performance and comparison of the purposed method of seg-
mentation ( based on maximum region difference between
nearby regions at different angles) with other segmentation
methods is analyzed both qualitatively as well as quantitative-
ly. For the qualitative analysis of the proposed method, seg-
mented results are shown to the experienced radiologist
whereas quantitatively analysis is done by evaluating accura-
cy of the segmentation method to segment the desired lesion.
Comparing the lesion segmented (LS) by the segmentation
method with the lesion segmented manually (LM) by the ex-
perienced radiologist, accuracy (Acc.) of the segmentation
method can be evaluated as:

Acc: ¼ TPPþ TNPð Þ
TNPþ FNPþ TPPþ FPPð Þ � 100%

where TPP, true positive pixels, are the number of pixels of the
desired lesion common in both LM and LS; TNP, true nega-
tive pixels, are the number of pixels of the background that are
common in both LM and LS; FPP, false positive pixels, are the
number of pixels of the lesion segmented by the method
which in reality are not the part of the desired lesion; and
FNP, false negative pixels, are the number of pixels which

Fig. 1 Windows used for the implementation of the proposed segmentation method
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are not in the segmented region but which in reality are the
part of the desired lesion. Segmentation is considered good if
using the above formula high accuracy value is obtained.

Performance of the proposedmethod is also compared with
other segmentation methods on the basis of the computational
time taken by the methods to segment the desired lesions.

Experimental Results and Discussion

Dataset

To show the performance of the present work, the proposed
method is tested on 56 B-mode liver ultrasound images

Fig. 2 a Liver ultrasound image containing cyst. bMaximumdifference image. c Skeleton of binary image obtained frommaximum difference image. d
Edge obtained from the proposed image. e Lesion segmented from the original image. f Original image superimposed with the lesion segmented
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containing focal liver lesions. Out of the 56 images, 41 images
were collected from the Department of Radiodiagnosis and
Imaging, Post Graduate Institute of Medical Education and
Research (PGIMER), Chandigarh, India; whereas the remain-
ing 15 images were downloaded from database available

online at www.ultrasoundcases.info. Images obtained from
PGIMER were recorded using Philips ATL HDI 5000
ultrasound (US) machine and a transducer of 2–5 MHz range.
Digital images collected have the size of 800 × 564 pixels with
256 grey levels. Horizontal and vertical resolution of the

Fig. 3 a Liver ultrasound image containing hemangioma. bMaximum difference image. c Skeleton of binary image obtained frommaximum difference
image. d Edge obtained from the proposed image. e Lesion segmented from original image. f Original image superimposed with the lesion segmented
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images is 96 dpi. For using these images for research, patient’s
consent was taken prior to recording. PGIMER dataset of 41
liver US images containing focal liver lesions (FLLs) consists
of 14 cases of cyst, 7 cases of hemangioma (HEM), 8 cases of
hepatocellular carcinoma (HCC), and 12 cases of metastasis
(MET). Images acquired online are low-resolution images
having a size of 300 × 225. Online dataset of 15 liver US
images containing focal liver lesions (FLLs) consists of 6
cases of cyst, 4 cases of hemangioma (HEM), 2 cases of he-
patocellular carcinoma (HCC), and 3 cases of metastasis
(MET). Categorization of the datasets is detailed and given
in Table 1.

Parameters Considered

For the implementation of the proposedmethod, the following
parameters need to be fixed:

a. Value of alpha for the implementation of alpha-trimmed
filter

b. Size of region-difference filters
c. Threshold value, Th, for converting region-difference im-

age into binary image

Alpha-trimmed filter behaves as pure average filter when
the value of alpha is 0, whereas it behaves as median filter
when alpha is very near to 0.5. Proper selection of the value of
alpha is needed to remove outliers. Similarly, for the efficient
implementation of the RD filters, proper size, N of the filters
need to be selected. From the large number of experiments
conducted with different values of alpha and N on different
ultrasound images, it is observed that the segmentation results
are the best for the value of alpha equals to 0.2 and N equals to
5. Thus, alpha andN are fixed to 0.2 and 5, respectively, for all
the experiments.

The third parameter to be fixed is threshold (Th) value
needed to convert the region-difference image into a binary
image. Empirically, it is noticed that segmentation highly de-
pends on threshold value selected and for most of the cases it
lies within the range from 5 to 30. For the dataset considered
in this paper, threshold value is fixed to 15. For this value
segmentation, output obtained is very near to the desired
segmentation.

Experiments

The proposed region-difference filter based segmentation
method is tested on liver ultrasound images containing focal
liver lesions. To show the potential of the proposed method, it
is compared with the three other methods viz. the maximum a
posteriori-Markov random field (MAP-MRF) method, edge-
based active contour Chan-Vese (CV) method [11], and
region-based active contour region-scalable fitting energy
(RSFE) method [13]. TheMATLAB code for the RSFEmeth-
od [13] is acquired online from its author’s website, whereas
the MATLAB code for the CV method [11] and MAP-MRF
method is implemented by the authors on the basis of the
methodology given in the concerned literature. No reference
dataset is available online on which the three methods had
been tested; therefore, we have tested the three methods and
the proposed method on liver US images acquired from
PGIMER and from online resource as detailed in section
4.1. For analyzing the performance of the four segmentation
methods, accuracy of segmentation and computational time
consumed by each method is tabulated in Tables 2, 3, 4, 5,
and 6. Figures 4, 5, 6, 7, and 8 shows the segmentation results
obtained on implementing the proposed segmentation and
other three methods on some of the liver ultrasound images
from the dataset.

Segmentation of FLL US Images Acquired from PGIMER,
Chandigarh

Segmentation results of MAP-MRF, Chan-Vese (CV) active
contour, RSFE, and the proposed methods on Cyst, hemangi-
oma and hepatocellular carcinoma (HCC) are shown in
Figs. 4, 5, and 6, respectively. From Fig. 4, it is observed that
the cyst present in the ultrasound image of the liver has good
contrast with the normal region of the liver. When such image
having good contrast between the normal and abnormal
region is processed for segmentation by different methods, it
is observed that the segmentation obtained by the proposed
method is very close to the manual segmentation of the lesion.
Lesion extracted by MAP-MRF and CV-ACM is slightly
under-segmented whereas lesion extracted by the RSFE
method is slightly over-segmented. From Fig. 5, it is observed
that the hemangioma present in the liver ultrasound image has
weak contrast with the normal region of the liver, and hence it
becomes difficult to extract the exact boundary of the
hemangioma. When such image with weak contrast between
the normal and abnormal region is processed by different
segmentation methods, it is observed that the segmentation
of the hemangioma by MAP-MRF, CV-ACM, and the
proposed method is very close to the manual segmentation
of the lesion, whereas segmentation by the RSFE method is
largely over-segmented and due to weak contrast RSFE is not
able to segment the lesion. From Fig. 6, it is observed that at

Table 1 Categorization of liver ultrasound images used for testing the
proposed method

Dataset Total cases HCC Cyst Hemangioma Metastasis

Online 15 2 6 4 3

PGIMER 41 8 14 7 12

Total 56 10 20 11 15
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the top and bottom side of the HCC present in the liver
ultrasound image, contrast between the HCC and the nor-
mal region of the liver is very weak whereas contrast at the
right and left side of the lesion is quite good. When this
image is processed by different segmentation methods, it
is observed that the segmentation of the HCC by MAP-
MRF results in under-segmented image of the HCC, where-
as segmentation by the CV-ACM and RSFE methods gives
largely over-segmented images. Performance of the pro-
posed method is close to manually segmented image and
is better as compared to other three methods but it also
cannot be considered as good.

Performance of the four segmentation methods implement-
ed on the methods on all of the 41 ultrasound images is ana-
lyzed blindly by the experienced radiologist. The radiologist
opined that out of the total of 41 cases, the proposed method
gives the best segmentation for the total of 35 cases as com-
pared to MAP-MRF, CV active contour, and RSFE methods
which gives the best segmentation for the total of 0, 2, and 3

cases, respectively. The proposed method is not able to per-
form best for the six cases but according to the radiologist
segmentation by the proposed method is second best for five
cases and is very near to the best segmentation results, and for
the sixth case, the radiologist opined that no segmentation
method is able to segment the lesion properly. This case con-
sists of atypical metastasis and proper boundary of the lesion
is not visible clearly in the ultrasound image.

Quantitative performances of the four segmentation methods
are tabulated in Tables 2 and 3. Table 2 shows the average accu-
racy along with the standard deviation of the accuracies for the
different lesion types obtained by all the four methods on all the
41 ultrasound images categorized as HCC, cyst, hemangioma,
and metastasis. Overall average accuracy of the four methods is
also tabulated in Table 2. Table 3 shows the average computa-
tional time taken by the segmentation methods for segmentation.
From Table 2, it is observed that for all the 4 categories, the
proposed method shows the best performance with an average
accuracy of 99.68, 99.54, 99.5, and 99.49% for HCC, cyst,

Fig. 4 Segmentation results for liver US images containing cyst. a Original image. b Manually segmented image by expert radiologists. Results
obtained by the c MAP-MRF method, d CV-ACM method, e RSFE method, and f proposed method

Table 2 Average and standard deviation of the accuracies for the different lesion types obtained by various segmentation techniques on data obtained
from PGIMER, Chandigarh for the four classes, i.e., HCC, cyst, hemangioma, and metastasis. In the table average and standard deviation, values are
represented as Baverage (standard deviation)^

Segmentation methods HCC Cyst Hemangioma Metastasis Overall cases

PGIMER data accuracy MAP-MRF method 88.65 (8.52) 73.85 (37.77) 91.23 (18.04) 76.9 (32.14) 80.66(29.49)

CV-ACM 99.62 (0.24) 98.87(1.58) 99.28(0.27) 98.78 (1.24) 99.05 (1.17)

RSFE method 65.01 (38.2) 72.78 (36.44) 61.75 (36.38) 58.79 (40.03) 65.2 (36.85)

Proposed method 99.68 (0.17) 99.54 (0.4) 99.5 (0.22) 99.49 (0.21) 99.55 (0.3)
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hemangioma, and metastasis, respectively. Also, lowest standard
deviation of 0.17, 0.4, 0.22, and 0.21 for HCC, cyst, hemangio-
ma, and metastasis, respectively, shows the consistency of the
proposed method for segmenting the lesion from ultrasound im-
ages. From Table 2, it is also observed that the overall average
accuracy for all the four categories together is the best for the

proposed method. For the proposed method, the overall average
accuracy obtained is 99.55% compared to 80.66, 99.05, and
65.2% obtained by the MAP-MRF, CV-ACM, and RSFE
methods, respectively.

From Table 3, it is observed that the computational times
taken by the proposed method for segmenting HCC, cyst,

Fig. 5 Segmentation results for liver US images containing hemangioma. aOriginal image. bManually segmented image by expert radiologists. Results
obtained by the c MAP-MRF method, d CV-ACM method, e RSFE method, and f proposed method

Fig. 6 Segmentation results for liver US images containing HCC. a Original image. b Manually segmented image by expert radiologists. Results
obtained by the c MAP-MRF method, d CV-ACM method, e RSFE method, and f proposed method
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hemangioma, and metastasis are 5.09s, 5.07s, 5.17s, and
5.09 s, respectively, which is very less as compared to the
other methods, MAP-MRF, CV-ACM, and RSFE. It is also

observed that overall computational time taken for
segmenting all the 4 categories together is 5.1 s compared to
37.17s, 33.4s, and 40.96 s taken by theMAP-MRF, CV-ACM,

Fig. 7 Segmentation results for liver US images containing cyst. a Original image. b Manually segmented image by expert radiologists. Results
obtained by the c MAP-MRF method, d CV-ACM method, e RSFE method, and f proposed method

Fig. 8 Segmentation results for liver US images containing metastasis. a Original image. bManually segmented image by expert radiologists. Results
obtained by the c MAP-MRF method, d CV-ACM method, e RSFE method, and f proposed method
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and RSFEmethods. The proposed method takes approximate-
ly one seventh of the time taken by the other methods. Due to
fast segmentation, the proposed method has the potential of
segmenting the lesion in real time. Thus, qualitatively as well
as quantitatively, the proposed method proves to be the best
over MAP-MRF, CV-ACM, and RSFE methods.

Segmentation of FLL US Images Acquired Online

Segmentation results of MAP-MRF, Chan-Vese (CV) active
contour, RSFE, and the proposed methods on cyst and metas-
tasis are shown in Figs. 7 and 8, respectively. From Fig. 7, it is
observed that the interior region of the cyst present in the ultra-
sound image of the liver has good contrast with the normal
region of the liver, but its boundary is somewhat blurry and is
mixed with the normal region of the liver and it becomes diffi-
cult even for the radiologist to segment the exact boundary
precisely. When such image having blurry boundaries is proc-
essed for segmentation by different methods, it is observed that
the segmentation obtained by the proposed method is very
close to themanual segmentation of the lesion. Lesion extracted
by MAP-MRF and CV-ACM is slightly under-segmented
whereas lesion extracted by the RSFE method is very close to
the manually segmented lesion but is slightly over-segmented.
From Fig. 8, it is observed that the metastasis present in the
liver ultrasound image has weak contrast with the normal re-
gion of the liver, and hence it becomes difficult to extract the
exact boundary of the hemangioma. Also, the size of the me-
tastasis in the image is too small compared to the overall size of
the ultrasound image. When this image with weak contrast
between the normal and abnormal region is processed by dif-
ferent segmentation methods, it is observed that the

segmentation of the metastasis by MAP-MRF is not proper
and it is under-segmented, whereas segmentation by the CV-
ACM and RSFE methods is very close to the manual segmen-
tation of the lesion but is somewhat over-segmented.
Segmentation by the proposed method is observed to be very
close to the manually segmented metastasis lesion and is the
best among all the segmentation methods discussed.

Performance of the four segmentation methods implement-
ed on the methods on all the 15 ultrasound images is analyzed
blindly by the experienced radiologist. The radiologist opined
that out of the total of 15 cases, the proposed method gives the
best segmentation for the total of 11 cases as compared to the
MAP-MRF, CV active contour, and RSFE methods which
gives the best segmentation for the total of 0, 2, and 1 case,
respectively. The proposed method is not able to perform best
for the four cases but according to the radiologist segmenta-
tion by the proposed method is second best for the two cases.
For the third case, the proposed method does not perform well
at all whereas for the fourth case the radiologist opined that no
segmentation method is able to segment the lesion properly.

Quantitative performances of the four segmentation
methods are tabulated in Tables 4 and 5. Table 4 shows the
average accuracy along with the standard deviation of the ac-
curacies for the different lesion types obtained by all the four
methods on all the 15 ultrasound images categorized as HCC,
cyst, hemangioma, and metastasis. Overall average accuracy of
the four methods is also tabulated in Table 4. Table 5 shows the
average computational time taken by the segmentationmethods
for segmentation. From Table 5, it is observed that for all the 4
categories, proposed method shows the best performance with
average accuracy of 97.45, 98.78, 99.12, and 99.41% for HCC,
cyst, hemangioma, and metastasis, respectively. Also, lowest

Table 3 Average of
computational time taken by
various segmentation techniques
on data obtained from PGIMER,
Chandigarh for the four classes,
i.e., HCC, cyst, hemangioma, and
metastasis

Segmentation
methods

HCC Cyst Hemangioma Metastasis Overall
cases

PGIMER data
computational
time

MAP-MRF method 37.43 37.32 39.58 35.23 37.17

CV-ACM 33.41 37.58 33.13 22.5 33.4

RSFE method 39.62 39.76 74.93 38.51 40.96

Proposed method 5.09 5.07 5.17 5.09 5.1

Table 4 Average and standard deviation of the accuracies for the different lesion types obtained by various segmentation techniques on data obtained
from online resource for the four classes, i.e., HCC, cyst, hemangioma, andmetastasis. In the table average and standard deviation, values are represented
as Baverage (standard deviation)^

Segmentation methods HCC Cyst Hemangioma Metastasis Overall cases

Online data accuracy MAP-MRF method 94.57 (6.54) 91.67 (8.29) 97.84 (2) 99.36 (0.33) 96.13 (5.54)

CV-ACM 95.39 (4.14) 97.89 (2.5) 97.96 (2.42) 99.41 (0.32) 98.04 (2.38)

RSFE method 75.05 (23.91) 82.47 (30.04) 51.87 (24.31) 99.13 (0.86) 74.07 (28.92)

Proposed method 97.45 (2.65) 98.78(0.43) 99.12 (0.38) 99.41 (0.29) 98.93 (0.91)
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standard deviations of 2.65, 0.43, 0.38, and 0.29 for HCC, cyst,
hemangioma, and metastasis, respectively, show the consisten-
cy of the proposed method for segmenting the lesion from
ultrasound images. From Table 4, it is also observed that the
overall average accuracy for all the 4 categories together is the
best for the proposed method. For the proposed method, the
overall average accuracy obtained is 98.93% compared to
96.13%, 98.04%, and 74.07% obtained by the MAP-MRF,
CV-ACM, and RSFE methods, respectively.

From Table 5, it is observed that the computational time
taken by the proposed method for segmenting HCC, cyst,
hemangioma, and metastasis are 4.98s, 4.97s, 4.96s, and
4.98 s, respectively, which is the second best after computa-
tional time taken by the RSFEmethod ( 3.74 s for HCC, 3.76 s
for cyst, 3.78 s for hemangioma, 3.73 s for metastasis). Since
overall accuracy of the RSFE method is 74.07%which is very
less as compared to the proposed method (98.93%), therefore
quantitatively, the proposed method can be considered as the
best method to segment the lesions from the liver ultrasound
images that are available online. Thus, qualitatively as well as
quantitatively, the proposed method proves to be the best both
qualitatively as well as quantitatively.

Discussion

The radiologist opined that as compared to the MAP-MRF,
CVactive contour, and RSFE methods, the proposed method
gives better segmentation results. Out the total of 56 cases
used for the present study, the proposed method gives the best
segmentation for 46 cases as compared to MAP-MRF, CV
active contour, and RSFE methods which gives the best seg-
mentation for the total of 0, 4, and 4 cases, respectively. The
proposed method is not able to perform best for 10 cases but
according to the radiologist segmentation by the proposed
method is second best for the 7 cases. Out of the remaining
three cases, the radiologist opined that for two cases no seg-
mentation method is able to segment the lesion properly.
These two cases consist of metastasis and cyst, respectively,
and proper boundary of the lesion is not visible clearly and is
highly distorted in the ultrasound images. For the third case,
the radiologist opined that the proposed method does not per-
form well at all. This case consists of hemangioma which is
very close to the blood vessel. Due to the similarity in the

echogenicity of the hemangioma and blood vessel, the pro-
posed method segments the hemangioma along with the blood
vessel and hence the radiologist rejects the segmentation ob-
tained by the proposed method for the third case.

Table 6 shows the average and standard deviation of
the accuracies obtained by the MAP-MRF, CV-ACM,
RSFE, and proposed methods for segmenting the full
dataset consisting of liver ultrasound images acquired
from PGIMER, Chandigarh, and liver ultrasound image
downloaded from online resources. From Table 6, it is
observed that the overall performance of the proposed
method is the best, having a segmentation accuracy of
99.32% as compared to 85.9, 98.71, and 68.21% obtain-
ed by the MAP-MRF, CV-ACM, and RSFE methods,
respectively. Also, lowest standard deviation of 0.66 in
accuracy is obtained by the proposed method over stan-
dard deviation of 25.19, 1.73, and 34.39 in accuracies
obtained by the MAP-MRF, CV-ACM, and RSFE
methods, respectively, shows that the proposed method
is consistent in segmenting the lesion from liver ultra-
sound images.

Table 6 also tabulates the average computational time
taken by the MAP-MRF, CV-ACM, RSFE, and pro-
posed methods for segmenting the full dataset detailed
in sub-section BDataset^. From Table 6, it is observed
that overall average computational time taken by the
proposed method is 5.05 s which is too less as com-
pared to average computational times of 26.44s, 24.82s,
and 28.36 s taken by the MAP-MRF, CV-ACM, and
RSFE methods. High segmentation accuracy and low

Table 5 Average of
computational time taken by
various segmentation techniques
on data obtained from online
resource for the four classes, i.e.,
HCC, cyst, hemangioma, and
metastasis

Segmentation
methods

HCC Cyst Hemangioma Metastasis Overall
cases

Online data computational
time

MAP-MRF method 5.71 5.72 5.11 5.7 5.48

CV-ACM 8.16 8.05 8.08 8 8.06

RSFE method 3.74 3.76 3.78 3.73 3.76

Proposed method 4.98 4.97 4.96 4.98 4.97

Table 6 Average and standard deviation of accuracy obtained, and
average of computational time taken by various segmentation
techniques on the whole data for the four classes, i.e., HCC, cyst,
hemangioma, and metastasis. In the table average and standard
deviation of accuracies are represented as Baverage (standard deviation)^

Segmentation methods Accuracy Time

Overall dataset MAP-MRF method 85.9 (25.19) 26.44

CV-ACM 98.71 (1.73) 24.82

RSFE method 98.21 (34.39) 28.36

Proposed method 99.32 (0.66) 5.05

J Digit Imaging (2017) 30:376–390 387



computation time taken by the proposed method for
segmentation shows its potential in real-time application.

Conclusion

In this paper, region-difference filters are proposed for
the segmentation of the focal liver lesion from liver
ultrasound images. The proposed method is tested on
the dataset of 56 liver ultrasound images containing
FLLs and is compared with three methods viz. the
MAP-MRF, CV-ACM, and RSFE methods. Qualitative
analysis of the proposed method is done by the radiol-
ogist, which opined that the proposed method is able to
perform best in 46 cases. Out of the remaining 10
cases, the proposed method is the second best method
for 7 cases whereas for 3 cases compared to other three
methods the proposed method does not perform well.
These three cases consist of metastasis, cyst, and hem-
angioma, respectively. For the metastasis and cyst case,
proper boundary of the lesion is not visible clearly and
is highly distorted in the ultrasound images. Due to this,
segmentation methods are not able to segment the le-
sions properly. For the hemangioma case, the lesion lies
very near to the blood vessel and due to the similarity
in the texture of the hemangioma and blood vessel, the
lesion get segmented by the proposed method along
with the blood vessel.

Quantitative analysis of the proposed method shows
that the proposed segmentation method is able to seg-
ment liver ultrasound images with the overall accuracy
of 99.32% in comparison to the overall accuracy of
85.9, 98.71, and 68.21% obtained by the MAP-MRF,
CV-ACM, and RSFE me t hod s , r e s p e c t i v e l y.
Computational time taken by the proposed method is
5.05 s which is very less as compared to the computa-
tional time of 26.44s, 24.82s, and 28.36 s taken by the
MAP-MRF, CV-ACM, and RSFE methods, respectively.
The proposed method is able to segment low-resolution
images with 98.93% accuracy as compared to the accu-
racy of 96.13%, 98.04%, and 74.07% obtained by the
MAP-MRF, CV-ACM, and RSFE methods, respectively.
Less computational time taken by the proposed method
shows its potential in real-time applications. It is also
noticed that the proposed segmentation method seg-
ments perfectly if the threshold value for converting
maximum difference image into binary image is selected
properly. For the dataset on which the proposed method
is tested, threshold value of 15 works well, but for other
images obtained by different machines, threshold value
may vary. The proposed method is tested on only liver
ultrasound image, but it is believed that the method has
the potential to segment lesion from ultrasound images

of any body organ and from images obtained from other
imaging modalities.
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