Skip to main content

Advertisement

Log in

Pathological and molecular biological approaches to early mesothelioma

  • Review Article
  • Published:
International Journal of Clinical Oncology Aims and scope Submit manuscript

Abstract

Malignant mesothelioma is an asbestos-related malignancy that arises primarily from mesothelial cells on the serosal surfaces of the pleural, peritoneal, and pericardial cavities. Malignant pleural mesothelioma (MPM) is most common, and its incidence is dramatically increasing worldwide as a result of widespread use of asbestos. Morphological discrimination between MPM and reactive mesothelial hyperplasia is difficult, and the most reliable pathological criterion for malignancy is mesothelial proliferation invading deeply into subpleural adipose tissues. To establish radical cure of MPM, it is crucial to find early-stage MPM of epithelial type, in which mesothelial proliferation is localized on the serosal surface of parietal pleura or limited within the submesothelial fibrous tissues of parietal pleura. The initial clinical presentation for patients with MPM is frequently dyspnea and/or chest pain due to large pleural effusion, and cytological analysis of pleural effusions is valuable to find patients with early-stage MPM of epithelial type. Recently, cytological features of MPM in pleural effusion, molecular markers for MPM, and genetic alternations of MPM have been reported. In this review, we discuss major issues on pathological and molecular biological approaches for diagnosis of early-stage MPM of epithelial type.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Robinson BWS, Chahinian AP (2002) Mesothelioma. Martin Dunitz Ltd, London

    Google Scholar 

  2. Robinson BW, Lake RA (2005) Advances in malignant mesothelioma. N Engl J Med 353:1591–1603

    Article  CAS  PubMed  Google Scholar 

  3. Carbone M, Kratzke RA, Testa JR (2002) The pathogenesis of mesothelioma. Semin Oncol 29:2–17

    Article  CAS  PubMed  Google Scholar 

  4. Tsao AS, Wistuba I, Roth JA et al (2009) Malignant pleural mesothelioma. J Clin Oncol 27:2081–2090

    Article  CAS  PubMed  Google Scholar 

  5. Addis B, Roche H (2009) Problems in mesothelioma diagnosis. Histopathology 54:55–68

    Article  PubMed  Google Scholar 

  6. Travis WD, Brambilla E, Muller-Hermelink HK et al (2004) World Health Organization classification of tumours, pathology and genetics of tumours of the lung, pleura, thymus and heart. IARC Press, Lyon

    Google Scholar 

  7. Sugarbaker DJ, Mentzer SJ, Strauss G (1992) Extrapleural pneumonectomy in the treatment of malignant pleural mesothelioma. Ann Thorac Surg 54:941–946

    Article  CAS  PubMed  Google Scholar 

  8. Churg A, Colby TV, Cagle P et al (2000) The separation of benign and malignant mesothelial proliferations. Am J Surg Pathol 24:1183–1200

    Article  CAS  PubMed  Google Scholar 

  9. Churg A, Cagle PT, Roggli VL (2006) Separation of benign and malignant mesothelial proliferations. In: Silverberg SG, Sobin LH (eds) AFIP Atlas of tumor pathology: tumors of the serosal membranes. 4th series, fascicle 3. American Registry of Pathology in collaboration with the Armed Forces Institute of Pathology, Washington, pp 83–101

    Google Scholar 

  10. Stevens MW, Leong AS, Fazzalari NL et al (1992) Cytopathology of malignant mesothelioma: a stepwise logistic regression analysis. Diagn Cytopathol 8:333–341

    Article  CAS  PubMed  Google Scholar 

  11. Whitaker D (2000) The cytology of malignant mesothelioma. Cytopathology 11:139–151

    Article  CAS  PubMed  Google Scholar 

  12. Churg A, Cagle PT, Roggli VL (2006) Cytology of the serosal surfaces. In: Silverberg SG, Sobin LH (eds) AFIP Atlas of tumor pathology: tumors of the serosal membranes. 4th series, fascicle 3. American Registry of Pathology in collaboration with the Armed Forces Institute of Pathology, Washington, pp 11–31

    Google Scholar 

  13. Cakir E, Demirag F, Aydin M et al (2009) Cytopathologic differential diagnosis of malignant mesothelioma, adenocarcinoma and reactive mesothelial cells: a logistic regression analysis. Diagn Cytopathol 37:4–10

    Article  PubMed  Google Scholar 

  14. Kimura N, Data K, Araya Y et al (2009) Scoring system for differential diagnosis of malignant mesothelioma and reactive mesothelial cells on cytology specimens. Diagn Cytopathol 37:885–890

    Article  PubMed  Google Scholar 

  15. Kato Y, Tsuta K, Seki K et al (2007) Immunohistochemical detection of GLUT-1 can discriminate between reactive mesothelium and malignant mesothelioma. Mod Pathol 20:215–220

    Article  CAS  PubMed  Google Scholar 

  16. Sato A, Torii I, Okamura Y et al (2010) Immunocytochemistry of CD146 is useful to discriminate between malignant pleural mesothelioma and reactive mesothelium. Mod Pathol 23:1458–1466

    Article  CAS  PubMed  Google Scholar 

  17. Shen J, Pinkus GS, Deshpande V et al (2009) Usefulness of EMA, GLUT-1, and XIAP for the cytologic diagnosis of malignant mesothelioma in body cavity fluids. Am J Clin Pathol 131:516–523

    Article  CAS  PubMed  Google Scholar 

  18. Shi M, Fraire AE, Chu P et al (2011) Oncofetal protein IMP3, a new diagnostic biomarker to distinguish malignant mesothelioma from reactive mesothelial proliferation. Am J Surg Pathol 35:878–882

    Article  PubMed  Google Scholar 

  19. van der Bij S, Schaake E, Koffijberg H et al (2011) Markers for the non-invasive diagnosis of mesothelioma: a systematic review. Br J Cancer 104:1325–1333

    Article  PubMed  Google Scholar 

  20. Cagle PT, Churg A (2005) Differential diagnosis of benign and malignant mesothelial proliferations on pleural biopsies. Arch Pathol Lab Med 129:1421–1427

    PubMed  Google Scholar 

  21. Husain AN, Colby TV, Ordonez NG et al (2009) Guidelines for pathologic diagnosis of malignant mesothelioma: a consensus statement from the International Mesothelioma Interest Group. Arch Pathol Lab Med 133:1317–1331

    PubMed  Google Scholar 

  22. Klebe S, Henderson DW (2011) Early stages of mesothelioma, screening and biomarkers. Recent Results Cancer Res 189:169–193

    Article  PubMed  Google Scholar 

  23. Whitaker D, Henderson DW, Shilkin KB (1992) The concept of mesothelioma in situ: implications for diagnosis and histogenesis. Semin Diagn Pathol 9:151–161

    CAS  PubMed  Google Scholar 

  24. Henderson DW, Shilkin KB, Whitaker D (1998) Reactive mesothelial hyperplasia vs mesothelioma, including mesothelioma in situ: a brief review. Am J Clin Pathol 110:397–404

    CAS  PubMed  Google Scholar 

  25. Hammar SP, Henderson DW, Klebe S et al (2008) Neoplasms of the pleura. In: Tomashefski JFJ (ed) Dail and Hammar’s pulmonary pathology, chap 43, vol 2, 3rd edn. Springer, New York, pp 558–734

    Chapter  Google Scholar 

  26. Rusch VW (1995) A proposed new international TNM staging system for malignant pleural mesothelioma. From the International Mesothelioma Interest Group. Chest 108:1122–1128

    Article  CAS  PubMed  Google Scholar 

  27. Mountain CF (1997) Revisions in the international system for staging lung cancer. Chest 111:1710–1717

    Article  CAS  PubMed  Google Scholar 

  28. Kamei T (2010) Cytological diagnosis for mesothelioma. In: An abstract of the 10th international conference of the international mesothelioma interest group, Aug 31–Sept 3, 2010 Kyoto, Japan, p 36

  29. Churg A, Cagle PT, Roggli VL (2006) Diffuse malignant tumors of the serosal membranes. In: Silverberg SG, Sobin LH (eds) AFIP Atlas of tumor pathology: tumors of the serosal membranes. 4th series, fascicle 3. American Registry of Pathology in collaboration with the Armed Forces Institute of Pathology, Washington, pp 33–82

    Google Scholar 

  30. Fetsch PA, Abati A (2001) Immunocytochemistry in effusion cytology: a contemporary review. Cancer 93:293–308

    Article  CAS  PubMed  Google Scholar 

  31. Pu RT, Pang Y, Michael CW (2008) Utility of WT-1, p63, MOC31, mesothelin, and cytokeratin (K903 and CK5/6) immunostains in differentiating adenocarcinoma, squamous cell carcinoma, and malignant mesothelioma in effusions. Diagn Cytopathol 36:20–25

    Article  PubMed  Google Scholar 

  32. Bishop JA, Sharma R, Illei PB (2010) Napsin A and thyroid transcription factor-1 expression in carcinomas of the lung, breast, pancreas, colon, kidney, and malignant mesothelioma. Hum Pathol 41:20–25

    Article  CAS  PubMed  Google Scholar 

  33. Khoor A, Whitsett JA, Stahlman MT et al (1999) Utility of surfactant protein B precursor and thyroid transcription factor 1 in differentiating adenocarcinoma of the lung from malignant mesothelioma. Hum Pathol 30:695–700

    Article  CAS  PubMed  Google Scholar 

  34. Wolanski KD, Whitaker D, Shilkin KB et al (1998) The use of epithelial membrane antigen and silver-stained nucleolar organizer regions testing in the differential diagnosis of mesothelioma from benign reactive mesothelioses. Cancer 82:583–590

    Article  CAS  PubMed  Google Scholar 

  35. Saad RS, Cho P, Liu YL (2005) The value of epithelial membrane antigen expression in separating benign mesothelial proliferation from malignant mesothelioma: a comparative study. Diagn Cytopathol 32:156–159

    Article  PubMed  Google Scholar 

  36. Attanoos RL, Griffin A, Gibbs AR (2003) The use of immunohistochemistry in distinguishing reactive from neoplastic mesothelium. A novel use for desmin and comparative evaluation with epithelial membrane antigen, p53, platelet-derived growth factor-receptor, P-glycoprotein and Bcl-2. Histopathology 43:231–238

    Article  CAS  PubMed  Google Scholar 

  37. Ramael M, Lemmens G, Eerdekens C et al (1992) Immunoreactivity for p53 protein in malignant mesothelioma and non-neoplastic mesothelium. J Pathol 168:371–375

    Article  CAS  PubMed  Google Scholar 

  38. Hurlimann J (1994) Desmin and neural marker expression in mesothelial cells and mesotheliomas. Hum Pathol 25:753–757

    Article  CAS  PubMed  Google Scholar 

  39. Davidson B, Nielsen S, Christensen J et al (2001) The role of desmin and N-cadherin in effusion cytology: a comparative study using established markers of mesothelial and epithelial cells. Am J Surg Pathol 25:1405–1412

    Article  CAS  PubMed  Google Scholar 

  40. Cury PM, Butcher DN, Corrin B et al (1999) The use of histological and immunohistochemical markers to distinguish pleural malignant mesothelioma and in situ mesothelioma from reactive mesothelial hyperplasia and reactive pleural fibrosis. J Pathol 189:251–257

    Article  CAS  PubMed  Google Scholar 

  41. King J, Thatcher N, Pickering C et al (2006) Sensitivity and specificity of immunohistochemical antibodies used to distinguish between benign and malignant pleural disease: a systematic review of published reports. Histopathology 49:561–568

    Article  CAS  PubMed  Google Scholar 

  42. Kumaki F, Kawai T, Churg A et al (2002) Expression of telomerase reverse transcriptase (TERT) in malignant mesotheliomas. Am J Surg Pathol 26:365–370

    Article  PubMed  Google Scholar 

  43. Xio S, Li D, Vijg J et al (1995) Codeletion of p15 and p16 in primary malignant mesothelioma. Oncogene 11:511–515

    CAS  PubMed  Google Scholar 

  44. Prins JB, Williamson KA, Kamp MM et al (1998) The gene for the cyclin-dependent-kinase-4 inhibitor, CDKN2A, is preferentially deleted in malignant mesothelioma. Int J Cancer 75:649–653

    Article  CAS  PubMed  Google Scholar 

  45. Onofre FB, Onofre AS, Pomjanski N et al (2008) 9p21 Deletion in the diagnosis of malignant mesothelioma in serous effusions additional to immunocytochemistry, DNA-ICM, and AgNOR analysis. Cancer 114:204–215

    Article  PubMed  Google Scholar 

  46. Takeda M, Kasai T, Enomoto Y et al (2010) 9p21 deletion in the diagnosis of malignant mesothelioma, using fluorescence in situ hybridization analysis. Pathol Int 60:395–399

    Article  PubMed  Google Scholar 

  47. Chung CT, Santos Gda C, Hwang DM et al (2010) FISH assay development for the detection of p16/CDKN2A deletion in malignant pleural mesothelioma. J Clin Pathol 63:630–634

    Article  PubMed  Google Scholar 

  48. Monaco SE, Shuai Y, Bansal M et al (2011) The diagnostic utility of p16 FISH and GLUT-1 immunohistochemical analysis in mesothelial proliferations. Am J Clin Pathol 135:619–627

    Article  PubMed  Google Scholar 

  49. Altomare DA, Menges CW, Xu J et al (2011) Losses of both products of the Cdkn2a/Arf locus contribute to asbestos-induced mesothelioma development and cooperate to accelerate tumorigenesis. PloS One 6:e18828

    Article  CAS  PubMed  Google Scholar 

  50. Sekido Y, Pass HI, Bader S et al (1995) Neurofibromatosis type 2 (NF2) gene is somatically mutated in mesothelioma but not in lung cancer. Cancer Res 55:1227–1231

    CAS  PubMed  Google Scholar 

  51. Bianchi AB, Mitsunaga SI, Cheng JQ et al (1995) High frequency of inactivating mutations in the neurofibromatosis type 2 gene (NF2) in primary malignant mesotheliomas. Proc Natl Acad Sci USA 92:10854–10858

    Article  CAS  PubMed  Google Scholar 

  52. Baser ME (2006) The distribution of constitutional and somatic mutations in the neurofibromatosis 2 gene. Hum Mutat 27:297–306

    Article  CAS  PubMed  Google Scholar 

  53. McClatchey AI, Giovannini M (2005) Membrane organization and tumorigenesis—the NF2 tumor suppressor, Merlin. Genes Dev 19:2265–2277

    Article  CAS  PubMed  Google Scholar 

  54. Murakami H, Mizuno T, Taniguchi T et al (2011) LATS2 is a tumor suppressor gene of malignant mesothelioma. Cancer Res 71:873–883

    Article  CAS  PubMed  Google Scholar 

  55. Altomare DA, Vaslet CA, Skele KL et al (2005) A mouse model recapitulating molecular features of human mesothelioma. Cancer Res 65:8090–8095

    Article  CAS  PubMed  Google Scholar 

  56. Jensen DE, Proctor M, Marquis ST et al (1998) BAP1: a novel ubiquitin hydrolase which binds to the BRCA1 RING finger and enhances BRCA1-mediated cell growth suppression. Oncogene 16:1097–1112

    Article  CAS  PubMed  Google Scholar 

  57. Nishikawa H, Wu W, Koike A et al (2009) BRCA1-associated protein 1 interferes with BRCA1/BARD1 RING heterodimer activity. Cancer Res 69:111–119

    Article  CAS  PubMed  Google Scholar 

  58. Harbour JW, Onken MD, Roberson ED et al (2010) Frequent mutation of BAP1 in metastasizing uveal melanomas. Science 330:1410–1413

    Article  CAS  PubMed  Google Scholar 

  59. Bott M, Brevet M, Taylor BS et al (2011) The nuclear deubiquitinase BAP1 is commonly inactivated by somatic mutations and 3p21.1 losses in malignant pleural mesothelioma. Nat Genet 43:668–672

    Article  CAS  PubMed  Google Scholar 

  60. Testa JR, Cheung M, Pei J et al (2011) Germline BAP1 mutations predispose to malignant mesothelioma. Nat Genet 43:1022–1025

    Article  CAS  PubMed  Google Scholar 

  61. Yoshikawa Y, Sato A, Tsujimura T et al (2011) Frequent deletion of 3p21.1 region carrying semaphorin 3G and aberrant expression of the genes participating in semaphorin signaling in the epithelioid type of malignant mesothelioma cells. Int J Oncol 39:1365–1374

    CAS  PubMed  Google Scholar 

  62. Taniguchi T, Karnan S, Fukui T et al (2007) Genomic profiling of malignant pleural mesothelioma with array-based comparative genomic hybridization shows frequent non-random chromosomal alteration regions including JUN amplification on 1p32. Cancer Sci 98:438–446

    Article  CAS  PubMed  Google Scholar 

  63. Destro A, Ceresoli GL, Falleni M et al (2006) EGFR overexpression in malignant pleural mesothelioma. An immunohistochemical and molecular study with clinico-pathological correlations. Lung Cancer 51:207–215

    Article  CAS  PubMed  Google Scholar 

  64. Altomare DA, You H, Xiao GH et al (2005) Human and mouse mesotheliomas exhibit elevated AKT/PKB activity, which can be targeted pharmacologically to inhibit tumor cell growth. Oncogene 24:6080–6089

    Article  CAS  PubMed  Google Scholar 

  65. Suzuki Y, Murakami H, Kawaguchi K et al (2009) Activation of the PI3K-AKT pathway in human malignant mesothelioma cells. Mol Med Rep 2:181–188

    CAS  Google Scholar 

  66. Papp T, Schipper H, Pemsel H et al (2001) Mutational analysis of the PTEN/MMAC1 tumour suppressor gene in primary human malignant mesotheliomas. Oncol Rep 8:1375–1379

    CAS  PubMed  Google Scholar 

  67. Kratzke RA, Otterson GA, Lincoln CE et al (1995) Immunohistochemical analysis of the p16INK4 cyclin-dependent kinase inhibitor in malignant mesothelioma. J Natl Cancer Inst 87:1870–1875

    Article  CAS  PubMed  Google Scholar 

  68. Papp T, Schipper H, Pemsel H et al (2001) Mutational analysis of N-ras, p53, p16 INK4a, p14 ARF and CDK4 genes in primary human malignant mesotheliomas. Int J Oncol 18:425–433

    CAS  PubMed  Google Scholar 

  69. Thomas RK, Baker AC, Debiasi RM et al (2007) High-throughput oncogene mutation profiling in human cancer. Nat Genet 39:347–351

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Dr. Toshiaki Kamei (Yamaguchi Grand Medical Center, Japan) and Dr. Kazuki Nabeshima (Fukuoka University School of Medicine and Hospital, Japan) for discussions.

Conflict of interest

No author has any conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tohru Tsujimura.

About this article

Cite this article

Tsujimura, T., Torii, I., Sato, A. et al. Pathological and molecular biological approaches to early mesothelioma. Int J Clin Oncol 17, 40–47 (2012). https://doi.org/10.1007/s10147-011-0369-1

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10147-011-0369-1

Keywords

Navigation