Skip to main content
Log in

A three-dimensional elastic plastic damage constitutive law for bone tissue

  • Original Paper
  • Published:
Biomechanics and Modeling in Mechanobiology Aims and scope Submit manuscript

Abstract

Motivated by mechanical analysis of bones and bone-implant systems, a 3D constitutive law describing the macroscopic mechanical behaviour of both cortical and trabecular bone in cyclic (not fatigue) overloads is developed. The proposed model which mathematical formulation is established within the framework of generalized standard materials accounts for three distinct material evolution modes where elastic, plastic and damage aspects are closely related. The anisotropic elasticity of bone is described by a morphology-based model and distinct damage behaviour in tension and compression by a halfspacewise generalized Hill criterion. The plastic criterion is based on the intact elastic compliance tensor. The algorithm applies three distinct projections based on the relationship between the internal variables and criteria. Their respective consistent tangent operators are presented. Numerical resolutions of several boundary value problems and a biomechanical application are presented to illustrate the potential of the constitutive model and demonstrate the expected quadratic convergence of the algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alart P, Curnier A (1991) A mixed formulation for frictional contact problems prone to Newton like solution methods. Comput Methods Appl Mech Eng 92: 353–375

    Article  MATH  MathSciNet  Google Scholar 

  • Ascenzi A, Bonucci E, Ripamonti A, Roveri N (1978) X-ray diffraction and electron microscope study of osteons during calcification. Calcified Tissue Res 25: 133–143

    Article  Google Scholar 

  • Cowin SC (1985) The relationship between the elasticity tensor and the fabric tensor. Mech Mater 4(2): 137–147

    Article  Google Scholar 

  • Cowin SC (2001) Bone mechanics handbook, 2nd edn. CRC Press, Boca Raton

    Google Scholar 

  • Curnier A (1993) Méthodes numériques en mécanique des solides. Presses Polytechniques et Universitaires Romandes (PPUR), Lausanne

    MATH  Google Scholar 

  • Curnier A, He Q-C, Zysset PK (1995) Conewise linear elastic materials. J Elast 37: 1–38

    Article  MATH  MathSciNet  Google Scholar 

  • Currey JD (2002) Bones: structure and mechanics. Princeton University Press, Princeton

    Google Scholar 

  • Fondrk MT, Bahniuk EH, Davy DT, Michaels C (1988) Some viscoplastic characteristics of bovine and human cortical bone. J Biomech 21(8): 623–630

    Article  Google Scholar 

  • Fondrk MT, Bahniuk EH, Davy DT (1999a) Inelastic strain accumulation in cortical bone during rapid transient tensile loading. J Biomech Eng 121: 616–621

    Article  Google Scholar 

  • Fondrk MT, Bahniuk EH, Davy DT (1999b) A damage model for nonlinear tensile behavior of cortical bone. J Biomed Eng 121: 533–541

    Google Scholar 

  • Garcia D (2006) Elastic plastic damage constitutive laws for cortical bone. PhD thesis, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne. Available online at: http://library.epfl.ch/theses/?nr=3435. Accessed 4 June 2007

  • Green AE, Naghdi PM (1965) A general theory of an elastic-plastic continuum. Arch Rational Mech Anal 18(4): 251–281

    Article  MathSciNet  Google Scholar 

  • Hansen NR, Schreyer HL (1994) A thermodynamically consistent framework for theories of elastoplasticity coupled with damage. Int J Solids Struct 31: 359–389

    Article  MATH  Google Scholar 

  • He Q-C, Curnier A (1995) A more fundamental approach to damaged elastic stress-strain relations. Int J Solids Struct 32(10): 1433–1457

    Article  MATH  MathSciNet  Google Scholar 

  • Hill R (1950) The mathematical theory of plasticity. Oxford University Press, London

    MATH  Google Scholar 

  • Kanatani KI (1984) Distribution of directional data and fabric tensors. Int J Eng Sci 22(2): 149–164

    Article  MATH  MathSciNet  Google Scholar 

  • Keaveny TM, Wachtel EF, Kopperdahl DL (1999) Mechanical behavior of human trabecular bone after overloading. J Orthop Res 17: 346–353

    Article  Google Scholar 

  • Keaveny TM, Morgan EF, Niebur GL, Yeh OC (2001) Biomechanics of trabecular bone. Annu Rev Biomed Eng 3: 307–333

    Article  Google Scholar 

  • Kotha SP, Guzelsu N (2003) Tensile damage and its effects on cortical bone. J Biomech 36(11): 1683–1689

    Article  Google Scholar 

  • Lemaitre J (1996) A course on damage mechanics, 2nd edn. Springer, New York

    MATH  Google Scholar 

  • Lemaitre J, Chaboche JL (2001) Mécanique des matériaux solides, 2e édn. Dunod, Paris

    Google Scholar 

  • Liebschner MAK, Kopperdahl DL, Rosenberg WS, Keaveny TM (2001) Contribution of cortical shell and endplate to vertebral body stiffness. In: BED-Vol. 50, 2001 Bioengineering conference, ASME

  • Lubarda VA, Krajcinovic D (1995) Some fundamental issues in rate theory of damage-elastoplasticity. Int J Plast 11: 763–797

    Article  MATH  Google Scholar 

  • Moreau JJ (1979) Application of convex analysis to some problems of dry friction. In: Zorski H (eds) Trends in applications of pure mathematics to mechanics II. Pitman, London, pp 263–280

    Google Scholar 

  • Ortiz M (1985) A constitutive theory for the inelastic behavior of concrete. Mech Mater 4(1): 67–93

    Article  Google Scholar 

  • Prandtl L (1924) Spannungsverteilung in plastischen Körpern. In: Biezeno CB, J.M.B. (eds) Proceedings of the first international congress for applied mechanics. Technische Boekhandel en Druckerij, Waltman J Jr. Delft, pp 43–54

  • Rakotomanana RL, Curnier A, Leyvraz PF (1991) An objective anisotropic elastic plastic model and algorithm applicable to bone mechanics. Eur J Mech A/Solids 10(3): 327–342

    MATH  Google Scholar 

  • Reuss A (1930) Berücksichtigung der elastischen Formänderung in der Plastizitätstheorie. Zeitschrift Angewandte Math Mech 10: 266–274

    Article  MATH  Google Scholar 

  • Rho J-Y, Kuhn-Spearing L, Zioupos P (1998) Mechanical properties and the hierarchical structure of bone. Med Eng Phys 20(2): 92–102

    Article  Google Scholar 

  • Rincón L (2003) Identification of a multiaxial failure criterion for human trabecular bone. PhD thesis, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne. Available online at: http://library.epfl.ch/theses/?nr=2812. Accessed 4 June 2007

  • Rockafellar RT (1970) Convex analysis. Princeton University Press, Princeton

    MATH  Google Scholar 

  • Simo JC, Taylor RL (1985) Consistent tangent operators for rate-independent elastoplasticity. Comput Methods Appl Mech Eng 48(1): 101–118

    Article  MATH  MathSciNet  Google Scholar 

  • Simo JC, Hughes TJR (1999) Computational inelasticity. Springer, Berlin

    Google Scholar 

  • Timoshenko S (1968) Résistance des matériaux, vol 2. Dunod, Paris

    Google Scholar 

  • Wilkins ML (1964) Calculation of elastic-plastic flow. Methods Comput Phys 3: 211–263

    Google Scholar 

  • Ziegler H (1983) An introduction to thermomechanics, 2nd edn. North-Holland, Amsterdam

    MATH  Google Scholar 

  • Zysset P (1994) A constitutive law for trabecular bone. PhD thesis, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne. Available online at: http://library.epfl.ch/theses/?nr=1252. Accessed 4 June 2007

  • Zysset PK, Curnier A (1996) An implicit projection algorithm for simultaneous flow of plasticity and damage in standard generalized materials. Int J Numer Methods Eng 39: 3065–3082

    Article  MATH  Google Scholar 

  • Zysset PK, Curnier A (1995) An alternative model for anisotropic elasticity based on fabric tensors. Mech Mater 21(4): 243–250

    Article  Google Scholar 

  • Zysset PK (2003) A review of morphology-elasticity relationships in human trabecular bone: theories and experiments. J Biomech 36: 1469–1485

    Article  Google Scholar 

  • Zysset PK, Rincón L (2006) An alternative fabric-based yield and failure criterion for trabecular bone. In: Holzapfel GA, Ogden RW (eds) Mechanics of biological tissue. Springer, Berlin, pp 457–470

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philippe K. Zysset.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Garcia, D., Zysset, P.K., Charlebois, M. et al. A three-dimensional elastic plastic damage constitutive law for bone tissue. Biomech Model Mechanobiol 8, 149–165 (2009). https://doi.org/10.1007/s10237-008-0125-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10237-008-0125-2

Keywords

Navigation