Skip to main content

Advertisement

Log in

A nonlocal constitutive model for trabecular bone softening in compression

  • Original Paper
  • Published:
Biomechanics and Modeling in Mechanobiology Aims and scope Submit manuscript

Abstract

Using the three-dimensional morphological data provided by computed tomography, finite element (FE) models can be generated and used to compute the stiffness and strength of whole bones. Three-dimensional constitutive laws capturing the main features of bone mechanical behavior can be developed and implemented into FE software to enable simulations on complex bone structures. For this purpose, a constitutive law is proposed, which captures the compressive behavior of trabecular bone as a porous material with accumulation of irreversible strain and loss of stiffness beyond its yield point and softening beyond its ultimate point. To account for these features, a constitutive law based on damage coupled with hardening anisotropic elastoplasticity is formulated using density and fabric-based tensors. To prevent mesh dependence of the solution, a nonlocal averaging technique is adopted. The law has been implemented into a FE software and some simple simulations are first presented to illustrate its behavior. Finally, examples dealing with compression of vertebral bodies clearly show the impact of softening on the localization of the inelastic process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bažant ZP, Cedolin L (1991) Stability of structures. Oxford University Press, New York and Oxford

    MATH  Google Scholar 

  • Bažant ZP, Jirásek M (2002) Nonlocal integral formulations of plasticity and damage: survey of progress. J Eng Mech ASCE 128: 1119–1149

    Article  Google Scholar 

  • Boutroy S, Van Rietbergen B, Sornay-Rendu E, Munoz F, Bouxsein ML, Delmas PD (2008) Finite element analysis based on in vivo hr-pqct images of the distal radius is associated with wrist fracture in postmenopausal women. J Bone Miner Res 23(3): 392–399

    Article  Google Scholar 

  • Chevalier Y, Charlebois M, Pahr D, Varga P, Heini P, Schneider E, Zysset P (2008a) A patient-specific finite element methodology to predict damage accumulation in vertebral bodies under axial compression, sagittal flexion and combined loads. Comput Methods Biomech Biomed Eng 11(5): 477–487

    Article  Google Scholar 

  • Chevalier Y, Pahr D, Charlebois M, Heini P, Schneider E, Zysset P (2008b) Cement distribution, volume, and compliance in vertebroplasty: some answers from an anatomy-based nonlinear finite element study. Spine 33(16): 1722–1730

    Article  Google Scholar 

  • Chevalier Y, Pahr DH, Zysset PK (2008c) Anatomy and morphology-based smooth finite element models of human vertebral bodies. In: 16th Annual symposium on computational methods in orthopaedic biomechanics, San Francisco, California, March 1st, 2008

  • Crawford RP, Cann CE, Keaveny TM (2003) Finite element models predict in vitro vertebral body compressive strength better than quantitative computed tomography. Bone 33(4): 744–750

    Article  Google Scholar 

  • Cristofolini L, Juszczyk M, Martelli S, Taddei F, Viceconti M (2007) In vitro replication of spontaneous fractures of the proximal human femur. J Biomech 40(13): 2837–2845

    Article  Google Scholar 

  • Curnier A, He Q-C, Zysset P (1995) Conewise linear elastic materials. J Elast 37(1): 1–38

    Article  MathSciNet  MATH  Google Scholar 

  • Eswaran SK, Gupta A, Adams MF, Keaveny TM (2006) Cortical and trabecular load sharing in the human vertebral body. J Bone Miner Res 21(2): 307–314

    Article  Google Scholar 

  • Eswaran SK, Gupta A, Keaveny TM (2007) Locations of bone tissue at high risk of initial failure during compressive loading of the human vertebral body. Bone 41(4): 733–739

    Article  Google Scholar 

  • Fondrk MT, Bahniuk EH, Davy DT (1999a) A damage model for nonlinear tensile behavior of cortical bone. J Biomech Eng 121(5): 533–541

    Article  Google Scholar 

  • Fondrk MT, Bahniuk EH, Davy DT (1999b) Inelastic strain accumulation in cortical bone during rapid transient tensile loading. J Biomech Eng 121(6): 616–621

    Article  Google Scholar 

  • Garcia D, Zysset P, Charlebois M, Curnier A (2009) A three-dimensional elastic plastic damage constitutive law for bone tissue. Biomech Model Mechanobiol 8: 149–165

    Article  Google Scholar 

  • Gibson LJ, Ashby MF (1999) Cellular solids: structure and properties. Cambridge University Press, Cambridge

    Google Scholar 

  • Grassl P, Jirásek M (2006a) Damage-plastic model for concrete failure. Int J Solids Struct 43(22–23): 7166–7196

    Article  MATH  Google Scholar 

  • Grassl P, Jirásek M (2006b) Plastic model with non-local damage applied to concrete. Int J Numer Anal Methods Geomech 30(1): 71–90

    Article  MATH  Google Scholar 

  • Green AE, Naghdi PM (1965) A general theory of an elastic-plastic continuum. Springer, Berlin

    Google Scholar 

  • Hansen NR, Schreyer HL (1994) A thermodynamically consistent framework for theories of elastoplasticity coupled with damage. Int J Solids Struct 33(3): 359–389

    Article  Google Scholar 

  • Hayes WC, Carter DR (1976) Postyield behavior of subchondral trabecular bone. J Biomed Mater Res 10(4): 537–544

    Article  Google Scholar 

  • Imai K, Ohnishi I, Matsumoto T, Yamamoto S, Nakamura K (2009) Assessment of vertebral fracture risk and therapeutic effects of alendronate in postmenopausal women using a quantitative computed tomography-based nonlinear finite element method. Osteoporos Int 20(5): 801–810

    Article  Google Scholar 

  • Jirásek M, Patzák B (2002) Consistent tangent stiffness for nonlocal damage models. Comput Struct 80(14–15): 1279–1293

    Article  Google Scholar 

  • Kachanov LM (1986) Introduction to continuum damage mechanics. Springer, Berlin

    MATH  Google Scholar 

  • Keaveny TM, Donley DW, Hoffmann PF, Mitlak BH, Glass EV, San Martin JA (2007) Effects of teriparatide and alendronate on vertebral strength as assessed by finite element modeling of qct scans in women with osteoporosis. J Bone Miner Res 22(1): 149–157

    Article  Google Scholar 

  • Keaveny TM, Morgan EF, Niebur GL, Yeh OC (2001) Biomechanics of trabecular bone. Annu Rev Biomed Eng 3: 307–333

    Article  Google Scholar 

  • Lemaitre J, Chaboche J-L (1994) Mechanics of solid materials. Cambridge University Press, Cambridge

    Google Scholar 

  • Lubarda VA, Krajcinovic D (1995) Some fundamental issues in rate theory of damage-elastoplasticity. Int J Plas 11(7): 763–797

    Article  MATH  Google Scholar 

  • Macneil JA, Boyd SK (2008) Bone strength at the distal radius can be estimated from high-resolution peripheral quantitative computed tomography and the finite element method. Bone 42(6): 1203–1213

    Article  Google Scholar 

  • Matsuura M, Eckstein F, Lochmüller E-M, Zysset PK (2008) The role of fabric in the quasi-static compressive mechanical properties of human trabecular bone from various anatomical locations. Biomech Model Mechanobiol 7(1): 27–42

    Article  Google Scholar 

  • Maugin GA (1992) The Thermomechanics of plasticity and fracture. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  • Melton LJ, Riggs BL, van Lenthe GH, Achenbach SJ, Müller R, Bouxsein ML, Amin S, Atkinson EJ, Khosla S (2007) Contribution of in vivo structural measurements and load/strength ratios to the determination of forearm fracture risk in postmenopausal women. J Bone Miner Res 22(9): 1442–1448

    Article  Google Scholar 

  • Natali AN, Carniel EL, Pavan PG (2008a) Constitutive modelling of inelastic behaviour of cortical bone. Med Eng Phys 30(7): 905–912

    Article  Google Scholar 

  • Natali AN, Carniel EL, Pavan PG (2008b) Investigation of bone inelastic response in interaction phenomena with dental implants. Dent Mater 24(4): 561–569

    Article  Google Scholar 

  • Pahr D, Zysset P (2009) From high-resolution ct data to finite element models: development of an integrated modular framework. Comput Methods Biomech Biomed Engin 12(1): 45–57

    Article  Google Scholar 

  • Patzák B, Bittnar Z (2001) Design of object oriented finite element code. Adv Eng Softw 32(10–11): 759–767

    Article  MATH  Google Scholar 

  • Pistoia W, van Rietbergen B, Lochmller E-M, Lill CA, Eckstein F, Regsegger P (2002) Estimation of distal radius failure load with micro-finite element analysis models based on three-dimensional peripheral quantitative computed tomography images. Bone 30(6): 842–848

    Article  Google Scholar 

  • Prendergast P (1997) Finite element models in tissue mechanics and orthopaedic implant design. Clin Biomech 12(6): 343–366

    Article  Google Scholar 

  • Rakotomanana L, Curnier A, Leyvraz F (1991) An objective anisotropic elastic plastic model and algorithm applicable to bone mechanics. Eur J Mech Solid 10(3): 327–342

    MATH  Google Scholar 

  • Rincón-Kohli L, Zysset P (2009) Multi-axial mechanical properties of human trabecular bone. Biomech Model Mechanobiol 8(3): 195–208

    Article  Google Scholar 

  • Simo JC, Hughes TJR (2000) Computational Inelasticity. Interdisciplinary Applied Mathematics. Springer, corrected edition

  • Simo JC, Taylor RL (1985) Consistent tangent operators for rate-independent elastoplasticity. Comput Methods Appl Mech Eng 48(1): 101–118

    Article  MathSciNet  MATH  Google Scholar 

  • Verhulp E, van Rietbergen B, Müller R, Huiskes R (2008) Indirect determination of trabecular bone effective tissue failure properties using micro-finite element simulations. J Biomech 41(7): 1479–1485

    Article  Google Scholar 

  • Zysset P (1994) A constitutive law for trabecular bone. PhD thesis, EPFL, Lausanne

  • Zysset P, Curnier A (1995) An alternative model for anisotropic elasticity based on fabric tensors. Mech Mater 21(4): 243–250

    Article  Google Scholar 

  • Zysset PK, Curnier A (1996) A 3d damage model for trabecular bone based on fabric tensors. J Biomech 29(12): 1549–1558

    Google Scholar 

  • Zysset P, Rincón L (2006) Mechanics of biological tissue., Chapter an alternative fabric-based yield and failure criterion for trabecular bone. Springer, Berlin, pp, pp 457–470

    Google Scholar 

  • Zysset PK (2003) A review of morphology-elasticity relationships in human trabecular bone: theories and experiments. J Biomech 36(10): 1469–1485

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mathieu Charlebois.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Charlebois, M., Jirásek, M. & Zysset, P.K. A nonlocal constitutive model for trabecular bone softening in compression. Biomech Model Mechanobiol 9, 597–611 (2010). https://doi.org/10.1007/s10237-010-0200-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10237-010-0200-3

Keywords

Navigation