Skip to main content

Advertisement

Log in

The ABA-mediated switch between submersed and emersed life-styles in aquatic macrophytes

  • JPR Symposium
  • Opening a New Era of ABA Research
  • Published:
Journal of Plant Research Aims and scope Submit manuscript

Abstract

Hydrophytes comprise aquatic macrophytes from various taxa that are able to sustain and to complete their lifecycle in a flooded environment. Their ancestors, however, underwent adaptive processes to withstand drought on land and became partially or completely independent of water for sexual reproduction. Interestingly, the step backwards into the high-density aquatic medium happened independently several times in numerous plant taxa. For flowering plants, this submersed life-style is especially difficult as they need to erect their floral organs above the water surface to be pollinated. Moreover, fresh-water plants evolved the adaptive mechanism of heterophylly, which enabled them to switch between a submersed and an emersed leaf morphology. The plant hormone abscisic acid (ABA) is a key factor of heterophylly induction in aquatic plants and is a major switch between a submersed and emersed life. The mechanisms of ABA signal perception and transduction appear to be conserved throughout the evolution of basal plants to angiosperms and from terrestrial to aquatic plants. This review summarizes the interplay of environmental factors that act through ABA to orchestrate adaptation of plants to their aquatic environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Aarts MG, Keijzer CJ, Stiekema WJ, Pereira A (1995) Molecular characterization of the CER1 gene of Arabidopsis involved in epicuticular wax biosynthesis and pollen fertility. Plant Cell 7:2115–2127

    PubMed  CAS  Google Scholar 

  • Albert VA, Jobson RW, Michael TP, Taylor DJ (2010) The carnivorous bladderwort (Utricularia, Lentibulariaceae): a system inflates. J Exp Bot 61:5–9

    PubMed  CAS  Google Scholar 

  • Allsopp A (1951) Marsilea spp.: materials for the experimental study of morphogenesis. Nature 168:301–302

    PubMed  CAS  Google Scholar 

  • Bailey-Serres J, Voesenek LA (2010) Life in the balance: a signaling network controlling survival of flooding. Curr Opin Plant Biol 13:489–494

    PubMed  CAS  Google Scholar 

  • Bassaganya-Riera J, Skoneczka J, Kingston DG, Krishnan A, Misyak SA, Guri AJ, Pereira A, Carter AB, Minorsky P, Tumarkin R, Hontecillas R (2010) Mechanisms of action and medicinal applications of abscisic acid. Curr Med Chem 17:467–478

    PubMed  CAS  Google Scholar 

  • Bruni NC, Young JP, Dengler NG (1996) Leaf developmental plasticity of Ranunculus flabellaris in response to terrestrial and submerged environments. Can J Bot 74:823–837

    Google Scholar 

  • Casati P, Lara MV, Andreo CS (2000) Induction of a C(4)-like mechanism of CO(2) fixation in Egeria densa, a submersed aquatic species. Plant Physiol 123:1611–1622

    PubMed  CAS  Google Scholar 

  • Chen X, Pierik R, Peeters AJ, Poorter H, Visser EJ, Huber H, de Kroon H, Voesenek LA (2010) Endogenous abscisic acid as a key switch for natural variation in flooding-induced shoot elongation. Plant Physiol 154:969–977

    PubMed  CAS  Google Scholar 

  • Cook CDK (1996) Aquatic plant book. SPB Academic Publishing, Amsterdam

    Google Scholar 

  • Corner EJH (1964) The life of plants. Weidenfield and Nicolson, London

    Google Scholar 

  • Cutler SR, Rodriguez PL, Finkelstein RR, Abrams SR (2010) Abscisic acid: emergence of a core signaling network. Annu Rev Plant Biol 61:651–679

    PubMed  CAS  Google Scholar 

  • Davis GJ (1967) Proserpinaca: photoperiodic and chemical differentiation of leaf development and flowering. Plant Physiol 42:667–668

    PubMed  CAS  Google Scholar 

  • Deschamp PA, Cooke TJ (1985) Leaf dimorphism in the aquatic angiosperm Callitriche heterophylla. Am J Bot 72:1377–1387

    Google Scholar 

  • Dorken ME, Barrett SCH (2004) Phenotypic plasticity of vegetative and reproductive traits in monoecious and dioecious populations of Sagittaria latifolia (Alismataceae): a clonal aquatic plant. J Ecol 92:32–44

    Google Scholar 

  • Elzenga JT, Prins HB (1989) Light-induced polar pH changes in leaves of Elodea canadensis: I. Effects of carbon concentration and light intensity. Plant Physiol 91:62–67

    PubMed  CAS  Google Scholar 

  • Endress PK (2004) Structure and relationships of basal relictual angiosperms. Aust Syst Bot 17:343–366

    Google Scholar 

  • Endress PK (2010) The evolution of floral biology in basal angiosperms. Philos T R Soc B 365:411–421

    Google Scholar 

  • Estavillo GM, Rao SK, Reiskind JB, Bowes G (2007) Characterization of the NADP malic enzyme gene family in the facultative, single-cell C4 monocot Hydrilla verticillata. Photosynth Res 94:43–57

    PubMed  CAS  Google Scholar 

  • Fujita Y, Fujita M, Shinozaki K, Yamaguchi-Shinozaki K (2011) ABA-mediated transcriptional regulation in response to osmotic stress in plants. J Plant Res. doi:10.1007/s10265-011-0412-3

  • Gaudet JJ (1963) Marsilea vestita: conversion of the water form to the land form by darkness and by far-red light. Science 140:975–976

    PubMed  CAS  Google Scholar 

  • Gee D, Anderson LWJ (1996) ABA induced differences during leaf development in the aquatic angiosperm, Potamogeton nodosus, are detected with differential display. Plant Physiol 111:446–446

    Google Scholar 

  • Gee D, Anderson LWJ (1998) Influence of leaf age on responsiveness of Potamogeton nodosus to ABA-induced heterophylly. Plant Growth Regul 24:119–125

    CAS  Google Scholar 

  • Gifford EM, Foster A (1988) Morphology and evolution of vascular plants. Freeman, New York

    Google Scholar 

  • Givnish TJ, Sytsma KJ, Smith JF, Hahn WJ (1994) Thorn-like prickles and heterophylly in Cyanea: adaptations to extinct avian browsers on Hawaii? Proc Natl Acad Sci USA 91:2810–2814

    PubMed  CAS  Google Scholar 

  • Goda H, Sasaki E, Akiyama K, Maruyama-Nakashita A, Nakabayashi K, Li W, Ogawa M, Yamauchi Y, Preston J, Aoki K, Kiba T, Takatsuto S, Fujioka S, Asami T, Nakano T, Kato H, Mizuno T, Sakakibara H, Yamaguchi S, Nambara E, Kamiya Y, Takahashi H, Hirai MY, Sakurai T, Shinozaki K, Saito K, Yoshida S, Shimada Y (2008) The AtGenExpress hormone and chemical treatment data set: experimental design, data evaluation, model data analysis and data access. Plant J 55:526–542

    PubMed  CAS  Google Scholar 

  • Goliber TE (1989) Endogenous abscisic-acid content correlates with photon fluence rate and induced leaf morphology in Hippuris vulgaris. Plant Physiol 89:732–734

    PubMed  CAS  Google Scholar 

  • Goliber TE, Feldman LJ (1989) Osmotic stress, endogenous abscisic acid and the control of leaf morphology in Hippuris vulgaris L. Plant Cell Environ 12:163–171

    PubMed  CAS  Google Scholar 

  • Goliber TE, Feldman LJ (1990) Developmental analysis of leaf plasticity in the heterophyllous aquatic plant Hippuris vulgaris. Am J Bot 77:399–412

    Google Scholar 

  • Grefen C, Stadele K, Ruzicka K, Obrdlik P, Harter K, Horak J (2008) Subcellular localization and in vivo interactions of the Arabidopsis thaliana ethylene receptor family members. Mol Plant 1:308–320

    PubMed  CAS  Google Scholar 

  • Gunawardena AH, Greenwood JS, Dengler NG (2004) Programmed cell death remodels lace plant leaf shape during development. Plant Cell 16:60–73

    PubMed  CAS  Google Scholar 

  • Horn CN (1988) Developmental heterophylly in the genus Heteranthera (Pontederiaceae). Aquat Bot 31:197–209

    Google Scholar 

  • Hotta CT, Gardner MJ, Hubbard KE, Baek SJ, Dalchau N, Suhita D, Dodd AN, Webb AA (2007) Modulation of environmental responses of plants by circadian clocks. Plant Cell Environ 30:333–349

    PubMed  CAS  Google Scholar 

  • Hsu TC, Liu HC, Wang JS, Chen RW, Wang YC, Lin BL (2001) Early genes responsive to abscisic acid during heterophyllous induction in Marsilea quadrifolia. Plant Mol Biol 47:703–715

    PubMed  CAS  Google Scholar 

  • Hubbard KE, Nishimura N, Hitomi K, Getzoff ED, Schroeder JI (2010) Early abscisic acid signal transduction mechanisms: newly discovered components and newly emerging questions. Genes Dev 24:1695–1708

    PubMed  CAS  Google Scholar 

  • Hussner A (2009) Growth and photosynthesis of four invasive aquatic plant species in Europe. Weed Res 49:506–515

    Google Scholar 

  • Iwamoto A, Shimizu A, Ohba H (2003) Floral development and phyllotactic variation in Ceratophyllum demersum (Ceratophyllaceae). Am J Bot 90:1124–1130

    PubMed  Google Scholar 

  • Jackson MB (2008) Ethylene-promoted elongation: an adaptation to submergence stress. Ann Bot 101:229–248

    PubMed  CAS  Google Scholar 

  • Jackson MB, Ram PC (2003) Physiological and molecular basis of susceptibility and tolerance of rice plants to complete submergence. Ann Bot Lond 91:227–241

    CAS  Google Scholar 

  • Jakoby M, Weisshaar B, Droge-Laser W, Vicente-Carbajosa J, Tiedemann J, Kroj T, Parcy F (2002) bZIP transcription factors in Arabidopsis. Trends Plant Sci 7:106–111

    PubMed  CAS  Google Scholar 

  • Jo IS, Han DU, Cho YJ, Lee EJ (2010) Effects of light, temperature, and water depth on growth of a rare aquatic plant, Ranunculus kadzusensis. J Plant Biol 53:88–93

    Google Scholar 

  • Kane ME, Albert LS (1985) Hormonal basis for control of leaf morphology and venation in Hippuris vulgaris L. Am J Bot 72:819–819

    Google Scholar 

  • Kane ME, Albert LS (1987a) Abscisic-acid induces aerial leaf morphology and vasculature in submerged Hippuris vulgaris L. Aquat Bot 28:81–88

    CAS  Google Scholar 

  • Kane ME, Albert LS (1987b) Integrative regulation of leaf morphogenesis by gibberellic and abscisic acids in the aquatic angiosperm Proserpinaca palustris L. Aquat Bot 28:89–96

    CAS  Google Scholar 

  • Kane ME, Albert LS (1989) Abscisic-acid induction of aerial leaf development in Myriophyllum and Proserpinaca species cultured invitro. J Aquat Plant Manage 27:102–111

    Google Scholar 

  • Kao WY, Lin BL (2010) Phototropic leaf movements and photosynthetic performance in an amphibious fern, Marsilea quadrifolia. J Plant Res 123:645–653

    PubMed  Google Scholar 

  • Kato Y, Aioi K, Omori Y, Takahata N, Satta Y (2003) Phylogenetic analyses of Zostera species based on rbcL and matK nucleotide sequences: implications for the origin and diversification of seagrasses in Japanese waters. Genes Genet Syst 78:329–342

    PubMed  CAS  Google Scholar 

  • Keeley JE (1998) CAM photosynthesis in submerged aquatic plants. Bot Rev 64:121–175

    Google Scholar 

  • Kende H (1987) Studies on internodal growth using deep-water rice. In: Cosgrove DJ, Knievel DP (eds) Physiology of cell expansion during growth. American Society of Plant Physiologists, Rockville, pp 227–238

    Google Scholar 

  • Kilian J, Whitehead D, Horak J, Wanke D, Weinl S, Batistic O, D’Angelo C, Bornberg-Bauer E, Kudla J, Harter K (2007) The AtGenExpress global stress expression data set: protocols, evaluation and model data analysis of UV-B light, drought and cold stress responses. Plant J 50:347–363

    PubMed  CAS  Google Scholar 

  • Klavsen SK, Maberly SC (2009) Crassulacean acid metabolism contributes significantly to the in situ carbon budget in a population of the invasive aquatic macrophyte Crassula helmsii. Freshw Biol 54:105–118

    CAS  Google Scholar 

  • Klavsen SK, Maberly SC (2010) Effect of light and CO2 on inorganic carbon uptake in the invasive aquatic CAM-plant Crassula helmsii. Funct Plant Biol 37:737–747

    CAS  Google Scholar 

  • Kobayashi Y, Weigel D (2007) Move on up, it’s time for change—mobile signals controlling photoperiod-dependent flowering. Genes Dev 21:2371–2384

    PubMed  CAS  Google Scholar 

  • Kreps JA, Kay SA (1997) Coordination of plant metabolism and development by the circadian clock. Plant Cell 9:1235–1244

    PubMed  CAS  Google Scholar 

  • Kuwabara A, Nagata T (2006) Cellular basis of developmental plasticity observed in heterophyllous leaf formation of Ludwigia arcuata (Onagraceae). Planta 224:761–770

    PubMed  CAS  Google Scholar 

  • Kuwabara A, Tsukaya H, Nagata T (2001) Identification of factors that cause heterophylly in Ludwigia arcuata Walt. (Onagraceae). Plant Biol 3:98–105

    Google Scholar 

  • Kuwabara A, Ikegami K, Koshiba T, Nagata T (2003) Effects of ethylene and abscisic acid upon heterophylly in Ludwigia arcuata (Onagraceae). Planta 217:880–887

    PubMed  CAS  Google Scholar 

  • Lai C, Kunst L, Jetter R (2007) Composition of alkyl esters in the cuticular wax on inflorescence stems of Arabidopsis thaliana cer mutants. Plant J 50:189–196

    PubMed  CAS  Google Scholar 

  • Legnaioli T, Cuevas J, Mas P (2009) TOC1 functions as a molecular switch connecting the circadian clock with plant responses to drought. EMBO J 28:3745–3757

    PubMed  CAS  Google Scholar 

  • Leigh A, Zwieniecki MA, Rockwell FE, Boyce CK, Nicotra AB, Holbrook NM (2011) Structural and hydraulic correlates of heterophylly in Ginkgo biloba. New Phytol 189:459–470

    PubMed  CAS  Google Scholar 

  • Les DH, Garvin DK, Wimpee CF (1993) Phylogenetic studies in the monocot subclass Alismatidae: evidence for a reappraisal of the aquatic order Najadales. Mol Phylogenet Evol 2:304–314

    PubMed  CAS  Google Scholar 

  • Les DH, Landolt E, Crawford DJ (1997) Systematics of the Lemnaceae (duckweeds): inferences from micromolecular and morphological data. Plant Syst Evol 204:161–177

    Google Scholar 

  • Lin B-L (2002) Heterophylly in aquatic plants. In: Taiz LaZ, E (ed) Plant Physiology, vol. Essay 23.1. Sinauer, Sunderland

  • Lin BL, Yang WJ (1999) Blue light and abscisic acid independently induce heterophyllous switch in Marsilea quadrifolia. Plant Physiol 119:429–434

    PubMed  CAS  Google Scholar 

  • Lin BL, Wang HJ, Wang JS, Zaharia LI, Abrams SR (2005) Abscisic acid regulation of heterophylly in Marsilea quadrifolia L.: effects of R-(−) and S-(+) isomers. J Exp Bot 56:2935–2948

    PubMed  CAS  Google Scholar 

  • Lord CE, Gunawardena AH (2011) Environmentally induced programmed cell death in leaf protoplasts of Aponogeton madagascariensis. Planta 233:407–421

    PubMed  CAS  Google Scholar 

  • Madsen TV (1987) Interaction between internal and external CO2 pools in the photosynthesis of the aquatic CAM plants Littorella uniflora (L.) and Isoetes lacustris (L.). New Phytol 106:35–50

    Google Scholar 

  • Madsen TV, Sandjensen K (1994) The interactive effects of light and inorganic carbon on aquatic plant-growth. Plant Cell Environ 17:955–962

    CAS  Google Scholar 

  • Meller B, van Bergen PF (2003) The problematic systematic position of Ceratostratiotes Gregor (Hydrocharitaceae?)—morphological, anatomical and biochemical comparison with Stratiotes L. Plant Syst Evol 236:125–150

    Google Scholar 

  • Minorsky PV (2003) The hot and the classic. Plant Physiol 132:25–26

    PubMed  CAS  Google Scholar 

  • Mizuno T, Yamashino T (2008) Comparative transcriptome of diurnally oscillating genes and hormone-responsive genes in Arabidopsis thaliana: insight into circadian clock-controlled daily responses to common ambient stresses in plants. Plant Cell Physiol 49:481–487

    PubMed  CAS  Google Scholar 

  • Mommer L, Visser EJ (2005) Underwater photosynthesis in flooded terrestrial plants: a matter of leaf plasticity. Ann Bot 96:581–589

    PubMed  CAS  Google Scholar 

  • Mommer L, Wolters-Arts M, Andersen C, Visser EJ, Pedersen O (2007) Submergence-induced leaf acclimation in terrestrial species varying in flooding tolerance. New Phytol 176:337–345

    PubMed  Google Scholar 

  • Mulkey SS, Smith AP, Wright SJ, Machado JL, Dudley R (1992) Contrasting leaf phenotypes control seasonal variation in water loss in a tropical forest shrub. Proc Natl Acad Sci USA 89:9084–9088

    PubMed  CAS  Google Scholar 

  • Nemhauser JL, Hong F, Chory J (2006) Different plant hormones regulate similar processes through largely nonoverlapping transcriptional responses. Cell 126:467–475

    PubMed  CAS  Google Scholar 

  • Orgaard M, Van Bruggen HWE, Van Der Vlugt PJ (1992) Die Familie Cabombaceae (Cabomba und Brasenia). VDA-Arbeitskreis Wasserpflanzen, Berlin

    Google Scholar 

  • Peschke F, Kretsch T (2011) Genome-wide analysis of light-dependent transcript accumulation patterns during early stages of Arabidopsis seedling deetiolation. Plant Physiol 155:1353–1366

    PubMed  CAS  Google Scholar 

  • Prance GTP (1985) Leaves: the formation, characteristics and uses of hundreds of leaves found in all parts of the world. Crown, New York

    Google Scholar 

  • Puijalon S, Bornette G (2006) Phenotypic plasticity and mechanical stress: biomass partitioning and clonal growth of an aquatic plant species. Am J Bot 93:1090–1099

    PubMed  Google Scholar 

  • Puijalon S, Bornette G, Sagnes P (2005) Adaptations to increasing hydraulic stress: morphology, hydrodynamics and fitness of two higher aquatic plant species. J Exp Bot 56:777–786

    PubMed  CAS  Google Scholar 

  • Puijalon S, Lena JP, Riviere N, Champagne JY, Rostan JC, Bornette G (2008) Phenotypic plasticity in response to mechanical stress: hydrodynamic performance and fitness of four aquatic plant species. New Phytol 177:907–917

    PubMed  Google Scholar 

  • Rao S, Reiskind J, Bowes G (2006) Light regulation of the photosynthetic phosphoenolpyruvate carboxylase (PEPC) in Hydrilla verticillata. Plant Cell Physiol 47:1206–1216

    PubMed  CAS  Google Scholar 

  • Rascio N, Cuccato F, Dalla Vecchia F, La Rocca N, Larcher W (1999) Structural and functional features of leaves of Ranunculus trichophyllus Chaix., a freshwater submerged macrophyte. Plant Cell Environ 22:205–212

    Google Scholar 

  • Rattray MR, Webb DR, Brown JMA (1992) Light effects on Crassulacean acid metabolism in the submerged aquatic plant Isoetes kirkii Braun A. A New Zeal J Mar Fresh 26:465–470

    CAS  Google Scholar 

  • Robe WE, Griffiths H (1990) Photosynthesis of Littorella uniflora grown under two PAR regimes: C3 and CAM gas exchange and he regulation of internal CO2 and O2 concentrations. Oecologia 85:128–136

    Google Scholar 

  • Santamaria L, Figuerola J, Pilon JJ, Mjelde M, Green AJ, De Boer T, King RA, Gornall RJ (2003) Plant performance across latitude: the role of plasticity and local adaptation in an aquatic plant. Ecology 84:2454–2461

    Google Scholar 

  • Santos MJ, Anderson LW, Ustin SL (2011) Effects of invasive species on plant communities: an example using submersed aquatic plants at the regional scale. Biol Invasions 13:443–457

    Google Scholar 

  • Sato M, Tsutsumi M, Ohtsubo A, Nishii K, Kuwabara A, Nagata T (2008) Temperature-dependent changes of cell shape during heterophyllous leaf formation in Ludwigia arcuata (Onagraceae). Planta 228:27–36

    PubMed  CAS  Google Scholar 

  • Schiller P, Heilmeier H, Hartung W (1997) Abscisic acid (ABA) relations in the aquatic resurrection plant Chamaegigas intrepidus under naturally fluctuating environmental conditions. New Phytol 136:603–611

    CAS  Google Scholar 

  • Sculthorpe CD (1967) The biology of vascular plants. Palgrave Macmillan, New York

    Google Scholar 

  • Shan H, Zahn L, Guindon S, Wall PK, Kong H, Ma H, DePamphilis CW, Leebens-Mack J (2009) Evolution of plant MADS box transcription factors: evidence for shifts in selection associated with early angiosperm diversification and concerted gene duplications. Mol Biol Evol 26:2229–2244

    PubMed  CAS  Google Scholar 

  • Sharma BD, Harsh R (1995) Diurnal acid metabolism in the submerged aquatic plant, Isoetes tuberculata. Am Fern J 85:58–60

    Google Scholar 

  • Sifton HB (1945) Air-space tissue in plants. Bot Rev 11:108–143

    Google Scholar 

  • Smykowski A, Zimmermann P, Zentgraf U (2010) G-Box binding factor1 reduces CATALASE2 expression and regulates the onset of leaf senescence in Arabidopsis. Plant Physiol 153:1321–1331

    PubMed  CAS  Google Scholar 

  • Soltis PS, Brockington SF, Yoo MJ, Piedrahita A, Latvis M, Moore MJ, Chanderbali AS, Soltis DE (2009) Floral variation and floral genetics in basal angiosperms. Am J Bot 96:110–128

    PubMed  Google Scholar 

  • Spencer DF, Anderson LWJ (1987) Influence of photoperiod on growth, pigment composition and vegetative propagule formation for Potamogeton nodosus Poir and Potamogeton pectinatus L. Aquat Bot 28:103–112

    CAS  Google Scholar 

  • Strand JA, Weisner SEB (2001) Morphological plastic responses to water depth and wave exposure in an aquatic plant (Myriophyllum spicatum). J Ecol 89:166–175

    Google Scholar 

  • Takezawa D, Komatsu K, Sakata Y (2011) ABA in bryophytes: how a universal growth regulator in life became a plant hormone? J Plant Res. doi:10.1007/s10265-011-0410-5

  • Tzeng TY, Chen HY, Yang CH (2002) Ectopic expression of carpel-specific MADS box genes from lily and lisianthus causes similar homeotic conversion of sepal and petal in Arabidopsis. Plant Physiol 130:1827–1836

    PubMed  CAS  Google Scholar 

  • Villani PJ, Etnier SA (2008) Natural history of heterophylly in Nymphaea odorata ssp. tuberosa (Nymphaeaceae). Northeast Nat 15:177–188

    Google Scholar 

  • Visser EJW, Nabben RHM, Blom CWPM, Voesnek LA (1997) Elongation by primary lateral roots and adventitious roots during conditions of hypoxia and high ethylene concentration. Plant Cell Environ 20:647–653

    CAS  Google Scholar 

  • Voesnek LA, Benschop JJ, Bou J, Cox MC, Groeneveld HW, Milennaar FF, Vreeburg RA, Peeters AJ (2003) Interactions between plant hormones regulate submergence-induced shoot elongation in the flooding-tolerant dicot Rumex palustris. Ann Bot Lond 91:205–2011

    Google Scholar 

  • Wanke D, Berendzen KW, Kilian J, Harter K (2009) Insights into Arabidopsis abiotic stress response from the AtGenExpress expression profile dataset. In: Hirt H (ed) Plant stress biology. Wiley, Weinheim, pp 199–225

    Google Scholar 

  • Winn AA (1999) The functional significance and fitness consequences of heterophylly. Int J Plant Sci 160:S113–S121

    PubMed  Google Scholar 

  • Wissler L, Codoner FM, Gu J, Reusch TB, Olsen JL, Procaccini G, Bornberg-Bauer E (2011) Back to the sea twice: identifying candidate plant genes for molecular evolution to marine life. BMC Evol Biol 11:8

    PubMed  Google Scholar 

  • Zahn LM, Leebens-Mack JH, Arrington JM, Hu Y, Landherr LL, dePamphilis CW, Becker A, Theissen G, Ma H (2006) Conservation and divergence in the AGAMOUS subfamily of MADS-box genes: evidence of independent sub- and neofunctionalization events. Evol Dev 8:30–45

    PubMed  CAS  Google Scholar 

  • Zanewich KP, Rood SB, Williams PH (1990) Growth and development of Brassica genotypes differing in endogenous gibberellin content. I. Leaf and reproductive development. Physiol Plant 79:673–678

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dierk Wanke.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wanke, D. The ABA-mediated switch between submersed and emersed life-styles in aquatic macrophytes. J Plant Res 124, 467–475 (2011). https://doi.org/10.1007/s10265-011-0434-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10265-011-0434-x

Keywords

Navigation