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Abstract The aim of this study was to investigate the

effect of exogenous polyamines (PAs) on the membrane

status and proline level in roots of water stressed cucumber

(Cucumis sativus cv. Dar) seedlings. It was found that

water shortage resulted in an increase of membrane injury,

lipoxygenase (LOX) activity, lipid peroxidation and pro-

line concentration in cucumber roots during progressive

dehydration. PA pretreatment resulted in a distinct reduc-

tion of the injury index, and this effect was reflected by a

lower stress-evoked LOX activity increase and lipid per-

oxide levels at the end of the stress period. In contrast,

PA-supplied stressed roots displayed a higher proline

accumulation. The presented results suggest that exoge-

nous PAs are able to alleviate water deficit-induced

membrane permeability and diminish LOX activity.

Observed changes were accompanied by an accumulation

of proline, suggesting that the accumulation of this osmo-

lyte might be another possible mode of action for PAs to

attain higher membrane stability, and in this way mitigate

water deficit effects in roots of cucumber seedlings.
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Abbreviations

LOX Lipoxygenase

PAs Polyamines

Put Putrescine

Spd Spermidine

Spm Spermine

Introduction

Drought stress is a major limitation to crop productivity.

Thus to develop crop plants with an enhanced tolerance to

drought stress, a basic understanding of physiological,

biochemical and gene regulatory networks is essential

(Valliodan and Nguyen 2006). Plants also respond and

adapt to water deficit at both cellular and molecular levels,

for instance by the accumulation of osmolytes and proteins

specifically involved in stress tolerance (Shinozaki and

Yamaguchi-Shinozaki 2007). Abiotic stresses, especially

water deficit, increase biosynthesis of both polyamines

(PAs) (Bouchereau et al. 1999; Kubiś 2003, 2008; Yang

et al. 2007) and compatible osmolytes, such as sugars,

betaines and proline (Hare and Cress 1997).

Since a lack of water induces PA accumulation (Flores

1991; Flores and Galston 1984a, b; Kakkar and Sawhney

2002; Turner and Stewart 1986, 1988), a growing interest

is observed in the possible involvement of PAs in the

adaptive mechanism of plants to various environmental

stresses (Bouchereau et al. 1999). Biological functions of

PAs are attributed to their polycationic character at a

physiological pH. Due to the presence of positively

charged groups, PAs are able to bind strongly to negative

charges in cellular components such as nucleic acids,

proteins and phospholipids (Slocum et al. 1984; Smith

1985). An interaction of PAs with membrane phospholip-

ids may stabilize membranes under stress conditions

(Roberts et al. 1986), so its components may be buffered by
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PAs (Liu et al. 2007). PAs may directly or indirectly act as

free radical scavengers (Bors et al. 1989). Spermine (Spm),

which has four amino groups, is a more effective scavenger

than spermidine (Spd), which has three amino groups,

suggesting the involvement of amino groups in the inacti-

vation of reactive oxygen species (ROS) (Besford et al.

1993). Indirectly, PAs are able to moderate the activities of

scavenging system enzymes and alleviate oxidative stress

intensity (Kubiś 2008). It has been shown that stress-tol-

erant plants increase endogenous PA levels to a greater

extent than sensitive ones (Lee 1997). These molecules

have been found to protect plants from abiotic stresses

(Chattopadhayay et al. 2002; Liu et al. 2007; Shen et al.

2000); unfortunately, the precise mode of their action is not

fully understood (Kakkar and Sawhney 2002). Addition-

ally, through the enhancement of proline and betaine pro-

duction PAs control and act as important osmoprotectant

inducers in plat cells (Öztürk and Demir 2003).

A link between PAs and nitric oxide (NO) was shown by

Tun et al. (2006) in Arabidopsis thaliana seedlings. These

authors found that PAs induced NO biosynthesis, and

another new mode of PA action via NO generation has

already been confirmed that NO acts downstream of PAs in

adaptive responses of cucumber leaves to water deficit

stress (Yamasaki and Cohen 2006). Downregulation of NO

by PAs was demonstrated in leaves of water-stressed

cucumber plants by Arasimowicz-Jelonek et al. (2009).

With regard to the finding reported by Gao et al. (2009),

those higher levels of PAs and NO as well as the activities

of arginine metabolism enzymes exist in roots rather than

in leaves. It may be supposed that roots, especially new,

fine ones, are much more exposed to many abiotic stresses,

and are able to serve as an interface between plants and soil

(Wells and Eissenstat 2003). According to the results of

Gao et al. (2009), the authors also hypothesized that root-

sourced molecules, i.e. PAs, are able to play a role in root-

to-shoot signaling. This mode of action was proposed for

PAs by Legocka and Kluk (2005). Results reported by

those authors confirmed that osmotic and salt stresses

induced PA biosynthesis in lupine roots, but Put accumu-

lation in shoots, indicating root-to-shoot translocation,

suggesting a potential role of PAs in root-to-shoot

signaling.

Proline overproduction plays a highly protective role in

plants that are exposed to abiotic stresses, conferring

osmotic adjustment together with an increase in the levels

of other osmolytes (Valliodan and Nguyen 2006).

According to Yoshiba et al. (1997), compatible solutes

could also be associated with lipids and proteins and thus

counteracted negative dehydration effects on the cell

structure and enzyme functioning. Other published data

suggested other functions of proline, e.g. detoxification of

ROS, and an interaction with the hydrophobic residue of

proteins. The key role of proline in the response to water

deficit has been demonstrated in transgenic tobacco that

overexpressed proline biosynthesis enzymes (Kavi Kishor

et al. 1995; Roosens et al. 2002). In turn, suppression of

proline synthesis in transgenic plants resulted in increased

sensitivity to water deficit (De Ronde et al. 2000). It was

reported that transgenic petunia plants that overexpressed

proline synthesis enzyme (pyrroline-5-carboxylate synthe-

tase) genes from Arabidopsis (AtP5CS) and rice (OsP5CS)

could withstand drought conditions longer than wild-type

plants (Yamada et al. 2005).

In this study the role of PAs was analyzed in water

deficit stress-induced changes in cucumber roots. Therefore

it was attempted to determine whether exogenous PAs—

Put, Spd and Spm, might modify membrane stability,

lipoxygenase (LOX) activity and osmolyte-proline accu-

mulation in cucumber seedling roots.

Materials and methods

Plant materials

Roots of cucumber seedlings (Cucumis sativus cv. Dar)

were used as plant materials for experiments. After ger-

mination of sterilized seeds for 2 days at 24 �C seedlings

were placed (5 per 1.0 dm3 beaker) and allowed to grow in

a continuously aerated Hoagland’s solution in a growth

chamber with a photoperiod of 16 h [light—

250 lmol m-2 s-1 photosynthetically active radiation

(PAR)] at the temperature of 24 �C (day) and 20 �C

(night), and 60–70 % humidity. The nutrient solution was

renewed once a week.

PA treatment

One-month-old seedlings were taken out and divided into

four groups. Their roots were immersed in the following,

continuously aerated solutions: 1 mM K-phosphate buffer,

pH 5.8 (control), or in buffer solutions containing addi-

tionally 1 mM Put, or Spd, or Spm, and maintained for

24 h under controlled conditions (22 �C, humidity 65 %,

continuous light of 150 lmol m-2 s-1 PAR).

Stress conditions

Half of the plants from each group was transferred into

empty beakers and subjected to dehydration for 10 h

(stressed plants). The other half of each plant group was

maintained with their roots in 1 mM K-phosphate contin-

uously aerated buffer, pH 5.8 (control plants). Then beak-

ers with seedlings were placed in a growth chamber under

controlled conditions (22 �C, humidity of 65 % at
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continuous light of 150 lmol m-2 s-1 PAR). Finally the

roots were collected at 0, 5, and 10 h after withdrawal of

water, and 24 h after rewatering (roots immersed in buffer)

of 10 h-long stressed plants. Each sample contained 10

seedlings.

Relative water content (RWC)

Indicating the level of water stress in roots, RWC was

estimated according to Weatherley (1950), and calculated

according to the following formula: RWC = [(fresh

weight - dry weight)/(fresh weight at full turgor-dry

weight)] � 100 %.

Injury index

Electrolyte leakage from the roots was determined by the

conductivity method and used as a criterion of injury. The

amounts of electrolytes released from stressed or control

tissues were compared to total electrolyte amounts released

after boiling. The injury index was calculated according to

a formula given by Flint et al. (1967): ID = (LD - L0)/

(100 - L0) � 100 %, where ID is the injury index, L0 is an

electrolyte leakage from the control tissue in percent of the

total electrolyte content, and LD is an electrolyte leakage

from the desiccated tissue in percent of the total electrolyte

content. Determinations were performed in five replicates,

each using the whole root system of an individual plant.

LOX activity

Enzyme activity was measured according to Borrell et al.

(1997). The increase in absorbance was monitored at

234 nm wavelengths. An absorbance increase of 0.001 was

taken as one unit of LOX activity. Protein content in the

extracts was determined according to Bradford (1976).

Determinations were performed in five replicates and LOX

activity was expressed in units per mg protein content.

Proline determination

This metabolite content was performed according to the

method given by Bates et al. (1973). The quantity of the

colored reaction product of proline with ninhydric acid was

measured. Absorbance was recorded at 520 nm and the

amount of proline was calculated from the standard curve

and expressed in lg 9 g-1 dry matter. Determination was

performed in 5 replications.

Histochemical detection of lipid peroxidation

For lipid peroxidation freshly harvested roots were stained

in Schiff’s reagent for 60 min until pink color appeared,

and then extra stain was removed by rinsing in potassium

sulphite solution [0.5 % (w/v) K2S2O5 in 0.05 M HCl] as

in Pompella et al. (1987). The lipid peroxidation range was

estimated as thiobarbituric acid reactive substances in nmol

per 1 g dry weight (DW).

Statistical analysis

Analyses were performed in three to six replications and

the data are presented as a mean ± standard deviation

(SD). Experimental data were subjected to a one-way

analysis of variance (ANOVA) and significant differences

between means were determined by Tukey’s multiple

range test. Data (stressed plants) significantly different

from respective control (-PAs) at P \ 0.05 were marked

with a single asterisk on the figures.

Results

Water deficit greatly lowered RWC of cucumber roots, by

as much as 60–65 % (Fig. 1) at the end of the 10-h stress

period. In stressed plants treated with PAs, the dynamics of

water content decrease was similar to that observed for

untreated plants. There were no differences in RWC

between PA-treated and untreated control plants. After

rewatering the water content returned fast to the level

recorded in unstressed plants (79–86 %).

Water stress induced a marked increase in membrane

permeability (Fig. 2), from approximately 12 % at 5 h to

17 % at 10 h. Generally, plants treated with PAs showed a

significant reduction of stress-induced electrolyte leakage,

Fig. 1 The effect of exogenous PAs on the relative water content

during progressive dehydration of cucumber roots. Measurements

were made 0, 5 and 10 h after water withholding and 24 h after

rewatering. Prior to stress plants were immersed in: buffer (-PAs),

1.0 mM Put, 1.0 mM Spd and 1.0 mM Spm. Values indicate

mean ± SE with n = 5
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depending on water stress duration. Pretreatment with Put

and Spd resulted in a reduction of leakage consecutively by

ca. 6 and 9 % at 5 h, respectively, and 7 and 20 % at 10 h,

respectively, of dehydration in comparison with the

untreated plants. In contrast, when seedlings were treated

with Spm, a very slight increase in membrane damage was

observed as compared to untreated seedlings. After rewa-

tering, the injury index slowly decreased to the level

comparable with that in the unstressed plants. In well-

watered plants, either treated or untreated with PAs, prac-

tically no differences were observed in membrane perme-

ability after 24 h of the experiment.

Water stress induced a significant increase in LOX

activity (Fig. 3), which was noted as early as 5 h after

dehydration (50 %). After 10 h of stress duration, an 80 %

increase of LOX activity was recorded as compared to

LOX of unstressed roots. PA application before water loss

caused time-dependent changes in LOX activity: when

compared with untreated roots, LOX activity in seedlings

pretreated with Spd, Put and Spm increased by 20, 10 and

10 %, respectively, after 5 h of dehydration, then

decreased by 10, 15 and 7 %, respectively, after 10 h of

dehydration. After rewatering, LOX activity gradually

dropped to the level observed in the unstressed plants. In

seedlings pretreated with PAs, LOX activity remained

slightly lower than in untreated ones.

Plant dehydration induced a gradual proline accumula-

tion in cucumber seedlings (Fig. 4); over fivefold in leaves,

four-fold in roots but only threefold in shoots, compare

with plants not subjected to stress (time 0). When seedlings

were treated with exogenously supplied PAs, a definitely

higher accumulation of proline was observed after stress

treatment: stressed roots pretreated with Put, Spd and Spm

exhibited 24, 57 and 29 % higher accumulation, respec-

tively, after 5 h; and 45, 100 and 72 % higher accumula-

tion, respectively, after 10 h of stress duration, compared to

PA-untreated stressed roots. Similarly, stressed shoots

pretreated with Put, Spd and Spm exhibited 41, 78 and

59 % higher accumulation of proline after 5 h; and 16, 45

and 19 % higher accumulation after 10 h of stress duration,

compared to PA-untreated shoots. Leaves pretreated with

Put, Spd and Spm exhibited 15, 80 and 12 % increases,

respectively, after 5 h; and 26, 96 and 57 % increases after

10 h of stress duration, compared to PA-untreated leaves.

With regard to seedlings not subjected to water deficit

stress and treated with PAs, all estimated parameters gen-

erally remained on a stable level during the experiment and

these data were not presented in the figures.

For visualization of the membrane damage of root tis-

sues, histochemical detection of lipid peroxidation was

performed at 5 and 10 h of dehydration (Fig. 5). The

intensive pink staining of Schiff’s reagent, a specific

reaction for lipid peroxidation, was observed in PA-

untreated root seedlings after 10 h of dehydration. In

contrast, cucumber roots treated with PAs, especially with

Spd, showed weaker dye (pink) staining compared to non-

treated plants at 10 h of dehydration. At 5 h of dehydra-

tion, the pink coloring was mainly confined to the sub-

apical zone of roots from untreated seedlings. In plants not

subjected to dehydration or after rewatering, no pink

staining was observed (data not shown). On the base of

Fig. 2 The effect of exogenous PAs on the injury index (ID) during

progressive dehydration of cucumber roots. Measurements were made

5 and 10 h after water withholding and 24 h after rewatering. Prior to

stress plants were immersed in: buffer (-PAs), 1.0 mM Put, 1.0 mM

Spd and 1.0 mM Spm. Values indicate mean ± SE with n = 5. Data

(stressed plants) significantly different from respective control:

*P \ 0.05

Fig. 3 The effect of exogenous PAs on the LOX specific activity

during progressive dehydration of cucumber roots. Measurements

were made 0, 5 and 10 h after water withholding and 24 h after

rewatering. Prior to stress plants were immersed in: buffer (-PAs),

1.0 mM Put, 1.0 mM Spd and 1.0 mM Spm. Values indicate

mean ± SE with n = 6. Asterisk see Fig. 2
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visualization no lipid peroxidation was detected and addi-

tionally the results of very small membrane damage

(Fig. 2) were confirmed.

Discussion

Plants respond in order to survive under water-deficit

conditions via a series of physiological, cellular, and

molecular processes culminating in stress tolerance. These

adaptive changes include ABA synthesis and ABA-medi-

ating phenomena, i.e. stomatal closure, PA and proline

accumulation and changes within cell membranes (Lafitte

et al. 2007; Shinozaki and Yamaguchi-Shinozaki 2007).

Obtained results provide evidence that cucumber seed-

lings treated with Spd exhibited a higher membrane sta-

bility under stress conditions, as reflected in a significant

reduction of the stress-induced electrolyte leakage (Fig. 2)

confirmed by visualization of the membrane damage

(Fig. 5). Similar effects of higher levels of PA, Spd and

Spm on the leakage of electrolytes and amino acids from

salt-stressed rice roots have been reported by Chattopad-

hayay et al. (2002). They concluded that exogenous Spd

and Spm are effective in triggering protection against

cellular and macromolecular damage of rice plants during

salinity stress, probably by maintaining membrane integrity

and/or inhibiting protease and RNase activity during stress.

On the other hand, it has been reported that PAs might

Fig. 4 The effect of exogenous PAs on the proline content in leaf (a),

shoot (b) and root (c) during progressive dehydration of cucumber

seedlings. Measurements were made 0 to 10 h after water withholding

and 24 h after rewatering. Prior to stress plants were immersed in:

buffer (-PAs), 1.0 mM Put, 1.0 mM Spd and 1.0 mM Spm. Values

indicate mean ± SE with n = 3. Asterisk see Fig. 2

Fig. 5 Histochemical detection

of lipid peroxidation were

performed by staining of

Schiff’s reagent at 5 (a–d) and

10 h (e–h) of dehydration. The

intensive grey (originally pink

in a PDF version) color indicate

a specific reaction for lipid

peroxidation. Prior to stress

plants roots were immersed in:

buffer (-PAs a and e), 1.0 mM

Put (b and f), 1.0 mM Spd

(c and g) and 1.0 mM Spm

(d and h)
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mediate a decrease in ion fluxes across the vacuolar

membrane by blocking fast-activating vacuolar channels

under salt stress, as suggested by Bruggemann et al. (1998).

Progressive water shortage resulted in a water deficit-

evoked increase in LOX activity (Fig. 3). Stress-induced

LOX activation was also reported in desiccated soybean

leaves (Kacperska and Kubacka-Zębalska 1989), in se-

nescing muskmelon tissues (Lester 2000), and in barley

and cucumber leaves subjected to water deficit (Aras-

imowicz-Jelonek et al. 2009; Kubiś 2006). In contrast, in

chives tolerant to drought, a lower level of LOX activity

under stress was noted (Egert and Tevini 2002).

Cucumber plants pretreated with PAs exhibited time-

dependent changes in the stress-evoked activity of LOX as

compared to PA-untreated stressed seedlings (Fig. 3).

Barley plants pretreated with Spd prior to water shortage

showed a higher, water deficit stress-evoked activity of

LOX than PA-untreated stressed plants (Kubiś 2006). From

our experiment we concluded that Spd protected soluble

proteins against the water stress-induced decrease. There-

fore, it may be speculated that an early increase in LOX

activity (5 h) in the PA-pretreated water stressed tissues

could be possibly due to LOX-protein protection. It has

been shown that in maize Spd may bind to the 18-kD

membrane protein (Tassoni et al. 2002) and in this way

modulate activities of many enzymes such as protein

kinases, phosphatases and ATPases (Tassoni et al. 1998).

From the results cited above we may speculate that PA

protection of LOX-proteins can also be possible. Moreover,

lipid hydroperoxides produced by LOX served as sub-

strates for stress-induced jasmonic acid (JA) biosynthesis

(Rosahal 1996; Creelman and Mullet 1997) without mod-

ifying membrane stability.

Performed histochemical detection of lipid peroxidation

resulted in intensive staining of Schiff’s reagent (originally

pink) after 10 h of dehydration (Fig. 5, 10 h -PAs) and

weaker staining after 5 h of dehydration (Fig. 5, 5 h -PAs)

in whole regions of PA-untreated seedlings. In contrast,

treatments of Spd and Put diminished staining, which was

relatively confined to the tip regions of treated roots after

5 h (Fig. 5, 5 h Put and 5 h Spd) and less intensely in the

whole root of treated roots after 10 h (Fig. 5, 10 h Put and

10 h Spd) of dehydration, suggesting membrane damages.

In water-stressed barley leaves, Kubiś (2006) indicated that

a significant twofold increase in LOX activity did not

correspond with the relatively lower malonyldialdehyde

(MDA) increase (48 %) after 24 h of dehydration. In

addition, Spd pretreatment caused a three-fold increase in

LOX activity, but only an approximately 30 % increase in

MDA concentrations. It was suggested that the consump-

tion of hydroperoxides produced by LOX can be a reason

for lower membrane dysfunction, and PAs are engaged in

alleviation of this effect in water-stressed barley seedlings.

The involvement of methyl jasmonate in polyamine

metabolism and in cell protection against another type of

stress, i.e. pathogen infection, was earlier indicated (Biondi

et al. 2001; Walters et al. 2002).

Our observations provide evidence that water deficit

altered time-dependent proline accumulation in cucumber

seedlings. The most significant, five-fold increase was

observed in leaves, fourfold in roots and threefold in

shoots. Bandurska and Stroiński (2003) also reported that

in barley an earlier and significant increase was observed

in leaves whereas in roots the accumulation was less

significant. Observed in this work an effect of proline

accumulation due to water deficit is in line with the

results obtained by Handa et al. (1986), Raggi (1994),

Bandurska (2000, 2001), and Knipp and Honermeir

(2006), Najaphy et al. (2010). This amino acid is sup-

posed to play a significant role in osmotic adjustment

with regard to a reduction of osmotic potential due to the

accumulation of solutes, and enables cells to maintain

turgor during water deficit stresses (Ashraf and Foolad

2007; Lopez-Carrion et al. 2008). Our data indicated that

cucumber seedlings, treated with PAs, especially with

Spd, prior to water deficit, exhibited a definitely higher

stress-evoked proline accumulation. In turn, the induction

of proline accumulation might be an important mecha-

nism for plants to tolerate severe stress conditions (Ruan

et al. 2004).

It is well documented that PAs are able to induce

adaptive changes in water stressed plants; it is of the prime

importance to maintain plasma membrane integrity under

water deficit conditions. Pretreatment of cucumber roots

with PAs resulted in a distinct reduction of the injury index

and this observed PA effect was mirrored by a lower stress-

evoked LOX activity increase in stressed seedlings at a

severe water deficit. The other possible mechanism of the

PA mode of action is an osmotic adjustment due to the

accumulation of solutes, enabling cells to maintain turgor

during water shortage. In seedlings supplied with PAs prior

to stress, a significantly higher osmolyte-proline accumu-

lation was recorded.

It allows us to speculate that under water deficit stress

accumulated PAs could act as signal molecules and may

trigger efficient adaptive mechanisms, resulting in the

alleviation of negative drought effects. Additionally, these

root-sourced signaling molecules are able to play an

important role in root-to-shoot signaling and help to adapt

plants to drought and prevent crops from serious stress-

caused damages.
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Kubiś J (2006) Exogenous spermidine alters in different way

membrane permeability and lipid peroxidation in water stressed

barley leaves. Acta Physiol Plant 28:27–33
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