Skip to main content

Advertisement

Log in

Effect of antimicrobial photodynamic therapy (aPDT) on the sterilization of infected dentin in vitro

  • Original Article
  • Published:
Odontology Aims and scope Submit manuscript

Abstract

The aim of this study was to evaluate the bactericidal effect of antimicrobial photodynamic therapy (aPDT) on an infected dentin model. Dentin plates were prepared from extracted human molars and infected through immersion in a solution of Streptococcus mutans. The nine experimental groups consisted of two laser irradiation groups (650 nm laser: 650 laser and 940 nm laser: 940 laser), two photosensitizer groups (methylene blue: MB, and azulenocyanine: Azc), four aPDT groups (650 nm laser irradiation of MB: 650 laser-MB, 650 nm laser irradiation of Azc: 650 laser-Azc, 940 nm laser irradiation of MB: 940 laser-MB and 940 nm laser irradiation of Azc: 940 laser-Azc) and a control. The bactericidal effects on each group were evaluated by colony count and adenosine triphosphate (ATP) assays. Based on the results of the colony count assay, the 650 laser-MB and 940 laser-MB groups formed significantly fewer colonies than the other experimental groups. Significantly fewer colonies were observed in the 940 laser-Azc group than in the control, but significant differences in the numbers of colonies were not observed between the 650 laser-Azc and control groups. The 940 laser group formed slightly fewer colonies than the 650 laser group, but the difference was not significant. In addition, the number of colonies in the MB group was significantly less than the number in the Azc group. The results of the ATP assay were similar to those of the colony count assay. aPDT with MB showed a significant bactericidal effect on dentin plates infected with S. mutans.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Mang TS, Tayal DP, Baier R. Photodynamic therapy as an alternative treatment for disinfection of bacteria in oral biofilms. Lasers Surg Med. 2012;44:588–96.

    Article  PubMed  Google Scholar 

  2. Marotti J, Tortamano P, Cai S, Ribeiro MS, Franco JE, de Campos TT. Decontamination of dental implant surfaces by means of photodynamic therapy. Lasers Med Sci. 2013;28:303–9.

    Article  PubMed  Google Scholar 

  3. Schar D, Ramseier CA, Eick S, Arweiler NB, Sculean A, Salvi GE. Anti-infective therapy of peri-implantitis with adjunctive local drug delivery or photodynamic therapy: six-month outcomes of a prospective randomized clinical trial. Clin Oral Implant Res. 2013;24:104–10.

    Article  Google Scholar 

  4. Romanos GE, Brink B. Photodynamic therapy in periodontal therapy: microbiological observations from a private practice. Gen Dent. 2010;58:e68–73.

    PubMed  Google Scholar 

  5. Dilsiz A, Canakci V, Aydin T. Clinical effects of potassium-titanyl-phosphate laser and photodynamic therapy on outcomes of treatment of chronic periodontitis: a randomized controlled clinical trial. J Periodontol. 2013;84:278–86.

    Article  PubMed  Google Scholar 

  6. Garcez AS, Nunez SC, Hamblin MR, Ribeiro MS. Antimicrobial effects of photodynamic therapy on patients with necrotic pulps and periapical lesion. J Endod. 2008;34:138–42.

    Article  PubMed  Google Scholar 

  7. Garcez AS, Ribeiro MS, Tegos GP, Nunez SC, Jorge AO, Hamblin MR. Antimicrobial photodynamic therapy combined with conventional endodontic treatment to eliminate root canal biofilm infection. Lasers Surg Med. 2007;39:59–66.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Burns T, Wilson M, Pearson GJ. Effect of dentine and collagen on the lethal photosensitization of Streptococcus mutans. Caries Res. 1995;29:192–7.

    Article  PubMed  Google Scholar 

  9. Araujo PV, Correia-Silva JF, Gomez RS, Massara ML, Cortes ME, Poletto LT. Antimicrobial effect of photodynamic therapy in carious lesions in vivo, using culture and real-time PCR methods. Photodiagnosis Photodyn Ther. 2015;12:401–7.

    Article  PubMed  Google Scholar 

  10. Guglielmi CA, Simionato MR, Ramalho KM, Imparato JC, Pinheiro SL, Luz MA. Clinical use of photodynamic antimicrobial chemotherapy for the treatment of deep carious lesions. J Biomed Opt. 2011;16:088003.

    Article  Google Scholar 

  11. Melo MA, Rolim JP, Passos VF, Lima RA, Zanin IC, Codes BM, Rocha SS, Rodrigues LK. Photodynamic antimicrobial chemotherapy and ultraconservative caries removal linked for management of deep caries lesions. Photodiagnosis Photodyn Ther. 2015;12:581–6.

    Article  PubMed  Google Scholar 

  12. Diniz IM, Horta ID, Azevedo CS, Elmadjian TR, Matos AB, Simionato MR, Marques MM. Antimicrobial photodynamic therapy: a promise candidate for caries lesions treatment. Photodiagnosis Photodyn Ther. 2015;12:511–8.

    Article  PubMed  Google Scholar 

  13. Araujo NC, Fontana CR, Bagnato VS, Gerbi ME. Photodynamic antimicrobial therapy of curcumin in biofilms and carious dentine. Lasers Med Sci. 2014;29:629–35.

    Article  PubMed  Google Scholar 

  14. Ricatto LGO, Conrado LAL, Turssi CP, França FMG, Basting RT, Amaral FLB. Comparative evaluation of photodynamic therapy using LASER or light emitting diode on cariogenic bacteria: an in vitro study. Eur J Dent. 2014;8:509–14.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Teixeira AH, Pereira ES, Rodrigues LK, Saxena D, Duarte S, Zanin IC. Effect of photodynamic antimicrobial chemotherapy on in vitro and in situ biofilms. Caries Res. 2012;46:549–54.

    Article  PubMed  Google Scholar 

  16. Lima JP, de Melo MA, Borges FM, Teixeira AH, Steiner-Oliveira C, Santos M, Rodrigues LK, Zanin IC. Evaluation of the antimicrobial effect of photodynamic antimicrobial therapy in an in situ model of dentine caries. Eur J Oral Sci. 2009;117:568–74.

    Article  PubMed  Google Scholar 

  17. Pereira CA, Costa AC, Carreira CM, Junqueira JC, Jorge AO. Photodynamic inactivation of Streptococcus mutans and Streptococcus sanguinis biofilms in vitro. Lasers Med Sci. 2013;28:859–64.

    Article  PubMed  Google Scholar 

  18. Bonstein T, Mikulski LM, Bush MA, Bush PJ. Photoactivated disinfection of Streptococcus intermedius through dentin disc at clinically relevant intervals: an in vitro study. Arch Oral Biol. 2010;55:771–7.

    Article  PubMed  Google Scholar 

  19. Longo JP, Leal SC, Simioni AR, de Almeida-Santos M, Tedesco AC, Azevedo RB. Photodynamic therapy disinfection of carious tissue mediated by aluminum-chloride-phthalocyanine entrapped in cationic liposomes: an in vitro and clinical study. Lasers Med Sci. 2012;27:575–84.

    Article  PubMed  Google Scholar 

  20. Fekrazad R, Khoei F, Hakimiha N, Bahador A. Photoelimination of Streptococcus mutans with two methods of photodynamic and photothermal therapy. Photodiagnosis Photodyn Ther. 2013;10:626–31.

    Article  PubMed  Google Scholar 

  21. Pereira CA, Romeiro RL, Costa AC, Machado AK, Junqueira JC, Jorge AO. Susceptibility of Candida albicans, Staphylococcus aureus, and Streptococcus mutans biofilms to photodynamic inactivation: an in vitro study. Lasers Med Sci. 2011;26:341–8.

    Article  PubMed  Google Scholar 

  22. Zanin IC, Goncalves RB, Junior AB, Hope CK, Pratten J. Susceptibility of Streptococcus mutans biofilms to photodynamic therapy: an in vitro study. J Antimicrob Chemother. 2005;56:324–30.

    Article  PubMed  Google Scholar 

  23. Giusti JS, Santos-Pinto L, Pizzolito AC, Helmerson K, Carvalho-Filho E, Kurachi C, Bagnato VS. Antimicrobial photodynamic action on dentin using a light-emitting diode light source. Photomed Laser Surg. 2008;26:281–7.

    Article  PubMed  Google Scholar 

  24. Hamblin MR, Hasan T. Photodynamic therapy: a new antimicrobial approach to infectious disease? Photochem Photobiol Sci. 2004;3:436–50.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Redmond RW, Gamlin JN. A compilation of singlet oxygen yields from biologically relevant molecules. Photochem Photobiol. 1999;70:391–475.

    Article  PubMed  Google Scholar 

  26. Wainwright M. Photodynamic antimicrobial chemotherapy (PACT). J Antimicrob Chemother. 1998;42:13–28.

    Article  PubMed  Google Scholar 

  27. Meisel P, Kocher T. Photodynamic therapy for periodontal diseases: state of the art. J Photochem Photobiol B. 2005;79:159–70.

    Article  PubMed  Google Scholar 

  28. Jori G, Fabris C, Soncin M, Ferro S, Coppellotti O, Dei D, Fantetti L, Chiti G, Roncucci G. Photodynamic therapy in the treatment of microbial infections: basic principles and perspective applications. Lasers Surg Med. 2006;38:468–81.

    Article  PubMed  Google Scholar 

  29. Araujo PV, Teixeira KI, Lanza LD, Cortes ME, Poletto LT. In vitro lethal photosensitization of S. mutans using methylene blue and toluidine blue O as photosensitizers. Acta Odontol Latinoam. 2009;22:93–7.

    PubMed  Google Scholar 

  30. Araujo NC, Fontana CR, Bagnato VS, Gerbi ME. Photodynamic effects of curcumin against cariogenic pathogens. Photomed Laser Surg. 2012;30:393–9.

    Article  PubMed  Google Scholar 

  31. Oregon Medical Laser Center. Molar extinction coefficients of oxy and deoxyhemoglobin compiled by Scott Prahl. http://omlc.ogi.edu/spectra/hemoglobin. Accessed 28 Nov 2015.

  32. Muranaka A, Yonehara M, Uchiyama M. Azulenocyanine: a new family of phthalocyanines with intense near-IR absorption. J Am Chem Soc. 2010;132:7844–5.

    Article  PubMed  Google Scholar 

  33. Uchiyama M, Muranaka A, Yonehara M. Japan Patent JP 2011116717A.

  34. Muranaka A, Uchiyama M. Design, synthesis, and electronic properties of near-infrared absorbing phthalocyanine analogues. Meeting Abstracts 2015; MA2015-01:976.

  35. Bevilacqua IM, Nicolau RA, Khouri S, Brugnera A Jr, Teodoro GR, Zangaro RA, Pacheco MT. The impact of photodynamic therapy on the viability of Streptococcus mutans in a planktonic culture. Photomed Laser Surg. 2007;25:513–8.

    Article  PubMed  Google Scholar 

  36. Webster JJ, Chang JC, Manley ER, Spivey HO, Leach FR. Buffer effects on ATP analysis by firefly luciferase. Anal Biochem. 1980;106:7–11.

    Article  PubMed  Google Scholar 

  37. Nichols WW, Curtis GDW, Johnston HH. Choice of buffer anion for the assay of adenosine 5′-triphosphate using firefly luciferase. Anal Biochem. 1981;114:396–7.

    Article  PubMed  Google Scholar 

  38. Mempin R, Tran H, Chen C, Gong H, Kim Ho K, Lu S. Release of extracellular ATP by bacteria during growth. BMC Microbiol. 2013;13:301–13.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Hale GM, Querry MR. Optical constants of water in the 200-nm to 200-microm wavelength region. Appl Opt. 1973;12:555–63.

    Article  PubMed  Google Scholar 

  40. Wilson BC, Patterson MS. The physics, biophysics and technology of photodynamic therapy. Phys Med Biol. 2008;53:R61–109.

    Article  PubMed  Google Scholar 

  41. Salva KA. Photodynamic therapy: unapproved uses, dosages, or indications. Clin Dermatol. 2002;20:571–81.

    Article  PubMed  Google Scholar 

  42. Nagata JY, Hioka N, Kimura E, Batistela VR, Terada RSS, Graciano AX, Baesso ML, Hayacibara MF. Antibacterial photodynamic therapy for dental caries: evaluation of the photosensitizers used and light source properties. Photodiagnosis Photodyn Ther. 2012;9:122–31.

    Article  PubMed  Google Scholar 

  43. Perussi JR. Inativação fotodinâmica de microrganismos. Quím Nova. 2007;30:988–94.

    Article  Google Scholar 

  44. Usacheva MN, Teichert MC, Biel MA. Comparison of the methylene blue and toluidine blue photobactericidal efficacy against gram-positive and gram-negative microorganisms. Lasers Surg Med. 2001;29:165–73.

    Article  PubMed  Google Scholar 

  45. Schaechter M, Engleberg NC, Eisenstein BI, Medoff G. Microbiologia: mecanismos das doenças infecciosas. 3rd ed. Rio de Janeiro: Guanabara Koogan; 2002.

    Google Scholar 

  46. Wood S, Metcalf D, Devine D, Robinson C. Erythrosine is a potential photosensitizer for the photodynamic therapy of oral plaque biofilms. J Antimicrob Chemother. 2006;57:680–4.

    Article  PubMed  Google Scholar 

  47. Usacheva MN, Teichert MC, Biel MA. The role of the methylene blue and toluidine blue monomers and dimers in the photoinactivation of bacteria. J Photochem Photobiol B. 2003;71:87–98.

    Article  PubMed  Google Scholar 

  48. Lakowicz JR. Fluorescence correlation spectroscopy. In: Joseph R, Lakowicz JR, editors. Principles of fluorescence spectroscopy. New York: Kluwer Academic/Plenum Publishers; 2006. pp. 797–840

  49. DeRosa MC, Crutchley RJ. Photosensitized singlet oxygen and its applications. Coord Chem Rev. 2002;233–234:351–71.

    Article  Google Scholar 

  50. Daraio ME, Roman ES. Aggregation and photophysics of rose bengal in alumina-coated colloidal suspensions. Helv Chim Acta. 2001;84:2601–14.

    Article  Google Scholar 

  51. Valdes-Aguilera O, Neckers DC. Aggregation phenomena in xanthene dyes. Acc Chem Res. 1989;22:171–7.

    Article  Google Scholar 

  52. Bergmann K, O’Konski C. A spectroscopic study of methylene blue monomer, dimer, and complexes with montmorillonite. J Phys Chem. 1963;67:2169–77.

    Article  Google Scholar 

Download references

Acknowledgements

We would like to deeply thank the National Research and Development Institute (RIKEN) for providing azulenocyanine.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Koichi Shinkai.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nagai, Y., Suzuki, A., Katsuragi, H. et al. Effect of antimicrobial photodynamic therapy (aPDT) on the sterilization of infected dentin in vitro. Odontology 106, 154–161 (2018). https://doi.org/10.1007/s10266-017-0321-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10266-017-0321-6

Keywords

Navigation