Skip to main content
Log in

An analytical solution for the radial and tangential displacements on a thin hemispherical layer of articular cartilage

  • Original Paper
  • Published:
Biomechanics and Modeling in Mechanobiology Aims and scope Submit manuscript

Abstract

A simplified analytical solution has been obtained for the radial and tangential displacements on the surface of a thin, hemispherical layer of porous-elastic articular cartilage firmly bonded to a rigid foundation. A static pressure distributed according to a paraboloid of revolution is applied simulating cartilage compression by a porous indenter. The solution method is in the form of an asymptotic series and uses Laplace transforms. The analytical predictions are in qualitative agreement with the behaviour of biphasic articular cartilage reported in the literature. A direct comparison with numerical simulations using commercially available Finite Element Modelling (FEM) software was also carried out for conditions relevant to natural hip joints and the results show a good quantitative agreement overall.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

d :

cartilage layer thickness

E :

Young’s modulus

H :

aggregate modulus = λ s + 2μ s

k :

permeability \({ = {\varphi^f}^2/K}\)

K :

diffusive resistance coefficient

p :

fluid pressure

P t :

total applied pressure

r :

radius of the hemispherical layer

r a r b :

radius of the interior and exterior layer surfaces

t :

time

u :

displacements vector

v :

velocities vector

x, y, z:

cartesian coordinates

α c :

radius of applied pressure

\({\epsilon}\) :

strain tensor \({ = \frac{1}{2}\left[(\nabla{\bf u}) + (\nabla{\bf u})^T \right]}\)

\({\theta, \phi}\) :

zenith and azimuth angles in the spherical coordinates

λ s μ s :

Lamé’s constants

ν :

Poisson’s ratio

σ :

stress vector

\({\varphi}\) :

porosity

\({\left(\,\hat{}\,\right)}\) :

Dimensionless variables

\({\left(\,\bar{}\,\right)}\) :

Laplace transformed dimensionless quantities

s :

solid phase

f :

fluid phase

t :

total values

References

  • Armstrong CG, Lai WM, Mow VC (1984) An analysis of the unconfined compression of articular cartilage. J Biomech Eng 106: 165–173

    Article  Google Scholar 

  • Armstrong CG (1986) An analysis of the stresses in a thin layer of articular cartilage in a synovial joint. Eng Med 15(2): 55–61

    Article  Google Scholar 

  • Ateshian GA, Lai WM, Zhu WB, Mow VC (1994) An asymptotic solution for the contact of two biphasic cartilage layers. J Biomech 27(11): 1347–1360

    Article  Google Scholar 

  • Ateshian GA, Wang X (1998) Sliding tractions on a deformable porous layer. ASME J Trib 120(1): 89–96

    Article  Google Scholar 

  • Athanasiou KA, Agarwal A, Dzida FJ (1994) Comparative study of the intrinsic mechanical properties of the human acetabular and femoral head cartilage. J Orthop Res 12: 340–349

    Article  Google Scholar 

  • Bartel DL, Burstein AH, Toda MD, Edwards DL (1985) The effect of conformity and plastic thickness on contact stresses in metal-backed plastic implants. J Biomech Eng 107: 193–199

    Article  Google Scholar 

  • Bateman H (1954) Tables of integral transforms, vol 1. McGraw Hill, New York

    Google Scholar 

  • Bender CM, Orszag SA (1978) Advanced mathematical methods for scientists and engineers, international student edition. McGraw Hill, new York

    Google Scholar 

  • Bowen RM (1980) Incompressible porous media models by use of the theory of mixtures. Int J Engng Sci 18(9): 1129–1148

    Article  MATH  Google Scholar 

  • de Hoog FR, Knight JH, Stokes AN (1982) An improved method for numerical inversion of laplace transforms. SIAM J Sci and Stat Comp 3: 357–366

    Article  MATH  Google Scholar 

  • Hayes WC, Mockros LF (1971) Visoelastic properties of human articular cartilage. J App Physiol 31: 562–568

    Google Scholar 

  • Hlaváček M (1999) Lubrication of the human ankle joint in walking with the synovial fluid filtrated by the cartilage with the surface zone worn out: Steady pure sliding motion. J Biomech 32(10): 1059–1069

    Article  Google Scholar 

  • Hlaváček M (2000) Squeeze-film lubrication of the human ankle joint with synovial fluid filtrated by articular cartilage with the superficial zone worn out. J Biomech 33(11): 1415–1422

    Article  Google Scholar 

  • Hollenbeck KJ (1998) INVLAP.m: A MATLAB function for numerical inversion of Laplace transforms by the de Hoog algorithm. http://www.isva.dtu.dk/staff/karl/invlap.html

  • Jalali-Vahid D, Jagatia M, Jin ZM, Dowson D (2001) Prediction of lubricating film thickness in a ball-in-socket model with a soft lining representing human natural and artificial hip joints. Proc IMechE Part J: J Eng Trib 215: 363–372

    Article  Google Scholar 

  • Kwan MK, Lai WM, Mow VC (1984) Fundamentals of fluid transport through cartilage in compression. Ann Biomed Eng 12: 537–558

    Article  Google Scholar 

  • Mak AF, Lai WM, Mow VC (1987) Biphasic indentation of articular cartilage—I theoretical analysis. J Biomech 20: 703–714

    Article  Google Scholar 

  • Maroudas A, Bullough P, Swanson SA, Freeman MAR (1968) The permeability of articular cartilage. JBJSBr 50B: 166–177

    Google Scholar 

  • McCutchen CW (1962) The frictional properties of animal joints. Wear 5: 1–17

    Article  Google Scholar 

  • Mow VC, Kuei SC, Lai WM, Armstrong CG (1980) Biphasic creep and stress relaxation of articular cartilage in compression: theory and experiments. J Biomech Eng 102: 73–84

    Article  Google Scholar 

  • Mow VC, Mark H, Holmes MH, Lai WM (1984) Fluid transport and mechanical properties of articular cartilage: a review. J Biomech 17(5): 377–394

    Article  Google Scholar 

  • Mow VC, Ateshian GA, Spilker RL (1993) Biomechanics of diarthroidal joints: a review of twenty years of progress. J Biomech 115(4B): 460–467

    Article  Google Scholar 

  • Mow VC, Gibbs MC, Lai WM, Zhu WB, Athanasiou KA (1989) Biphasic indentation of articular cartilage—II. A numerical algorithm and an experimental study. J Biomech 22(8/9): 853–861

    Article  Google Scholar 

  • Shepherd DET, Seedhom BB (1997) A technique for measuring the compressive modulus of articular cartilage under physiological loading rates with preliminary results. Proc IMechE Part H: J Eng Med 211(2): 155–166

    Article  Google Scholar 

  • Suh JK (1996) Dynamic unconfined compression of articular cartilage under a cyclic compressive load. Biorheology 33(4–5): 289–304

    Article  Google Scholar 

  • Wu JZ, Herzog W, Ronsky J (1996) Modeling axi-Symmetrical joint contact with biphasic cartilage layers—an asymptotic solution. J Biomech 29(10): 1263–1281

    Article  Google Scholar 

  • Wu JZ, Herzog W, Epstein M (1997) An improved solution for the contact of two biphasic cartilage layers. J Biomech 30(4): 371–375

    Article  Google Scholar 

  • Wu JZ, Herzog W, Epstein M (1998a) Articular joint mechanics with biphasic cartilage layers under dynamic loading. J Biomech Eng 120: 77–84

    Article  Google Scholar 

  • Wu JZ, Herzog W, Epstein M (1998b) Evaluation of the finite element software ABAQUS for biomechanical modelling of biphasic tissues. J Biomech 31: 165–169

    Article  Google Scholar 

  • Xi J, Hu X, Jin Y (2003) Shape analysis and parameterized modeling of hip joint. ASME J Comp Inf Sci Eng 3: 260–265

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. L. Summers.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Félix Quiñonez, A., Summers, J.L., Fisher, J. et al. An analytical solution for the radial and tangential displacements on a thin hemispherical layer of articular cartilage. Biomech Model Mechanobiol 10, 283–293 (2011). https://doi.org/10.1007/s10237-010-0234-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10237-010-0234-6

Keywords

Navigation