Skip to main content

Advertisement

Log in

Predicting pituitary stalk position by in vivo visualization of the hypothalamo-hypophyseal tract in craniopharyngioma using diffusion tensor imaging tractography

  • Original Article
  • Published:
Neurosurgical Review Aims and scope Submit manuscript

Abstract

The pituitary stalk (PS) is crucial to endocrine function and water-electrolyte equilibrium. Preservation of the PS during craniopharyngioma (CP) surgery is critical; however, in a pathological state, it is difficult to identify. The hypothalamo-hypophyseal tract (HHT) connects the hypothalamus and the posterior pituitary gland and projects through the PS. Thus, visualization of the HHT can help locate the PS. Preoperative visualization of the neural fasciculus has been widely achieved using diffusion tensor imaging (DTI) tractography. Therefore, this study evaluated the use of DTI tractography to identify and characterize the human HHT. We used DTI tractography to track the HHT in 10 patients with CP and compared the location of the tract with the intraoperative view of the PS in these patients. We successfully tracked the HHT in nine patients, indicating that delineating and quantifying the tracked HHT using this method is feasible. In addition, we found that the tract was consistent with the intraoperative view of the PS in seven out of eight patients (87.50%). Finally, we found that the mean number of tracts was 7.11 ± 12.28, the mean fractional anisotropy (FA) was 0.11 ± 0.04, and the mean tract length was 24.22 ± 9.39 mm. Taken together, our results demonstrate that the HHT can be visualized and characterized with DTI even in a clinical application, which may aid in preoperative identification of the PS. Characterization of the tracked HHT with this technique could also be used to advance our understanding of the HHT.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Banaszek A, Bladowska J, Pokryszko-Dragan A, Podemski R, Sąsiadek MJ (2015) Evaluation of the degradation of the selected projectile, commissural and association white matter tracts within normal appearing white matter in patients with multiple sclerosis using diffusion tensor MR imaging—a preliminary study. Pol J Radiol 80:457–463. 10.12659/PJR.894661

    Article  PubMed  PubMed Central  Google Scholar 

  2. Basser PJ, Pierpaoli C (1996) Microstructural and physiological features of tissues elucidated by quantitative-diffusion-tensor MRI. J Magn Reson B 111(3):209–219. https://doi.org/10.1006/jmrb.1996.0086

    Article  PubMed  CAS  Google Scholar 

  3. Borkar SA, Garg A, Mankotia DS, Joseph SL, Suri A, Kumar R, Kale SS, Sharma BS (2016) Prediction of facial nerve position in large vestibular schwannomas using diffusion tensor imaging tractography and its intraoperative correlation. Neurol India 64(5):965–970. https://doi.org/10.4103/0028-3886.190270

    Article  PubMed  Google Scholar 

  4. Chen DQ, Quan J, Guha A, Tymianski M, Mikulis D, Hodaie M (2011) Three-dimensional in vivo modeling of vestibular schwannomas and surrounding cranial nerves with diffusion imaging tractography. Neurosurgery 68(4):1077–1083. https://doi.org/10.1227/NEU.0b013e31820c6cbe

    Article  PubMed  Google Scholar 

  5. Chen F, Chen L, Li W, Li L, Xu X, Li W, le W, Xie W, He H, Li P (2016) Pre-operative declining proportion of fractional anisotropy of trigeminal nerve is correlated with the outcome of micro-vascular decompression surgery. BMC Neurol 16(1):106. https://doi.org/10.1186/s12883-016-0620-5

    Article  PubMed  PubMed Central  Google Scholar 

  6. Chen X, BN X, Meng X, Zhang J, Yu X, Zhou D (2012) Dual-room 1.5-T intraoperative magnetic resonance imaging suite with a movable magnet: implementation and preliminary experience. Neurosurg Rev 35(1):95–110. https://doi.org/10.1007/s10143-011-0336-3

    Article  PubMed  CAS  Google Scholar 

  7. George E, Heier L, Kovanlikaya I, Greenfield J (2014) Diffusion tensor imaging of pyramidal tract reorganization after pediatric stroke. Childs Nerv Syst 30(6):1135–1139. https://doi.org/10.1007/s00381-013-2351-x

    Article  PubMed  Google Scholar 

  8. Gerganov VM, Giordano M, Samii M, Samii A (2011) Diffusion tensor imaging-based fiber tracking for prediction of the position of the facial nerve in relation to large vestibular schwannomas. J Neurosurg 115(6):1087–1093. https://doi.org/10.3171/2011.7.JNS11495

    Article  PubMed  Google Scholar 

  9. Haller S, Xekardaki A, Delaloye C et al (2011) Combined analysis of grey matter voxel-based morphometry and white matter tract-based spatial statistics in late-life bipolar disorder. J Psychiatry Neurosci. 36:391–401

    Article  PubMed  PubMed Central  Google Scholar 

  10. Harris GW, Manabe Y, Ruf KB (1969) A study of the parameters of electrical stimulation of unmyelinated fibres in the pituitary stalk. J Physiol 203(1):67–81. https://doi.org/10.1113/jphysiol.1969.sp008850

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Hasan KM, Kamali A, Kramer LA (2009) Mapping the human brain white matter tracts relative to cortical and deep gray matter using diffusion tensor imaging at high spatial resolution. Magn Reson Imaging 27(5):631–636. https://doi.org/10.1016/j.mri.2008.10.007

    Article  PubMed  Google Scholar 

  12. Ikeda H, Gotoh H, Watanabe K (2012) Outcome of endoscopy-assisted microscopic extended transsphenoidal surgery for suprasellar adult craniopharyngiomas. Front Endocrinol (Lausanne) 20(3):25

    Google Scholar 

  13. Ivanova MV, Isaev DY, Dragoy OV, Akinina YS, Petrushevskiy AG, Fedina ON, Shklovsky VM, Dronkers NF (2016) Diffusion-tensor imaging of major white matter tracts and their role in language processing in aphasia. Cortex 85:165–181. https://doi.org/10.1016/j.cortex.2016.04.019

    Article  PubMed  Google Scholar 

  14. Jang SH, Choi BY, Kim SH, Chang CH, Jung YJ, Kwon HG (2014) Injury of the mammillothalamic tract in patients with subarachnoid haemorrhage: a retrospective diffusion tensor imaging study. BMJ Open 4(7):e005613. https://doi.org/10.1136/bmjopen-2014-005613

    Article  PubMed  PubMed Central  Google Scholar 

  15. Jung TY, Jung S, Choi JE, Moon KS, Kim IY, Kang SS (2009) Adult craniopharyngiomas: surgical results with a special focus on endocrinological outcomes and recurrence according to pituitary stalk preservation. J Neurosurg 111(3):572–577. https://doi.org/10.3171/2008.10.JNS0880

    Article  PubMed  Google Scholar 

  16. Kamali A, Hasan KM, Adapa P, Razmandi A, Keser Z, Lincoln J, Kramer l (2014) Distinguishing and quantification of the human visual pathways using high spatial resolution diffusion tensor tractography. Magn Reson Imaging 32(7):796–803. https://doi.org/10.1016/j.mri.2014.04.002

    Article  PubMed  PubMed Central  Google Scholar 

  17. Kassam AB, Gardner PA, Snyderman CH, Carrau RL, Mintz AH, Prevedello DM (2008) Expanded endonasal approach, a fully endoscopic transnasal approach for the resection of midline suprasellar craniopharyngiomas: a new classification based on the infundibulum. J Neurosurg 108(4):715–728. https://doi.org/10.3171/JNS/2008/108/4/0715

    Article  PubMed  Google Scholar 

  18. Li K, Lu X, Yang N, Zheng J, Huang B, Li L (2015) Association of pituitary stalk management with endocrine outcomes and recurrence in microsurgery of craniopharyngiomas: a meta-analysis. Clin Neurol Neurosurg 136:20–24. https://doi.org/10.1016/j.clineuro.2015.05.019

    Article  PubMed  Google Scholar 

  19. Mortini P, Gagliardi F, Boari N, Losa M (2013) Surgical strategies and modern therapeutic options in the treatment of craniopharyngiomas. Crit Rev Oncol Hematol 88(3):514–529. https://doi.org/10.1016/j.critrevonc.2013.07.013

    Article  PubMed  Google Scholar 

  20. Mortini P, Losa M, Pozzobon G, Barzaghi R, Riva M, Acerno S, Angius D, Weber G, Chiumello G, Giovanelli M (2011) Neurosurgical treatment of craniopharyngioma in adults and children: early and long-term results in a large case series. J Neurosurg 114(5):1350–1359. https://doi.org/10.3171/2010.11.JNS10670

    Article  PubMed  Google Scholar 

  21. Ontaneda D, Sakaie K, Lin J, Wang X, Lowe MJ, Phillips MD, Fox RJ (2014) Identifying the start of multiple sclerosis injury: a serial DTI study. J Neuroimaging 24(6):569–576. https://doi.org/10.1111/jon.12082

    Article  PubMed  PubMed Central  Google Scholar 

  22. Oouchi H, Yamada K, Sakai K, Kizu O, Kubota T, Ito H, Nishimura T (2007) Diffusion anisotropy measurement of brain white matter is affected by voxel size: underestimation occurs in areas with crossing fibers. AJNR Am J Neuroradiol 28(6):1102–1106. https://doi.org/10.3174/ajnr.A0488

    Article  PubMed  CAS  Google Scholar 

  23. Pan J, Qi S, Liu Y, Lu Y, Peng J, Zhang XA, Xu YK, Huang G, Fan J (2016) Growth patterns of craniopharyngiomas: clinical analysis of 226 patients. J Neurosurg Pediatr 17(4):418–433. https://doi.org/10.3171/2015.7.PEDS14449

    Article  PubMed  Google Scholar 

  24. Peng J, Qi S, Pan J, Zhang X, Huang G, Li D (2016) Preliminary study on composition and microstructure of calcification in craniopharyngiomas. J Craniofac Surg. 27(4):e409–e413. https://doi.org/10.1097/SCS.0000000000002676

    Article  PubMed  PubMed Central  Google Scholar 

  25. Prieto R, Castro-Dufourny I, Carrasco R, Barrios L, Pascual JM (2016) Craniopharyngioma recurrence: the impact of tumor topography. J Neurosurg 125(4):1043–1049. https://doi.org/10.3171/2016.3.JNS16630

    Article  PubMed  Google Scholar 

  26. Prieto R, Pascual JM, Rosdolsky M, Castro-Dufourny I, Carrasco R, Strauss S, Barrios L (2016) Craniopharyngioma adherence: a comprehensive topographical categorization and outcome-related risk stratification model based on the methodical examination of 500 tumors. Neurosurg Focus 41(6):E13. https://doi.org/10.3171/2016.9.FOCUS16304

    Article  PubMed  Google Scholar 

  27. Psomiades M, Fonteneau C, Mondino M, Luck D, Haesebaert F, Suaud-Chagny MF, Brunelin J (2016) Integrity of the arcuate fasciculus in patients with schizophrenia with auditory verbal hallucinations: a DTI-tractography study. Neuroimage Clin 12:970–975. https://doi.org/10.1016/j.nicl.2016.04.013

    Article  PubMed  PubMed Central  Google Scholar 

  28. Qi S, Lu Y, Pan J, Zhang X, Long H, Fan J (2011) Anatomic relations of the arachnoidea around the pituitary stalk: relevance for surgical removal of craniopharyngiomas. Acta Neurochir 153(4):785–796. https://doi.org/10.1007/s00701-010-0940-y

    Article  PubMed  PubMed Central  Google Scholar 

  29. Salmela MB, Cauley KA, Nickerson JP, Koski CJ, Filippi CG (2010) Magnetic resonance diffusion tensor imaging (MRDTI) and tractography in children with septo-optic dysplasia. Pediatr Radiol 40(5):708–713. https://doi.org/10.1007/s00247-009-1478-0

    Article  PubMed  Google Scholar 

  30. Satogami N, Miki Y, Koyama T, Kataoka M, Togashi K (2010) Normal pituitary stalk: high-resolution MR imaging at 3T. AJNR Am J Neuroradiol 31(2):355–359. https://doi.org/10.3174/ajnr.A1836

    Article  PubMed  CAS  Google Scholar 

  31. Song F, Hou Y, Sun G et al (2016) In vivo visualization of the facial nerve in patients with acoustic neuroma using diffusion tensor imaging-based fiber tracking. J Neurosurg 125(4):787–794. https://doi.org/10.3171/2015.7.JNS142922

    Article  PubMed  Google Scholar 

  32. Stone BS, Zhang J, Mack DW, Mori S, Martin LJ, Northington FJ (2008) Delayed neural network degeneration after neonatal hypoxia-ischemia. Ann Neurol 64(5):535–546. https://doi.org/10.1002/ana.21517

    Article  PubMed  PubMed Central  Google Scholar 

  33. Sui M, Liu S, Liu M, Li Y, Tian Y (2013) Locating of the pituitary stalk for craniopharyngioma surgery of transfrontobasal interhemispheric approach. J Craniofac Surg 24(6):2106–2109. https://doi.org/10.1097/SCS.0b013e31829ad5e8

    Article  PubMed  Google Scholar 

  34. Taoka T, Hirabayashi H, Nakagawa H, Sakamoto M, Myochin K, Hirohashi S (2006) Displacement of the facial nerve course by vestibular schwannoma: preoperative visualization using diffusion tensor tractography. J Magn Reson Imaging 24(5):1005–1010. https://doi.org/10.1002/jmri.20725

    Article  PubMed  Google Scholar 

  35. Wagner G, De la Cruz F, Schachtzabel C, Güllmar D, Schultz CC, Schlösser RG, Bär KJ, Koch K (2015) Structural and functional dysconnectivity of the fronto-thalamic system in schizophrenia: a DCM-DTI study. Cortex 66:35–45. https://doi.org/10.1016/j.cortex.2015.02.004

    Article  PubMed  Google Scholar 

  36. Xiao G, Yuan X, Yuan J, Krumtally NA, Li Y, Feng C, Liu Q, Peng Z, Li X, Ding X (2014) Pituitary stalk management during the microsurgery of craniopharyngiomas. Exp Ther Med 7(5):1055–1064. https://doi.org/10.3892/etm.2014.1561

    Article  PubMed  PubMed Central  Google Scholar 

  37. Yao Y, Ulrich NH, Guggenberger R, Alzarhani YA, Bertalanffy H, Kollias SS (2015) Quantification of corticospinal tracts with diffusion tensor imaging in brainstem surgery: prognostic value in 14 consecutive cases at 3T magnetic resonance imaging. World Neurosurg 83(6):1006–1014. https://doi.org/10.1016/j.wneu.2015.01.045

    Article  PubMed  Google Scholar 

  38. Yoneoka Y, Watanabe N, Okada M, Fujii Y (2013) Observation of the neurohypophysis, pituitary stalk, and adenohypophysis during endoscopic pituitary surgery: demonstrative findings as clues to pituitary-conserving surgery. Acta Neurochir 155(6):1049–1055. https://doi.org/10.1007/s00701-013-1687-z

    Article  PubMed  Google Scholar 

  39. Zheng Z, Shemmassian S, Wijekoon C, Kim W, Bookheimer SY, Pouratian N (2014) DTI correlates of distinct cognitive impairments in Parkinson’s disease. Hum Brain Mapp 35(4):1325–1333. https://doi.org/10.1002/hbm.22256

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jinli Jiang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

Ethics Committee approval was obtained from the Institutional Ethics Committee of Chinese PLA 301 hospital to the commencement of the study.

Informed consent

Written informed consent was obtained from the patients.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, F., Jiang, J., Zhang, J. et al. Predicting pituitary stalk position by in vivo visualization of the hypothalamo-hypophyseal tract in craniopharyngioma using diffusion tensor imaging tractography. Neurosurg Rev 41, 841–849 (2018). https://doi.org/10.1007/s10143-017-0933-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10143-017-0933-x

Keywords

Navigation