Skip to main content
Log in

Multi-axial mechanical properties of human trabecular bone

  • Original Paper
  • Published:
Biomechanics and Modeling in Mechanobiology Aims and scope Submit manuscript

Abstract

In the context of osteoporosis, evaluation of bone fracture risk and improved design of epiphyseal bone implants rely on accurate knowledge of the mechanical properties of trabecular bone. A multi-axial loading chamber was designed, built and applied to explore the compressive multi-axial yield and strength properties of human trabecular bone from different anatomical locations. A thorough experimental protocol was elaborated for extraction of cylindrical bone samples, assessment of their morphology by micro-computed tomography and application of different mechanical tests: torsion, uni-axial traction, uni-axial compression and multi-axial compression. A total of 128 bone samples were processed through the protocol and subjected to one of the mechanical tests up to yield and failure. The elastic data were analyzed using a tensorial fabric–elasticity relationship, while the yield and strength data were analyzed with fabric-based, conewise generalized Hill criteria. For each loading mode and more importantly for the combined results, strong relationships were demonstrated between volume fraction, fabric and the elastic, yield and strength properties of human trabecular bone. Despite the reviewed limitations, the obtained results will help improve the simulation of the damage behavior of human bones and bone-implant systems using the finite element method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Ashman RB, Rho JY, Turner CH (1989) Anatomical variation of orthotropic elastic moduli of the proximal human tibia. J Biomech 22(8/9): 895–900

    Article  Google Scholar 

  • Bayraktar HH, Gupta A, Kwon RY, Papadopoulos P, Keaveny TM (2004) The modified super-ellipsoid yield criterion for human trabecular bone. J Biomech Eng 126: 677–684

    Article  Google Scholar 

  • Bevill G, Easley SK, Keaveny TM (2007) Side-artifact errors in yield strength and elastic modulus for human trabecular bone and their dependence on bone volume fraction and anatomic site. J Biomech 40(15): 3381–3388

    Article  Google Scholar 

  • Bruyère-Garnier K, Dumas R, Rumelhart C, Arlot ME (1999) Mechanical characterization in shear of human femoral cancellous bone: torsion and shear tests. Med Eng Phys 21(9): 641–649

    Article  Google Scholar 

  • Carter DR, Schwab GH, Spengler DM (1980) Tensile fracture of cancellous bone. Acta Orthop Scand 51: 733–741

    Article  Google Scholar 

  • Chevalier Y, Pahr D, Allmer H, Charlebois M, Zysset P (2007) Validation of a voxel-based FE method for prediction of the uniaxial apparent modulus of human trabecular bone using macroscopic mechanical tests and nanoindentation. J Biomech 40(15): 3333–3340

    Article  Google Scholar 

  • Chung H, Wehrli FW, Williams JL, Kugelmass SD (1993) Relationship between nmr tranverse relaxation, trabecular bone architecture, and strength. Proc Natl Acad Sci USA 90: 10250–10254

    Article  Google Scholar 

  • Cowin SC (1985) The relationship between the elasticity tensor and the fabric tensor. Mech Mater 4: 137–147

    Article  Google Scholar 

  • Cowin SC (1986) Fabric dependence of an anisotropic strength criterion. Mech Mater 5: 251

    Article  Google Scholar 

  • Deshpande VS, Fleck NA (2000) Isotropic constitutive modeling for metallic foams. J Mech Phys Solids 48(6): 1253–1283

    Article  MATH  Google Scholar 

  • Feldkamp LA, Goldstein SA, Parfitt AM, Jesion G, Kleerekoper M (1989) The direct examination of three-dimensonal bone architecture in vitro by computed tomography. J Bone Miner Res 4(1): 3–11

    Article  Google Scholar 

  • Fenech CM, Keaveny TM (1999) A cellular solid criterion for predicting the axial-shear failure properties of bovine trabecular bone. J Biomech Eng 121: 414–422

    Article  Google Scholar 

  • Gibson LJ (2005) Biomechanics of cellular solids. J Biomech 38: 377–399

    Article  Google Scholar 

  • Gioux G, McCormack TM, Gibson LJ (2000) Failure of aluminum foams under multiaxial loads. Int J Mech Sci 42: 1097–1117

    Article  MATH  Google Scholar 

  • Gong JK, Arnold JS, Cohn H (1964) Composition of trabecular and cortical bone. Anat Rec 149: 325–332

    Article  Google Scholar 

  • Haiat G, Padilla F, Peyrin F, Laugier P (2007) Variation of ultrasonic parameters with microstructure and material properties of trabecular bone: a 3d model simulation. J Bone Miner Res 22(5): 665–674

    Article  Google Scholar 

  • Harrigan TP, Mann RW (1984) Characterization of microstructural anisotropy in orthotropic materials using a second rank tensor. J Mater Sci 19: 761–767

    Article  Google Scholar 

  • Harrigan TP, Jasty M, Mann RW, Harris WH (1988) Limitations of the continuum assumption in cancellous bone. J Biomech 21(4): 269–275

    Article  Google Scholar 

  • Hildebrand T, Laib A, Müller R, Dequeker J, Rüegsegger P (1999) Direct three dimensional morphometric analysis of human cancellous bone: microstructural data from spine, femur, iliac crest and calcaneus. J Bone Miner Res 14(7): 1167–1174

    Article  Google Scholar 

  • Hollister SJ, Brennan JM, Kikuchi N (1994) A homogenization sampling procedure for calculating trabecular bone effective stiffness and tissue level stress. J Biomech 27(4): 433–444

    Article  Google Scholar 

  • Kabel J, Van Rietbergen B, Odgaard A, Huiskes R (1997) Fabric and volume fraction can accurately predict mechanical properties for a wide range of trabecular architectures. In: Transactions of the 43rd annual meeting of the ORS, San Francisco, vol 2, p 800

  • Keaveny TM, Borchers RE, Gibson JG, Hayes WC (1993) Theoretical analysis of the experimental artifact in trabecular bone compressive modulus. J Biomech 26(4/5): 599–607

    Article  Google Scholar 

  • Keaveny TM, Wachtel EF, Ford CM, Hayes WC (1994) Differences between the tensile and compressive strength of bovine tibial trabecular bone depend on modulus. J Biomech 27: 1137–1146

    Article  Google Scholar 

  • Keaveny TM, Pinilla TP, Crawford RP, Kopperdahl DL, Lou A (1997) Systematic and random errors in compression testing of trabecular bone. J Orthop Res 15: 101–110

    Article  Google Scholar 

  • Keaveny TM, Wachtel EF, Zadesky SP, Arramon YP (1999) Application of the Tsai-wu quadratic multiaxial failure criterion to bovine trabecular bone. J Biomech Eng 121: 99–107

    Article  Google Scholar 

  • Keaveny TM, Morgan EF, Niebur GL, Yeh OC (2001) Biomechanics of trabecular bone. Annu Rev Biomed Eng 3: 307–333

    Article  Google Scholar 

  • Keller TS (1994) Predicting the compressive mechanical behavior of bone. J Biomech 27(9): 1159–1168

    Article  Google Scholar 

  • Ladd AJ, Kinney JH (1998) Numerical errors and uncertainties in finite-element modeling of trabecular bone. J Biomech 31: 941–945

    Article  Google Scholar 

  • Matsuura M, Eckstein F, Lochmüller EM, Zysset Ph (2007) The role of fabric in the quasi-static compressive mechanical properties of human trabecular bone from various anatomical locations. Biomech Model Mechanobiol 7(1):27–42

    Google Scholar 

  • Meyer GH (1867) Die architektur der spongiosa. Arch Anat Physiol Wiss Med 34: 615–628

    Google Scholar 

  • Morgan EF, Bayraktar HH, Keaveny TM (2003) Trabecular bone modulus–density relationships depend on anatomic site. J Biomech 36: 897–904

    Article  Google Scholar 

  • Müller R, Rüegsegger P (1995) Three-dimensional finite element modelling of non-invasively assessed trabecular bone structures. Med Eng Phys 17(2): 126–133

    Article  Google Scholar 

  • Müller R, Hahn M, Vogel M, Delling G, Rüegsegger P (1996) Morphometric analysis of noninvasively assessed bone biopsies: comparison of high-resolution computed tomography and histologic sections. Bone 18(3): 215–220

    Article  Google Scholar 

  • Nadai A (1950) Torsion of a round bar. The stress-strain curve in shear. In: Nadai A (ed) Theory of flow and fracture of solids, vol 1. McGraw-Hill, New York, pp. 347–352

  • Nazarian A, Müller R (2004) Time-lapsed microstructural imaging of bone failure behavior. J Biomech 37(1): 55–65

    Article  Google Scholar 

  • Niebur GL, Feldstein MJ, Yuen JC, Chen TJ, Keaveny TM (2000) High-resolution finite element models with tissue strength asymmetry accurately predict failure of trabecular bone. J Biomech 33(12): 1575–1583

    Article  Google Scholar 

  • Niebur GL, Feldstein MJ, Keaveny TM (2002) Biaxial failure behavior of bovine tibial trabecular bone. J Biomech Eng 124(6): 699–705

    Article  Google Scholar 

  • Odgaard A, Linde F (1991) The underestimation of Young’s modulus in compressive testing of cancellous bone specimens. J Biomech 24(8): 691–698

    Article  Google Scholar 

  • Pahr DH, Zysset PK (2007) Influence of boundary conditions on computed apparent elastic properties of cancellous bone. Biomech Model Mechanobiol doi:10.1007/s10237-007-0109-7

  • Parfitt AM (1984) Age-related structural changes in trabecular and cortical bone: cellular mechanisms and biomechanical consequences. Calcif Tissue Int 36: 123–128

    Article  Google Scholar 

  • Pietruszak S, Inglis D, Pande GN (1999) A fabric-dependent fracture criterion for bone. J Biomech 32: 1071–1079

    Article  Google Scholar 

  • Rauber AA (1876) Elastizität und Festigkeit der Knochen. Verlag Von Wilhelm Engelmann, Leipzig

    Google Scholar 

  • Reilly DT, Burstein AH (1975) The elastic and ultimate properties of compact bone tissue. J Biomech 8: 393–405

    Article  Google Scholar 

  • Rice JC, Cowin SC, Bowman JA (1988) On the dependence of the elasticity and strength of cancellous bone on apparent density. J Biomech 21(2): 155–168

    Article  Google Scholar 

  • Rincón-Kohli L (2003) Identification of a multiaxial failure criterion for human trabecular bone. Ph.D., Swiss Federal Institute of Technology, Lausanne. http://library.epfl.ch/en/theses/

  • Rüegsegger P, Koller B, Müller R (1996) A microtomographic system for the nondestructive evaluation of bone architecture. Calcif Tissue Int 58: 24–29

    Article  Google Scholar 

  • Snyder BD, Hayes WC (1990) Multiaxial structure–property relations in trabecular bone. In: Mow VC, Ratcliffe A, Woo SL-Y (eds) Biomechanics of diarthrodial joints. Springer, New York, pp 31–59

    Google Scholar 

  • Stone JL, Beaupre GS, Hayes WC (1983) Multiaxial strength characteristics of trabecular bone. J Biomech 16(9): 743–752

    Article  Google Scholar 

  • Triantafillou TC, Zhang J, Shercliff TL, Gibson LJ, Ashby MF (1989) Failure surfaces for cellular materials under multiaxial loads-II. comparison of models with experiment. Int J Mech Sci 31(9): 665–678

    Article  Google Scholar 

  • Turner CH, Cowin SC, Rho JY, Ashman RB, Rice JC (1990) The fabric dependance of the orthotropic elastic constants of cancellous bone. J Biomech 23: 549–561

    Article  Google Scholar 

  • Rietbergen B van (2001) Micro-FE analyses of bone: state of the art. Adv Exp Med Biol 496: 21–30

    Google Scholar 

  • Rietbergen B van, Weinans H, Huiskes R, Odgaard A (1995) A new method to determine trabecular bone elastic properties and loading using micromechanical finite-element models. J Biomech 28(1): 69–81

    Article  Google Scholar 

  • Whitehouse WJ (1974) The quantitative morphology of anisotropic trabecular bone. J Microsc 101: 153–168

    Google Scholar 

  • Wolff J (1892) Das Gesetz der Transformation der Knochen. A. Hirchwild, Berlin

    Google Scholar 

  • Zhu M, Keller TS, Spengler DM (1994) Effects of specimen load-bearing and free surface layers on the compressive mechanical proerties of cellular materials. J Biomech 27(1): 57–66

    Article  Google Scholar 

  • Zysset Ph (2003) A review of fabric–elasticity relationships for human trabecular bone: theories and experiments. J Biomech 36: 1469–1485

    Article  Google Scholar 

  • Zysset Ph, Rincón-Kohli L (2006) An alternative fabric-based yield and failure criterion for trabecular bone. In: Holzapfel GA, Ogden RW (eds) Mechanics of biological tissue. Springer, Berlin, pp 457–470

    Chapter  Google Scholar 

  • Zysset Ph, Sonny M, Hayes WC (1994) Morphology–mechanical property relations in trabecular bone of the osteoarthritic proximal tibia. J Arthroplasty 9(2): 203–216

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philippe K. Zysset.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rincón-Kohli, L., Zysset, P.K. Multi-axial mechanical properties of human trabecular bone. Biomech Model Mechanobiol 8, 195–208 (2009). https://doi.org/10.1007/s10237-008-0128-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10237-008-0128-z

Keywords

Navigation