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Abstract Trabecular bone plays an important mechanical
role in bone fractures and implant stability. Homogenized
nonlinear finite element (FE) analysis of whole bones can
deliver improved fracture risk and implant loosening assess-
ment. Such simulations require the knowledge of mechanical
properties such as an appropriate yield behavior and criterion
for trabecular bone. Identification of a complete yield surface
is extremely difficult experimentally but can be achieved in
silico by using micro-FE analysis on cubical trabecular vol-
ume elements. Nevertheless, the influence of the boundary
conditions (BCs), which are applied to such volume ele-
ments, on the obtained yield properties remains unknown.
Therefore, this study compared homogenized yield proper-
ties along 17 load cases of 126 human femoral trabecular
cubic specimens computed with classical kinematic uniform
BCs (KUBCs) and a new set of mixed uniform BCs, namely
periodicity-compatible mixed uniform BCs (PMUBCs). In
stress space, PMUBCs lead to 7-72 % lower yield stresses
compared to KUBCs. The yield surfaces obtained with
both KUBCs and PMUBCs demonstrate a pressure-sensitive
ellipsoidal shape. A volume fraction and fabric-based quadric
yield function successfully fitted the yield surfaces of both
BCs with a correlation coefficient R > 0.93. As expected,
yield strains show only a weak dependency on bone volume
fraction and fabric. The role of the two BCs in homogenized
FE analysis of whole bones will need to be investigated and
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validated with experimental results at the whole bone level
in future studies.

Keywords Yield criterion - Boundary conditions - Finite
element analysis - Trabecular bone - Femur

1 Introduction

Trabecular bone plays an important mechanical role in
osteoporosis-related fractures and implant fixation. Among
other fractures, hip fractures are most severe (World Health
Organization 2003; Sambrook and Cooper 2006). They lead
to high morbidity and mortality as well as great personal
and socioeconomic costs. Homogenized finite element (FE)
analysis can improve bone strength assessment (Dall’ Ara
et al. 2012, 2013) and implant stability prediction (Steiner
et al. 2015), but it requires accurate knowledge of the appar-
ent elastic and yield behavior of trabecular bone. Identifying
a complete yield surface necessitates yield points from mul-
tiple uniaxial, shear and multiaxial load cases. Additionally,
the broad heterogeneity of trabecular bone requires numer-
ous specimens for each load case. Rincén-Kohli and Zysset
(2008) performed uniaxial and multiaxial experiments on
110 trabecular bone cylinders, and the yield data fitted to a
piecewise generalized Hill criterion. However, in vitro, only
a few multiaxial load cases could be performed (Keaveny
et al. 1999; Rincén-Kohli and Zysset 2008), and sequential
yield tests on the same intact specimen are not possible.
Micro-finite element (WFE) analysis can overcome these
limitations (Niebur et al. 2000, 2002). Niebur et al. (2000)
developed and validated a simulation technique for trabecular
bone yielding using WFE analysis. Thereafter, nonlinear pFE
simulations were used in several investigations on various
bones (Niebur et al. 2002; Stolken and Kinney 2003; Verhulp
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etal. 2008; MacNeil and Boyd 2008). Moreover, yield criteria
for human trabecular bone have been assessed by using WFE
analysis (Bayraktar et al. 2005; Wolfram et al. 2012; Sanyal
et al. 2015). Bayraktar et al. (2005) applied an isotropic
modified super-ellipsoid criterion in strain space to 3 human
femoral trabecular bone specimens with high volume fraction
(BV/TV). Subsequently, Wolfram et al. (2012) successfully
identified a BV/TV and fabric-based Tsai—Wu criterion in
stress and strain space for 23 human vertebral trabecular
samples. However, the data covered a low BV/TV range of
0.06-0.15 and included only vertebral bone. Recently, Sanyal
etal. (2015) determined yield properties in 10 human trabec-
ular bone samples from three anatomical sites with a broad
range of morphology. They proposed a quartic piecewise-
linear criterion that also accounts for trabecular bone density
and anisotropy. Nonetheless, the number of samples studied
remains small and the definition of yield is different.

In the studies mentioned above, different yield constants
were identified according to the shape of a selected yield
criterion. Schwiedrzik et al. (2013) introduced a generalized
anisotropic quadric yield criterion defined with only 6 para-
meters. With this criterion, the shape of the yield envelope
does not need to be assumed beforehand since its minimiza-
tion results in the optimal shape among the convex quadrics
from a sphere, an ellipsoid to a cone. In addition, the previ-
ous studies applied exclusively kinematic uniform boundary
conditions. In homogenization theory, boundary conditions
(BCs) strongly influence the apparent elastic and post-yield
properties of heterogeneous materials (Pahr and Zysset 2008;
Panyasantisuk et al. 2015). The three boundary conditions
that fulfill Hill’s condition for non-periodic random media
(Hazanov and Amieur 1995; Ostoja-Starzewski 2006) are:

(a) kinematic uniform BCs (KUBCs), in which the bound-
ary nodes are constrained to displace uniformly;

(b) static uniform BCs (SUBCs), in which the boundary
nodes are constrained with uniform traction; and

(c) mixed uniform BCs (MUBCs), which combine uniform
displacement and traction constraints.

KUBCs and SUBCs provide, respectively, the upper and
lower bounds of the apparent stiffness tensors (Hazanov and
Huet 1994), but unfortunately, SUBCs provide a very poor
lower bound (Pahr and Zysset 2008). Pahr and Zysset (2008)
showed that a set of MUBCs, namely periodicity-compatible
MUBCs (PMUBC:s), results in effective properties when the
cubic volume element faces coincide with orthotropic sym-
metry planes of the volume element (Pahr and Zysset 2008).
Our previous study (Panyasantisuk et al. 2015) compared
the elastic behavior of PMUBCs and KUBCs. Our results
showed that PMUBCs deliver more compliant elastic prop-
erties than KUBCs, and the difference between PMUBCs and
KUBC:s decreases with increasing BV/TV and fabric eigen-

@ Springer

value. However, the influence of BCs on the yield properties
remains unknown.

In this context, the aim of this study is to compare the
BV/TV and fabric-based quadric yield properties of femoral
trabecular bone obtained by using KUBCs and PMUBCs in
a large number of WFE models.

2 Theoretical model

A fabric tensor M is defined with eigenvalues m; and eigen-
vectors m; (Cowin 1985; Harrigan et al. 1988) with a
normalization tr(M) = 3.

3 3
M= mM; = > m;m ®m,) M

i=1 i=1

A generalized anisotropic quadric yield criterion in stress
space (Schwiedrzik et al. 2013) is given by:

YS):=+vS:FS+F:S—1=0 2)

where S is the infinitesimal Cauchy stress tensor as only
small rotations and small strains are expected for yield at
the apparent level. The fourth-order tensor F and the second-
order tensor F in the case of general orthotropy are expressed
with:
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The uniaxial strengths in tension al.J[ and in compression o, ;
in the main directions are calculated with:
+ 2q

— ot oP -
0;j =0 prm;~, 0y

- 2
=0y Ppm,'q (6)
where a&L and o, are tissue yield stresses that correspond to
a virtual case with p = 1 and M = I. The constants p and
q are power coefficients. The interaction parameter ¢;; of F
and the shear strength 7;; are calculated with:



Effect of boundary conditions on yield properties of human femoral trabecular bone

2q
j q...49
Gij = S0—5g> Tij = Top’m;m; (7)
m;

where ¢ is a stress interaction coefficient and ty is the tissue
shear strength. The parameters 00+ , 0y » 70, 0, p and g are
obtained from the fitting procedure.

For representation of different samples, the stress tensor
can be normalized with respect to fabric and density (Wol-
fram et al. 2012; Schwiedrzik et al. 2013):
~  MTISM™1
S=—— (®)

IoP
and the criterion can be written in normalized stress space
as:

YS):=yS:FS+F:S—1=0 9)

where the tensors I and F exhibit cubic symmetry
(Schwiedrzik et al. 2013) and become independent of vol-
ume fraction and fabric.

The yield criterion in strain space can be written in an
analogous way as:

YE) =vE:GE+G:E—-1=0 (10)

where E is the infinitesimal strain tensor. The fourth-order
tensor G and the second-order tensor G contain the model
parameters.

The uniaxial ultimate strains in tension 8;’1-_ and in com-
pression g;; are calculated with:

+ _ A+ u L 2v — 0 = U2V
Eii =& p M, & =& pm, (11)

where 50+ and g, are tissue tensile and compressive yield
strains, and u and v are power coefficients. The interaction
parameter &;; of G and the shear strain y;; are calculated
with:

2v

ml
&ij = %o _m?” :

Yij = yop“m;m} (12)

where &y is a strain interaction coefficient, and yq is the
shear yield strain. The parameters 80+ » & » Y0, §0, u and v
are obtained from fitting procedure.

3 Materials and methods

Three proximal femora from two female donors (62 and
75) were studied. The bones were free of bone patholo-
gies. Collection and preparation procedures were approved
by the ethics commission of the Medical University of Vienna

(Dall’ Ara et al. 2013). Bone sections from the femoral heads
were scanned with micro-computed tomography (LCT 40,
SCANCO Medial AG, Briittisellen, Switzerland) with a res-
olution of 18 pm. The scanning and extraction procedure is
explained in detail by Dall’Ara et al. (2013).

Trabecular regions were cropped from these sections,
and 167 cubic regions of interest (ROI) with a side length
of 9.2mm were obtained. Since PMUBCs require that the
microstructures of the volumes of interest are aligned with
the orthotropic symmetry planes, the ROIs were rotated iter-
atively so that the fabric tensor principal axes of an inner
cubic subregion with 5.3-mm side length were aligned with
its edges. The fabric tensor was evaluated by using the mean
intercept length (MIL) method (Harrigan and Mann 1984;
Whitehouse 1974). The degree of anisotropy (DA) equals the
maximum fabric eigenvalue over the minimum fabric eigen-
value. A linear interpolation scheme was used in the image
rotation. After rotation, cubic subregions with a side length
of 5.3 mm were cropped, coarsened to a resolution of 36 jum,
segmented by using a single-level threshold (Riedler and Cal-
vard 1978) and cleaned by removing unconnected regions.
Bone volume fraction (BV/TV) was computed by voxel
counting. Then, WFE models were generated by converting
directly the image voxels to eight-node linear hexahedral ele-
ments. Our previous study found that stiffness computed with
PMUBGC:s is sensitive to heterogeneity. Accordingly, highly
heterogeneous samples were excluded from the data set by
using the coefficient of variation of BV/TV within each cubic
biopsy as a criterion (Panyasantisuk et al. 2015). Each bone
cube was divided equally into eight cubic subregions, and
BV/TV was calculated for each subregion. The coefficient
of variation equals the standard deviation over the mean of
BV/TV. Bone cubes with coefficients of variation greater
than 0.263 were excluded from the data set. The remaining
126 cubic subregions were used for homogenization analysis
(Panyasantisuk et al. 2015) and reutilized in this study. The
resulting data set has a mean BV/TV (%standard deviation,
range) of 0.27 (£0.08, 0.12-0.40) and a mean DA of 1.57
(£0.18, 1.17-2.14).

Nonlinear . FE analyses of the trabecular bone cubes were
performed by applying displacement-controlled KUBCs or
PMUBC:s with the parallel version of the FEAP (ParFEAP)
software. For this purpose, 17 load cases (Table 1) includ-
ing 3 uniaxial tension, 3 uniaxial compression, 3 shear and
8 multiaxial normal loading were applied on the trabecular
bone samples (Wolfram et al. 2012). An isotropic elasto-
plastic material model (Schwiedrzik and Zysset 2012) based
on Green—Lagrange strain and the second Piola—Kirchhoff
stress were used for tissue material. Each element was
assigned an elastic modulus of 10 GPa (Schwiedrzik et al.
2015), a Poisson’s ratio of 0.3, an approximated Drucker—
Prager yield surface (Schwiedrzik et al. 2013) with tissue
yield strain of 0.54 % in tension and 0.81 % in compression,
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Table 1 Seventeen load cases tested on each trabecular bone sample.
+S;; is applied stress in ¢; ® e direction where i, j = 1,2, 3

l e1®er e®@e e3Qe3 e1®ey e ®e3 Qe
L +Sn - - - - -

2 - +S22 - - - -

30 - - +S33 - - -

4 —S11 - - - - -

5 - —S2» - - - -

6 - - —S33 - - -

7 - - - —Si2 - -

8 - - - - —-S13 -

9 - - - - - —S23
10 +Sp +S22 +533 - - -

11 =Sy +S22 +S33 - - -

12 +Si —S» +S33 - - -

13 +Sn +S22 —S33 - - -

14 +Sp; —S» —S33 - - -

15 =Sp +S22 —S33 - - -

16 —Si ) +S33 - - -

17 =Sn —S» —S33 - - -

a linear hardening of 5 % of the elastic modulus and an inter-
action parameter of 0.49 (Gross 2014; Schwiedrzik et al.
2015).

Image processing and FE model generation were done
with the software MEDTOOL (Dr. Pahr Ingenieurs e.U, Aus-
tria).

The applied displacement of each load case was related to
a unit stress direction S! of that load case where [ = 1,...,171s
load case number (Wolfram et al. 2012), as shown in Table 1.
For example, the unit stress direction of the triaxial tension
load case (I = 10) was given by:

&10 1
S7=—(1®e+exQer+e3Qe3) (13)

V3

Subsequently, a unit strain tensor E! associated with the
unit stress direction §' was calculated with:

5 _ BS
IES!|

(14)

where [E is the anisotropic compliance tensor. For progressive
application of the load cases, the unit strain tensor E/ was
amplified with a coefficient X to obtain a small-strain tensor
E'.

E = AE! (15)

Displacements based on E! were applied on boundaries
according to KUBCs and PMUBCs, which are explained in
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detail by Pahr and Zysset (2008). From the output of the W FE
simulations, the apparent Cauchy stress tensor S{;E of each
trabecular bone sample was calculated by using the stress
volume averages (Pahr and Zysset 2008). The apparent stress
S{_-E is then projected to the assigned stress direction S to
calculate a projected stress SlFE

N (16)

The yield stress yS{:E and yield strain yE{:E were determined
by using a 0.2 % offset of the projected stress Si:E and strain
norm ||E'|| = vE! : E'. The computed ¥S; of KUBCs and
PMUBCs were compared in a one-to-one relationship. A nor-
malized error NExypc_pmusc describes the difference in
VS{;E between the two BCs in percent:

ygl
SKUBC

7
YSpmusce

[
- SPMUBC (17)

NEkuBc-pmusc = 100 -

The predicted yield stress yS6C can be extracted from the

yield criterion using the direction S':

(18)

Sc—
C S FS +F:§

The error between computed yS{DE and predicted y86C was
minimized in the log space:

N LC

. yQ!
M (2 2005

n=1[=1

W)= 1n<yleC,,,))2)
(19)

N is the number of samples and LC is the number of load
cases. Firstly, the KUBC-based and PMUBC-based yield
stresses were fitted to the quadric yield function separately to
obtain two individual sets of fitting parameters. The variation
between yS%E and ySlQC is expressed by the normalized error
NEfg—qc in percent:

N I
D=1 Il(ySFEn ySQCn)2

Zn 1 Z (ySFE n

NEpgg_qc = 100 - (20)

For the comparison of cro+ , 0 » To and ¢o between KUBCs
and PMUBCs, a minimization was then performed so that
the two BCs share the same exponents p and g. Furthermore,
the pooled KUBC-based and PMUBC-based yield stresses
were fitted to obtain a single set of the six fitting parameters.
Similarly, yield strains were fitted to the quadric criterion
in strain space. Figure 1 summarizes the nonlinear analysis
methodology of the current study showing the triaxial tension
load case and a comparison between yield surfaces of KUBCs
and PMUBC:s in stress space.
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Fig. 1 Nonlinear analysis methodology of femoral trabecular bone
cubic specimens comparing yield surfaces of KUBCs and PMUBC:s in
stress space. The variables u;, t;, e; and Sii are displacements, tractions,
unit directions and normalized stress tensor components, respectively

4 Results
4.1 Stress space

PMUBC:s lead to lower homogenized yield stresses com-
pared to KUBCs but the two BCs are linearly related in the log
space. Figure 2 shows the relationship between KUBC-based
and PMUBC-based yield stresses. The global regression
equation reads y = 1.18x — 0.72 with a coefficient of deter-
mination (r2) of 0.95 and SEE of 0.006. Yield stresses of
the two BCs have a concordance correlation coefficient ()
of 0.82. As Fig. 3 reveals, the difference NExupc—pMUBC
decreases with increasing BV/TV and increasing fabric
eigenvalues. Linear regressions confirm that the decrease is
highly significant for all load case groups (p < 0.001). The
ranges of NExupc—pmusc are 7-59 % for traction, 10-66 %
for compression, 1672 % for shear and 12—68 % for multi-
axial load cases.

The quadric yield criterion successfully fitted both KUBC-
based and PMUBC-based yield stresses. Table 2 shows the
homogenized fitting parameters in stress space. Sets 1 and
2 were obtained from fitting separately yield stresses of
KUBCs and PMUBCs, respectively. PMUBC-based expo-

Traction (T)

Compression (C)

— 4.0 — 4.0
«© «
£ Y, g 4
g / g
=] =}
= 2.0 = 2.0t
/\0 v /-21 /s ¥
g 4 g .
= L/ = @
» & 7, © & 7
L8 0.0 .2 18 ool 7
wn - 7 wn - 7’
t/ 7 t/ 7
E A : E /L .
0.0 2.0 4.0 0.0 2.0 4.0
In(*Siieype) [In(MPa)] (" Sigeype) In(MPa)]
— 4.0 Shear (S) — 4.0 Multiaxial M)
« «
a J ¥ &
=} 4 =}
= 2.0 W = 2.0t
) 4 - p
g . N .
5 L 5 »
C\”é‘ i c‘[‘% 4
& 0.0 L7 w0.0F L
\>>_/ 7 \>>_/ z
=  / ‘ = C/ :
0.0 2.0 4.0 0.0 2.0 4.0
I('SE52nc) [I(MPa)] In('Sifan.) In(MPa)]

Fig. 2 Comparison of WFE yield stresses based on KUBCs and
PMUBC:s in the log space. The global regression of all 17 load cases
illustrated by the solid lines. PMUBC:s lead to lower yield stresses com-
pared to KUBCs

80.0

60.0

40.0

NExusc-pmusc [%]

20.0

0.0
0.1

0.2

80.0

60.0

40.0

20.0

NExysc-pmusc [%]

Fig. 3 a Relationship of the difference NExypc—pmusc and BV/TV:
NExuBc-pmuBc decreases with increasing BV/TV. Shear yield stresses
have the highest difference; b the relationship of NExypc—pmupc and
fabric: NExusc—pmuBc decreases with increasing fabric eigenvalues.
T, C, S and M denote traction, compression, shear and multiaxial load
cases. The regression slopes were found to be significantly lower than
zero for all load case groups
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Table 2 Quadric yield criterion parameters, standard errors of the
estimate and coefficients of determination obtained by fitting (1)
KUBC-based yield stresses separately, (2) PMUBC-based yield stresses
separately, (3) pooled KUBC-based and PMUBC-based yield stresses

so that only the exponents p and ¢ are shared between the two para-
meter sets, and (4) pooled KUBC-based and PMUBC-based yield
stresses

Set 00+ oy 70 %o )4 q SEE r?
1 KUBCs 49.00 64.57 31.11 0.30 1.50 0.71 0.005 0.95
PMUBCs 57.69 73.10 29.61 0.28 1.82 0.98 0.006 0.93
KUBCs 62.37 82.09 39.04 0.32 1.66 0.85 0.004 0.93
PMUBCs 45.25 57.42 23.60 0.26
4 KUBCs and PMUBCs 53.12 68.70 30.36 0.29 1.66 0.85 0.006 0.85
nents p and g (Set 2) are 20% and 38% higher than those 4.0 2= 0.95
of KUBC:s (Set 1). Sets 3 and 4 were obtained from pooled NEFE-éc =10.41% )
yield stresses of KUBCs and PMUBC:s. In Set 3, KUBCs and = 3.0
PMUBC:s share the same exponents p and ¢, but have sepa- &
rate sets of o(;r , 04 » To and ¢p, which are substantially higher %
in KUBCs than in PMUBC:s. The differences with respect to = 20
PMUBC:s are 38, 42 and 65 % for 0’8_ , 0o and T, respec- ;E
tively. Set 4 is an average over yield stresses of the two BCs. < T
Figure 4 shows the linear regressions of the relationship = 10 : CS:
between the predicted ySlQC and computed ySé-E based on A oM
KUBCs (Fig. 4a) and PMUBC:s (Fig. 4b) in which the pre- 0.0 L0
dicted ySé)C were calculated by using the parameters in Sets 0.0 1.0 2.0 3.0 4.0
1 and 2, respectively. In(*Sqc) [In(MPa)]
Yield surfaces based on the parameters in Set 3 were illus- (a) KUBCs
trated in 3D and 2D as seen in Figs. 5 and 6, respectively.
The two yield surfaces have a pressure-sensitive ellipsoidal 2= 0.. 93
shape. The amplitude of the KUBC-based yield surface is 3.0 NErg.qc= 15.17%
37-84 % larger than the PMUBC-based one, and the largest -
difference is in the hydrostatic direction. § 2.0
g
4.2 Strain space E i
< °T
. . .. . = ] mC
Yield strains have lower variations compared to yield 0.0 e s s
stresses. Figure 7 shows the relationship between KUBC- ot A oM
based and PMUBC-based yield strains in the log space. The 1.0 , . ‘
-1.0 0.0 1.0 2.0 3.0

global regression equation is y = x — 0.04. The regression
has r2 of 0.88 and SEE of 0.009. The two BCs have a con-
cordance r¢ of 0.91.

Yield strains were also fitted to the quadric yield cri-
terion. Table 3 shows fitting parameters, Sets 5-8, which
were obtained by fitting yield strains of KUBCs (Set 5) and
PMUBC:s (Set 6) separately, pooled yield strains of KUBCs
and PMUBC:s so that they share the same exponents u and
v (Set 7), and pooled yield strains of the two BCs (Set 8).
These sets are analogous to Sets 1—4 in stress space. All &y
and the exponents u and v are negative. The magnitude of the
exponents u are 21-26 times lower than the exponents p of
the associated sets in stress space. Similarly, the exponents
v are 4-5 times lower than the exponents g of the associ-
ated sets in stress space. PMUBC-based exponents u and v

@ Springer

In(Sqc) [In(MPa)]
(b) PMUBCs

Fig. 4 Linear regressions of the relationship between the WFE and
predicted yield stresses calculated by using the fitting parameters in
a Set 1 for KUBCs and b Set 2 for PMUBCs. T, C, S and M denote
traction, compression, shear and multiaxial load cases

(Set 6) are 51 and 19 % higher than those of KUBCs (Set
5). In Set 7, yp is equal in KUBCs and PMUBCs, while 88_
and ¢, in KUBCs are 2 and 10 % higher than in PMUBCs,
respectively.

Figures 8 and 9 illustrate 3D and 2D plots of yield surfaces
using the parameter in Set 7, respectively. The yield surfaces
have a volume-sensitive ellipsoidal shape. The amplitude
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l+84.4%

+36.7%

+0%
(Reference)

Fig. 5 Yield surfaces of KUBCs (outer surface) and PMUBC:s (inner surface) colored by the ratios of yield stresses of KUBCS over PMUBCs in
3D view (left) and top view (right) using the fitting parameter Set 3 in which KUBCs and PMUBCs share the same exponent p and ¢

I+84.4%

I+36.7%
+0%

(Reference)

Fig. 6 Cross sections of yield surfaces in normalized stress space at the plane §33 = 0 (left), §11 = §22 (center) and §12 = 0 (right). Normalized
yield stresses of KUBCs (dots) and PMUBCs (squares) were projected to the nearest planes for multiaxial cases

Traction (T) Compression (C)
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o« E -4 5 © % -4 5
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Fig. 7 Comparison of WFE yield strains based on KUBCs and
PMUBGC:s in the log space. The global regression of all 17 load cases
illustrated by the solid lines

of KUBC-based yield surface is 1-19 % larger than that of
PMUBC:s and the largest difference along the trisectrix.

5 Discussion

The aim of this study was to evaluate and compare the
homogenized yield properties of human femoral trabecular
bone obtained by applying KUBCs and PMUBCs on a large
number of loading directions and pWFE models. Seventeen
load cases were investigated, and a total set of 126 femoral
trabecular cubic biopsies covered a broad BV/TV range of
0.12-0.40 and a DA range of 1.17-2.14.

The normalized yield surface and therefore all yield
surfaces of the individual samples are pressure-dependent
(Figs. 5 and 8) as shown by Rincén-Kohli and Zysset (2008)
and confirmed by Kelly and McGarry (2012). The ellip-
soidal shape of the yield envelope resulted in o < £0,crir
as described by Schwiedrzik et al. (2013).

The quadric yield function successfully fitted both BCs
in stress space with 7° > 0.96 and NEpg_qc < 15%. The
exponent of volume fraction p ranges from 1.50 to 1.82 and is
bounded by the power coefficient of 2 for apparent density in
the statistical analysis of uniaxial data by Rice et al. (1988).
The KUBC-based exponent p = 1.50 is higher than 1.28
obtained in Rincén-Kohli and Zysset (2008)’s experimental
study in which yield stresses of uniaxial tension, uniaxial
compression and multiaxial compression experiments were
fitted to a BV/TV and fabric-based model. However, the
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Table 3 Quadric yield criterion parameters, standard errors of the
estimate and coefficients of determination obtained by fitting (5)
KUBC-based yield strains separately, (6) PMUBC-based yield strains

separately, (7) pooled KUBC-based and PMUBC-based yield strains so
that only the exponents u and v are shared between the two parameter
sets, and (8) pooled KUBC-based and PMUBC-based yield strains

Set 83 &y Y0 & u v SEE 2
KUBCs 7.37e-3 10.76e—3 13.29e—-3 —0.151 —0.057 —0.180 0.015 0.65
PMUBCs 6.86e—3 9.40e—3 11.65e—3 —0.216 —0.086 —0.215 0.019 0.53
KUBCs 7.18e—3 10.50e—3 11.93e-3 —0.155 —-0.072 —0.203 0.012 0.59
PMUBCs 7.02e—3 9.57e-3 11.93e-3 —0.215

8 KUBCs and PMUBCs 7.12e—3 10.06e—3 12.45e—3 -0.179 —0.073 —0.198 0.013 0.56

B 0.005

I+19.2%

+1.1%
+0%
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Ell

Fig. 8 Yield surfaces of KUBCs (outer surface) and PMUBCs (inner surface) colored by the ratio of yield strain of KUBCS over PMUBCs in 3D
view (left) and top view (right) using the fitting parameter Set 7 in which KUBCs and PMUBCs share the same exponent « and v
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Fig. 9 Cross sections of yield surfaces in normalized strain space at the plane B3 =0 (left), Bl = Ex (center)and B = 0 (right). Normalized

yield strains of KUBCs (dots) and PMUBCs (squares) were projected to the nearest planes for multiaxial cases

KUBC-based exponent p agrees well with 1.5 of idealized
open cell models (Zysset et al. 1999) and 1.51 obtained from
uniaxial compressive mechanical tests of Matsuura et al.
(2008).

The same morphology—yield behavior was found in Wol-
fram et al. (2012), in which a Tsai-Wu criterion was
identified, and Rincén-Kohli and Zysset (2008), in which
a piecewise Hill model was used.

The amplitude of the KUBC-based yield surface reported
here seems larger than the one obtained in the study of Wol-
fram et al. (2012) in which vertebral trabecular bone samples
with a BV/TV range of 0.06-0.15 were investigated. How-
ever, in the corresponding BV/TV range of 0.11-0.15, the
fitting parameters of the femoral and vertebral trabecular
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bone specimens correspond better as shown in Table 4. In
this BV/TV range, the amplitude of the yield surface of
the femoral data is 7-42 % larger than that of the verte-
bral, and the largest difference is found in the triaxial tension
direction. This may correspond to the higher misalignment
of the main axis to the global axis in the vertebral data
set. Applying tensile loading on misaligned microstructures
generates off-axis loading and leads to lower yield stresses
compared to applying the same loading on carefully aligned
microstructures such as the femoral data set. Moreover, Wol-
fram et al. used the cast iron plasticity model, which is
slightly different from the tissue plasticity model used in this
study.
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Table 4 Quadric yield criterion fitting parameters, standard errors of the estimate, coefficients of determination and number of samples of Wolfram
et al. (2012) and the current study; the fitting parameters of the two studies correspond better at the same BV/TV range (0.11-0.15)

06" oy 70 &0 p q SEE 2 n
Wolfram et al. (2012) Full BV/TV range 64.28 91.15 40.08 0.28 1.72 0.89 0.015 0.90 23
Wolfram et al. (2012) BV/TV 0.11-0.15 34.12 48.13 21.84 0.30 1.41 0.86 0.026 0.85 14
The current study BV/TV 0.11-0.15 35.22 44.61 21.97 0.31 1.34 0.82 0.04 0.86 7

In stress space, PMUBC:s lead to remarkably lower yield
stresses with 7-72 % difference compared to KUBCs, which
are known as an upper bound to all apparent stiffness tensors
(Hazanov and Huet 1994; Pahr and Zysset 2008). As shown
in previous studies, KUBCs indeed lead to higher elastic
constants than PMUBCs (Pahr and Zysset 2008; Panyasan-
tisuk et al. 2015). The difference in yield stresses between
the two BCs decreases with increasing BV/TV and fabric
eigenvalues. This trend was also found for elastic constants
(Panyasantisuk et al. 2015) and confirms the importance of
the BCs in the apparent mechanical behavior of human tra-
becular bone.

In strain space, the yield surfaces are also closed and the
apparent yield strains have small variations. As expected
from the literature, yield strains showed only a weak depen-
dency on BV/TV and fabric (> = 0.53—0.65). Yield strains
decrease with increasing BV/TV and fabric eigenvalues as
expressed by the negative power u and v. In KUBCs, mean
yield strains (% standard deviation) are 1.09 %(4-0.02 %) in
uniaxial compression along the principal trabecular direction
and 0.79 %(£0.02 %) in uniaxial tension in the same princi-
pal direction. Compared to published experimental results,
these values are in the high range of Gross (2014)’s results
and higher than those in Matsuura et al. (2008) and Mor-
gan and Keaveny (2001). This overestimation in the apparent
level may well be due to the higher yield strains and the fully
ductile behavior assumed at the tissue level. In fact, the com-
pressive yield strain used in our study (0.81 %) is identical as
in other WFE studies, but our tensile yield strains (0.54 %) are
64 % higher than in previous WFE studies (Bevill et al. 2006),
which delays the onset of yield at the apparent level in both
tensile and compressive modes. In a recent study, Nawathe
et al. (2013) showed that apparent yield strains computed
by WFE are an upper bound for the experimental ones. They
showed in particular that, at low BV/TV (<0.20), experimen-
tal apparent yield strains are in between the fully ductile and
fully brittle WFE apparent yield strains. On the contrary, at
high BV/TV (>0.20), the experimental apparent yield strains
agree well with the pwFE apparent yield strains.

Sanyal et al. (2015) introduced a quartic piecewise-linear
(QPL) yield criterion with which, however, results of the
current study cannot be compared directly because of the
following differences. First, the definition of yield stress and
strain is different. In their study, for each load case, stress—

strain curves were obtained in each material direction, and
yield points were acquired for each material direction. From
these yield points, the point that occurred first among the 1-,
2- and 3-material directions was defined as the yield point
of that load case. Subsequently, yield stresses and strains of
multiaxial load cases were normalized by the uniaxial yield
stresses and strains, respectively. In the current study, for each
load case, only one stress—strain curve was obtained and was
defined as a relationship of a projected stress and a strain
norm along an elastic direction. A yield point was obtained
from this curve and used directly in the minimization. Sec-
ond, the definition of anisotropy is different. Sanyal et al.
used mechanical anisotropy ratios from the apparent elastic
moduli instead of the fabric eigenvalues used in the present
study. Third, a normal—shear load case tested by Sanyal et al.
was not included in the current study. Under the assump-
tion of orthotropic symmetry, the off-axis terms are zero
in the quadratic form describing yield and no interaction is
expected. Fourth, the quadric yield criterion cannot describe
a box-like shape. However, it was shown in the result sec-
tion (Figs. 6, 9) that the quadric yield surfaces successfully
captured yield stresses and strains for 17 load cases with our
general definition of yield. Moreover, the quadric yield cri-
terion is defined with only 6 parameters, whereas the QPL
criterion requires up to 22 coefficients.

The amplitude of the normalized yield surfaces of KUBCs
and PMUBCs were compared. In stress space, a large differ-
ence (37-84 %) was observed, whereas a small difference
(1-19%) was found in strain space. In both spaces, the
largest difference lay along the direction of hydrostatic pres-
sure. This relates to the fact that, under KUBCs, every
node on the boundaries is constrained with homogeneous
displacements in all directions. This delays excessive bend-
ing and subsequent localization to occur in microstructures
in compression, especially in hydrostatic compression. The
difference in triaxial tension is lower than that in triaxial com-
pression because the assigned tissue yield strain in tension is
lower than in compression.

There are some limitations in this study. First, only two
female donors were included. However, Homminga et al.
(2003) used WFE to compute the elastic properties of trabec-
ular bone samples from numerous patients with (n = 26)
and without (n 32) hip fracture and found a unique
morphology—elasticity relationship for all samples. This
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indicates that the number of donors and the presence of
osteoporosis do not play a role and that the morphology—
mechanical property relationships of human trabecular bone
may well be universal. Second, tissue behavior was assigned
to be fully ductile, which was shown to overestimate the
experimental yield properties, especially at low BV/TV
(Nawathe et al. 2013). Interestingly, the apparent yield prop-
erties derived from the fully ductile and fully brittle material
properties are highly correlated (Nawathe et al. 2013), but
the influence of these post-yield properties on the shape of
the yield surface remains unknown. Third, there are only
few experimental results for validation. Currently available
experimental results on human bone include only uniaxial,
torsion and a few combined load cases (Morgan and Keav-
eny 2001; Rincén-Kohli and Zysset 2008; Matsuura et al.
2008). Experiments rely on complex setups and are limited
to relatively simple load cases, and each sample can only be
tested once in the yield region. Experiments also suffer from
multiple boundary artefacts (Keaveny et al. 1997) and dif-
ferent surfaces of a sample have different BCs. The adopted
WEE approach offers therefore a unique opportunity to apply
multiple load cases on numerous samples with well-defined
BCs.

This study characterized the influence of KUBCs and
PMUBCs on homogenized yield properties of human trabec-
ular bone for the first time. Moreover, it includes 126 samples
representing a wide range of trabecular bone morphology.
In future studies, the apparent elastic and yield properties
obtained with the two BCs will need to be explored with
homogenized FE analysis at the whole bone level. KUBCs
provide an upper bound to the apparent stiffness and yield
behavior. They may be suitable for trabecular bone regions
with a stiff surrounding such as regions near the cortex. On the
other hand, PMUBCs provide more compliant elasticity and
yield properties. They may represent the behavior of a trabec-
ular volume element that is surrounded by a similar trabecular
morphology with similar rigidity. The knowledge of trabecu-
lar yield behavior gained from this study is therefore expected
to help generate more accurate homogenized FE models of
whole bones and bone-implant systems, and improve accu-
racy of bone fracture risk assessment and implant stability
prediction.

Acknowledgments The authors would like to thank Dr. Uwe Wolfram
for the helpful guidance in postprocessing and Dr. Markus Bina for
setting up the ParFEAP software.

References

Bayraktar HH, Gupta A, Kwon RY, Papadopoulos P, Keaveny TM
(2005) The modified super-ellipsoid yield criterion for human
trabecular bone. J Biomech Eng 126(6):677-684. doi:10.1115/1.
1763177

@ Springer

Bevill G, Eswaran SK, Gupta A, Papadopoulos P, Keaveny TM (2006)
Influence of bone volume fraction and architecture on computed
large-deformation failure mechanisms in human trabecular bone.
Bone 39(6):1218-1225. doi:10.1016/j.bone.2006.06.016

Cowin SC (1985) The relationship between the elasticity tensor
and the fabric tensor. Mech Mater 4(2):137-147. doi:10.1016/
0167-6636(85)90012-2

Dall’Ara E, Pahr D, Varga P, Kainberger F, Zysset P (2012) QCT-
based finite element models predict human vertebral strength in
vitro significantly better than simulated DEXA. Osteoporos Int
23(2):563-572. doi:10.1007/s00198-011-1568-3

Dall’Ara E, Luisier B, Schmidt R, Kainberger F, Zysset P, Pahr D
(2013) A nonlinear QCT-based finite element model validation
study for the human femur tested in two configurations in vitro.
Bone 52(1):27-38. doi:10.1016/j.bone.2012.09.006

Gross T (2014) Development and application of 3d CT image-based
micro and macro finite element models for human bones and
orthopedic implant systems. In: PhD thesis, Vienna University of
Technology

Harrigan TP, Mann RW (1984) Characterization of microstructural
anisotropy in orthotropic materials using a second rank tensor.
J Mater Sci 19(3):761-767. doi:10.1007/BF00540446

Harrigan TP, Jasty M, Mann RW, Harris WH (1988) Limitations of the
continuum assumption in cancellous bone. J Biomech 21(4):269—
275. doi:10.1016/0021-9290(88)90257-6

Hazanov S, Amieur M (1995) On overall properties of elastic hetero-
geneous bodies smaller than the representative volume. Int J Eng
Sci 33(9):1289-1301. doi:10.1016/0020-7225(94)00129-8

Hazanov S, Huet C (1994) Order relationships for boundary condi-
tions effect in heterogeneous bodies smaller than the representative
volume. J Mech Phys Solids 42(12):1995-2011. doi:10.1016/
0022-5096(94)90022-1

Homminga J, Mccreadie BR, Weinans H, Huiskes R (2003) The depen-
dence of the elastic properties of osteoporotic cancellous bone on
volume fraction and fabric. J Biomech 36(10):1461-1467. doi:10.
1016/S0021-9290(03)00125-8

Keaveny TM, Pinilla TP, Crawford RP, Kopperdahl DL, Lou A (1997)
Systematic and random errors in compression testing of trabecular
bone. J Orthop Res 15(1):101-110. doi:10.1002/jor.1100150115

Keaveny TM, Wachtel EF, Zadesky SP, Arramon YP (1999) Application
of the Tsai-Wu quadratic multiaxial failure criterion to bovine
trabecular bone. J Biomech Eng 121(1):99-107. doi:10.1115/1.
2798051

Kelly N, McGarry JP (2012) Experimental and numerical characterisa-
tion of the elasto-plastic properties of bovine trabecular bone and
a trabecular bone analogue. J] Mech Behav Biomed Mater 9:184—
197. doi:10.1016/j.jmbbm.2011.11.013

MacNeil JA, Boyd SK (2008) Bone strength at the distal radius can be
estimated from high-resolution peripheral quantitative computed
tomography and the finite element method. Bone 42(6):1203—
1213. doi:10.1016/j.bone.2008.01.017

Matsuura M, Eckstein F, Lochmiiller EM, Zysset PK (2008) The
role of fabric in the quasi-static compressive mechanical prop-
erties of human trabecular bone from various anatomical loca-
tions. Biomech Model Mechanobiol 7(1):27-42. doi:10.1007/
$10237-006-0073-7

Morgan EF, Keaveny TM (2001) Dependence of yield strain of human
trabecular bone on anatomic site. J Biomech 34(5):569-577.
doi:10.1016/S0021-9290(01)00011-2

Nawathe S, Juillard F, Keaveny TM (2013) Theoretical bounds for the
influence of tissue-level ductility on the apparent-level strength
of human trabecular bone. J Biomech 46(7):1293-1299. doi:10.
1016/j.jbiomech.2013.02.011

Niebur GL, Feldstein MJ, Yuen JC, Chen TJ, Keaveny TM (2000)
High-resolution finite element models with tissue strength asym-


http://dx.doi.org/10.1115/1.1763177
http://dx.doi.org/10.1115/1.1763177
http://dx.doi.org/10.1016/j.bone.2006.06.016
http://dx.doi.org/10.1016/0167-6636(85)90012-2
http://dx.doi.org/10.1016/0167-6636(85)90012-2
http://dx.doi.org/10.1007/s00198-011-1568-3
http://dx.doi.org/10.1016/j.bone.2012.09.006
http://dx.doi.org/10.1007/BF00540446
http://dx.doi.org/10.1016/0021-9290(88)90257-6
http://dx.doi.org/10.1016/0020-7225(94)00129-8
http://dx.doi.org/10.1016/0022-5096(94)90022-1
http://dx.doi.org/10.1016/0022-5096(94)90022-1
http://dx.doi.org/10.1016/S0021-9290(03)00125-8
http://dx.doi.org/10.1016/S0021-9290(03)00125-8
http://dx.doi.org/10.1002/jor.1100150115
http://dx.doi.org/10.1115/1.2798051
http://dx.doi.org/10.1115/1.2798051
http://dx.doi.org/10.1016/j.jmbbm.2011.11.013
http://dx.doi.org/10.1016/j.bone.2008.01.017
http://dx.doi.org/10.1007/s10237-006-0073-7
http://dx.doi.org/10.1007/s10237-006-0073-7
http://dx.doi.org/10.1016/S0021-9290(01)00011-2
http://dx.doi.org/10.1016/j.jbiomech.2013.02.011
http://dx.doi.org/10.1016/j.jbiomech.2013.02.011

Effect of boundary conditions on yield properties of human femoral trabecular bone

metry accurately predict failure of trabecular bone. J Biomech
33(12):1575-1583. doi:10.1016/S0021-9290(00)00149-4

Niebur GL, Feldstein MJ, Keaveny TM (2002) Biaxial failure behavior
of bovine tibial trabecular bone. J Biomech Eng 124(6):699-705

Ostoja-Starzewski M (2006) Material spatial randomness: from sta-
tistical to representative volume element. Probab Eng Mech
21(2):112-132. doi:10.1016/j.probengmech.2005.07.007

Pahr D, Zysset P (2008) Influence of boundary conditions on computed
apparent elastic properties of cancellous bone. Biomech Model
Mechanobiol 7(6):463-476

Panyasantisuk J, Pahr DH, Gross T, Zysset PK (2015) Comparison
of mixed and kinematic uniform boundary conditions in homog-
enized elasticity of femoral trabecular bone using microfinite
element analyses. J Biomech Eng 137(1):011002. doi:10.1115/
1.4028968

Rice JC, Cowin SC, Bowman JA (1988) On the dependence of the
elasticity and strength of cancellous bone on apparent density. J
Biomech 21(2):155-168. doi:10.1016/0021-9290(88)90008-5

Riedler TW, Calvard S (1978) Picture thresholding using an iterative
selection method. IEEE Trans Syst Man Cybern 8(8):630-632.
doi:10.1109/TSMC.1978.4310039

Rincén-Kohli L, Zysset PK (2008) Multi-axial mechanical properties of
human trabecular bone. Biomech Model Mechanobiol 8(3):195—
208. doi:10.1007/s10237-008-0128-z

Sambrook P, Cooper C (2006) Osteoporosis. The Lancet
367(9527):2010-2018. doi:10.1016/S0140-6736(06)68891-0

Sanyal A, Scheffelin J, Keaveny TM (2015) The quartic piecewise-
linear criterion for the multiaxial yield behavior of human trabec-
ular bone. J Biomech Eng. doi:10.1115/1.4029109

Schwiedrzik J, Gross T, Bina M, Pretterklieber M, Zysset P, Pahr D
(2015) Experimental validation of a nonlinear FE model based
on cohesive-frictional plasticity for trabecular bone. Int J Numer
Methods Biomed Eng. doi:10.1002/cnm.2739

Schwiedrzik JJ, Zysset PK (2012) An anisotropic elastic-viscoplastic
damage model for bone tissue. Biomech Model Mechanobiol
12(2):201-213. doi:10.1007/s10237-012-0392-9

Schwiedrzik JJ, Wolfram U, Zysset PK (2013) A generalized
anisotropic quadric yield criterion and its application to bone tissue
at multiple length scales. Biomech Model Mechanobiol. doi:10.
1007/s10237-013-0472-5

Steiner JA, Ferguson SJ, van Lenthe GH (2015) Computational analy-
sis of primary implant stability in trabecular bone. J Biomech
48(5):807-815. doi:10.1016/j.jbiomech.2014.12.008

Stolken JS, Kinney JH (2003) On the importance of geometric non-
linearity in finite-element simulations of trabecular bone failure.
Bone 33(4):494-504. doi:10.1016/S8756-3282(03)00214-X

Verhulp E, van Rietbergen B, Miiller R, Huiskes R (2008) Indirect
determination of trabecular bone effective tissue failure properties
using micro-finite element simulations. J Biomech 41(7):1479—
1485. doi:10.1016/j.jbiomech.2008.02.032

Whitehouse WIJ (1974) The quantitative morphology of anisotropic
trabecular bone. J Microsc 101(2):153-168. doi:10.1111/j.
1365-2818.1974.tb03878.x

Wolfram U, Gross T, Pahr DH, Schwiedrzik J, Wilke HJ, Zysset PK
(2012) Fabric-based Tsai—Wu yield criteria for vertebral trabecu-
lar bone in stress and strain space. J] Mech Behav Biomed Mater
15:218-228. doi:10.1016/j.jmbbm.2012.07.005

World Health Organization (2003) Prevention and management of
osteoporosis. World Health Organization Technical Report Series,
vol 921, pp 1-164, back cover

Zysset PK, Ominsky MS, Goldstein SA (1999) A novel 3d microstruc-
tural model for trabecular. Comput Methods Biomech Biomed Eng
2(1):1-11. doi:10.1080/10255849908907974

@ Springer


http://dx.doi.org/10.1016/S0021-9290(00)00149-4
http://dx.doi.org/10.1016/j.probengmech.2005.07.007
http://dx.doi.org/10.1115/1.4028968
http://dx.doi.org/10.1115/1.4028968
http://dx.doi.org/10.1016/0021-9290(88)90008-5
http://dx.doi.org/10.1109/TSMC.1978.4310039
http://dx.doi.org/10.1007/s10237-008-0128-z
http://dx.doi.org/10.1016/S0140-6736(06)68891-0
http://dx.doi.org/10.1115/1.4029109
http://dx.doi.org/10.1002/cnm.2739
http://dx.doi.org/10.1007/s10237-012-0392-9
http://dx.doi.org/10.1007/s10237-013-0472-5
http://dx.doi.org/10.1007/s10237-013-0472-5
http://dx.doi.org/10.1016/j.jbiomech.2014.12.008
http://dx.doi.org/10.1016/S8756-3282(03)00214-X
http://dx.doi.org/10.1016/j.jbiomech.2008.02.032
http://dx.doi.org/10.1111/j.1365-2818.1974.tb03878.x
http://dx.doi.org/10.1111/j.1365-2818.1974.tb03878.x
http://dx.doi.org/10.1016/j.jmbbm.2012.07.005
http://dx.doi.org/10.1080/10255849908907974

	Effect of boundary conditions on yield properties of human femoral trabecular bone
	Abstract
	1 Introduction
	2 Theoretical model
	3 Materials and methods
	4 Results
	4.1 Stress space
	4.2 Strain space

	5 Discussion
	Acknowledgments
	References




