Skip to main content
Log in

Well-posedness and continuity properties of the new shallow-water model with cubic nonlinearity

  • Published:
Annali di Matematica Pura ed Applicata (1923 -) Aims and scope Submit manuscript

Abstract

This paper is devoted to the new shallow-water model (also called the modified Camassa–Holm–Novikov equation) with cubic nonlinearity, which admits the single peaked solitons and multi-peakon solutions, and includes both the Fokas–Olver–Rosenau–Qiao equation and the Novikov equation as two special cases. It is shown that the Cauchy problem of the modified Camassa–Holm–Novikov equation for the periodic and the nonperiodic case is well-posed in Sobolev spaces in the sense of Hadamard, that is, the data-to-solution map is continuous. However, the solution map is not uniformly continuous.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Beals, R., Sattinger, D., Szmigielski, J.: Multi-peakons and a theorem of Stieltjes. Inverse Prob. 15, 1–4 (1999)

    MathSciNet  MATH  Google Scholar 

  2. Bressan, A., Constantin, A.: Global conservative solutions of the Camassa–Holm equation. Arch. Ration. Mech. Anal. 183, 215–239 (2007)

    MathSciNet  MATH  Google Scholar 

  3. Bressan, A., Constantin, A.: Global dissipative solutions of the Camassa–Holm equation. Anal. Appl. 5, 1–27 (2007)

    MathSciNet  MATH  Google Scholar 

  4. Camassa, R., Holm, D.: An integrable shallow water equation with peaked solitons. Phys. Rev. Lett. 71, 1661–1664 (1993)

    MathSciNet  MATH  Google Scholar 

  5. Christov, O., Hakkaev, S.: On the Cauchy problem for the periodic \(b\)-family of equations and of the non-uniform continuity of Degasperis–Procesi equation. J. Math. Anal. Appl. 360, 47–56 (2009)

    MathSciNet  MATH  Google Scholar 

  6. Chen, M., Di, H., Liu, Y.: Stability of Peakons for the modified Camassa–Holm–Novikov type equations (submitted)

  7. Chen, M., Hu, Q., Liu, Y.: The shallow-water models with cubic nonlinearity (submitted)

  8. Chen, M., Liu, Y., Qu, Z., Zhang, H.: Oscillation-induced blow-up to the modified Camassa–Holm equation with linear dispersion. Adv. Math. 272, 225–251 (2015)

    MathSciNet  MATH  Google Scholar 

  9. Constantin, A.: Global existence of solutions and breaking waves for a shallow water equation: a geometric approach. Ann. Inst. Fourier (Grenoble) 50, 321–362 (2000)

    MathSciNet  MATH  Google Scholar 

  10. Constantin, A.: On the scattering problem for the Camassa–Holm equation. Proc. R. Soc. Lond. A 457, 953–970 (2001)

    MathSciNet  MATH  Google Scholar 

  11. Constantin, A.: The trajectories of particles in Stokes waves. Invent. Math. 166, 23–535 (2006)

    MathSciNet  MATH  Google Scholar 

  12. Constantin, A.: Nonlinear water waves with applications to wave-current interactions and tsunamis. In: CBMS-NSF Regional Conference Series in Applied Mathematics, vol. 81. SIAM, Philadelphia (2011)

  13. Constantin, A.: On the inverse spectral problem for the Camassa–Holm equation. J. Funct. Anal. 155, 352–363 (1998)

    MathSciNet  MATH  Google Scholar 

  14. Constantin, A., Escher, J.: Wave breaking for nonlinear nonlocal shallow water equations. Acta Math. 181, 229–243 (1998)

    MathSciNet  MATH  Google Scholar 

  15. Constantin, A., Escher, J.: Particle trajectories in solitary water waves. Bull. Am. Math. Soc. 44, 423–431 (2007)

    MathSciNet  MATH  Google Scholar 

  16. Constantin, A., Escher, J.: Analyticity of periodic traveling free surface water waves with vorticity. Ann. Math. 178, 559–568 (2011)

    MathSciNet  MATH  Google Scholar 

  17. Constantin, A., Escher, J.: Analyticity of periodic traveling free surface water waves with vorticity. Ann. Math. 173, 559–568 (2011)

    MathSciNet  MATH  Google Scholar 

  18. Constantin, A., Gerdjikov, V., Ivanov, I.: Inverse scattering transform for the Camassa–Holm equation. Inverse Prob. 22, 2197–2207 (2006)

    MathSciNet  MATH  Google Scholar 

  19. Constantin, A., Kappeler, T., Kolev, B., Topalov, T.: On Geodesic exponential maps of the Virasoro group. Ann. Glob. Anal. Geom. 31, 155–180 (2007)

    MathSciNet  MATH  Google Scholar 

  20. Constantin, A., Lannes, D.: The hydrodynamical relevance of the Camassa–Holm and Degasperis–Procesi equations. Arch. Ration. Mech. Anal. 192, 165–186 (2009)

    MathSciNet  MATH  Google Scholar 

  21. Constantin, A., McKean, H.P.: A shallow water equation on the circle. Commun. Pure Appl. Math. 52, 949–982 (1999)

    MathSciNet  MATH  Google Scholar 

  22. Constantin, A., Strauss, W.: Stability of the Camassa–Holm solitons. J. Nonlinear Sci. 12, 415–422 (2002)

    MathSciNet  MATH  Google Scholar 

  23. Constantin, A., Strauss, W.: Stability of peakons. Commun. Pure Appl. Math. 53, 603–610 (2000)

    MathSciNet  MATH  Google Scholar 

  24. Dieudonné, J.: Foundations of Modern Analysis. Academic Press, New York (1969)

    MATH  Google Scholar 

  25. Fokas, A.: On a class of physically important integrable equations. Physica D 87, 145–150 (1995)

    MathSciNet  MATH  Google Scholar 

  26. Fokas, A., Fuchssteiner, B.: Symplectic structures, their Backlund transformation and hereditary symmetries. Physica D 4, 47–66 (1981)

    MathSciNet  MATH  Google Scholar 

  27. Fu, Y., Gu, G., Liu, Y., Qu, Z.: On the Cauchy problem for the integrable Camassa–Holm type equation with cubic nonlinearity. J. Differ. Equ. 255, 1905–1938 (2013)

    MATH  Google Scholar 

  28. Fuchssteiner, B.: Some tricks from the symmetry-toolbox for nonlinear equations: generalizations of the Camassa–Holm equation. Physica D 95, 229–243 (1996)

    MathSciNet  MATH  Google Scholar 

  29. Gui, G., Liu, Y.: On the global existence and wave-breaking criteria for the two-component Camassa–Holm system. J. Funct. Anal. 258, 4251–4278 (2010)

    MathSciNet  MATH  Google Scholar 

  30. Gui, G., Liu, Y.: On the Cauchy problem for the two-component Camassa–Holm system. Math. Z. 268, 45–66 (2011)

    MathSciNet  MATH  Google Scholar 

  31. Gui, G., Liu, Y., Olver, P., Qu, C.: Wave-breaking and peakons for a modified Camassa–Holm equation. Commun. Math. Phys. 319, 731–759 (2013)

    MathSciNet  MATH  Google Scholar 

  32. Himonas, A., Holliman, C.: On well-posedness of the Degasperis–Procesi equation. Discrete Contin. Dyn. Syst. 31, 469–488 (2011)

    MathSciNet  MATH  Google Scholar 

  33. Himonas, A., Kenig, C.: Non-uniform dependence on initial data for the CH equation on the line. Differ. Integral Equ. 22, 201–224 (2009)

    MathSciNet  MATH  Google Scholar 

  34. Himonas, A., Kenig, C., Misiołek, G.: Non-uniform dependence for the periodic CH equation. Commun. Partial Differ. Equ. 35, 1145–1162 (2010)

    MathSciNet  MATH  Google Scholar 

  35. Himonas, A., Mantzavinos, D.: The Cauchy problem for the Fokas–Olver–Rosenau–Qiao equation. Nonlinear Appl. 95, 499–529 (2014)

    MathSciNet  MATH  Google Scholar 

  36. Himonas, A., Mantzavinos, D.: The Cauchy problem for a 4-parameter family of equations with peakon traveling waves. Nonlinear Anal. 133, 161–199 (2016)

    MathSciNet  MATH  Google Scholar 

  37. Himonas, A., Misiołek, G.: High-frequency smooth solutions and well-posedness of the Camassa–Holm equation Int. Math. Res. Not. 51, 3135–3151 (2005)

    MATH  Google Scholar 

  38. Himonas, A., Misiołek, G.: Non-uniform dependence on initial data of solutions to the Euler equations of hydrodynamics Commun. Math. Phys. 296, 285–301 (2009)

    MATH  Google Scholar 

  39. Holliman, C.: Non-uniform dependence and well-posedness for the periodic Hunter–Saxton equation. Differ. Integral Equ. 23, 1150–1194 (2010)

    MathSciNet  MATH  Google Scholar 

  40. Mi, S., Liu, Y., Huang, W., Guo, L.: Qualitative analysis for the new shallow-water model with cubic nonlinearity (submitted)

  41. Holden, H., Raynaud, X.: Global conservative solutions of the Camassa–Holm equations—a Lagrangianpoiny of view. Commun. Partial Differ. Equ. 32, 1511–1549 (2007)

    MATH  Google Scholar 

  42. Holden, H., Raynaud, X.: Dissipative solutions for the Camassa–Holm equation. Discrete Contin. Dyn. Syst. 24, 1047–1112 (2009)

    MathSciNet  MATH  Google Scholar 

  43. Home, A., Wang, J.P.: Integrable peakon equations with cubic nonlinearity. J. Phys. A 41, 372002 (2008)

    MathSciNet  MATH  Google Scholar 

  44. Hone, W., Lundmark, H., Szmigielski, J.: Explicit multipeakon solutions of Novikov cubically nonlinear integrable Camassa–Holm type equation. Dyn. Partial Differ. Equ. 6, 253–289 (2009)

    MathSciNet  MATH  Google Scholar 

  45. Hu, Q., Qiao, Z.: Analyticity, Gevrey regularity and unique continuation for an integrable multi-component peakon system with an arbitrary polynomial function. arXiv:1511.03315 (2015)

  46. Jiang, Z., Ni, L.: Blow-up phenomenon for the integrable Novikov equation. J. Math. Anal. Appl. 385, 551–558 (2012)

    MathSciNet  MATH  Google Scholar 

  47. Liu, X., Liu, Y., Qu, C.: Orbital stability of the train of peakons for an integrable modified Camassa–Holm equation. Adv. Math. 255, 1–37 (2014)

    MathSciNet  MATH  Google Scholar 

  48. Liu, Y., Qu, Z., Zhang, H.: On the blow-up of solutions to the integrable modified Camassa–Holm equation. Anal. Appl. 4, 355–368 (2014)

    MathSciNet  MATH  Google Scholar 

  49. Misiolek, A.: Shallow water equation as a geodesic flow on the Bott–Virasoro group. J. Geom. Phys. 24, 203–208 (1998)

    MathSciNet  MATH  Google Scholar 

  50. Novikov, V.: Generalizations of the Camassa–Holm equation. J. Phys. A 42, 342002 (2009)

    MathSciNet  MATH  Google Scholar 

  51. Ni, L., Zhou, Y.: Well-posedness and persistence properties for the Novikov equation. J Differ. Equ. 250, 3002–3021 (2011)

    MathSciNet  MATH  Google Scholar 

  52. Olver, P., Rosenau, P.: Tri-Hamiltonian duality between solitons and solitary-wave solutions having compact support. Phys. Rev. E 53, 1900–1906 (1996)

    MathSciNet  Google Scholar 

  53. Qiao, Z.: A new integrable equation with cuspons and W/M-shape-peaks solitons. J. Math. Phys. 47, 112701 (2006)

    MathSciNet  MATH  Google Scholar 

  54. Qu, C., Liu, X., Liu, Y.: Stability of peakons for an integrable modified Camassa–Holm equation with cubic nonlinearity. Commun. Math. Phys. 322, 967–997 (2013)

    MathSciNet  MATH  Google Scholar 

  55. Taylor, M.: Pseudodifferential Operators and Nonlinear PDE. Birkhäuser, Boston (1991)

    MATH  Google Scholar 

  56. Taylor, M.: Partial Differential Equations, III: Nonlinear Equations. Springer, Berlin (1996)

    Google Scholar 

  57. Wu, L., Guo, L.: The exponential decay of solutions and traveling wave solutions for a modified Camassa–Holm equation with cubic nonlinearity. J. Math. Phys. 55, 081504 (2014)

    MathSciNet  MATH  Google Scholar 

  58. Wu, X., Yin, Z.: Well-posedness and global existence for the Novikov equation. Ann. Sc. Norm. Sup. Pisa. XI, 707–727 (2012)

    MathSciNet  MATH  Google Scholar 

  59. Wu, X., Yin, Z.: Global weak solutions for the Novikov equation. J. Phys. A 44, 055202 (2011)

    MathSciNet  MATH  Google Scholar 

  60. Yan, W., Li, Y., Zhang, Y.: Global existence and blow-up phenomena for the weakly dissipative Novikov equation. Nonlinear Anal. 75, 2464–2473 (2012)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The work of Mi is partially supported by NSF of China (11671055). The work of Huang is partially supported by NSF of China (11971067, 11631008, 11771183).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yongsheng Mi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mi, Y., Huang, D. Well-posedness and continuity properties of the new shallow-water model with cubic nonlinearity. Annali di Matematica 200, 1–34 (2021). https://doi.org/10.1007/s10231-020-00980-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10231-020-00980-9

Keywords

Mathematics Subject Classification

Navigation