Skip to main content
Log in

Utility of preoperative meningioma consistency measurement with magnetic resonance elastography (MRE): a review

  • Review
  • Published:
Neurosurgical Review Aims and scope Submit manuscript

Abstract

Meningioma consistency is a critical factor that influences preoperative planning for surgical resection. Recent studies have investigated the utility of preoperative magnetic resonance elastography (MRE) in predicting meningioma consistency. However, it is unclear whether existing methods are optimal for application to clinical practice. The results and conclusions of these studies are limited by their imaging acquisition methods, such as the use of a single MRE frequency and the use of shear modulus as the final measurement variable, rather than its storage and loss modulus components. In addition, existing studies do not account for the effects of cranial anatomy, which have been shown to significantly distort the MRE signal. Given the interaction of meningiomas with these anatomic structures and the lack of supporting evidence with more accurate imaging parameters, MRE may not yet be reliable for use in clinical practice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

MRE:

Magnetic resonance elastography

FLAIR:

Fluid-attenuated inversion recovery

FA:

Fractional anisotropy

DWI:

Diffusion-weighted imaging

DTI:

Diffusion tensor imaging

CT:

Computed tomography

ICP:

Intracranial pressure

References

  1. Andrew A. Badachhape, Ramona S. Durham, Brent D. Efron, Ruth J. Okamoto, Curtis L. Johnson, Philip V. Bayly (2016) In vivo characterization of the human skull-brain interface using magnetic resonance elastography. Proc. 2016 Biomed. Eng. Soc. Annu. Meet.

  2. Asbach P, Klatt D, Hamhaber U, Braun J, Somasundaram R, Hamm B, Sack I (2008) Assessment of liver viscoelasticity using multifrequency MR elastography. Magn Reson Med 60:373–379. doi:10.1002/mrm.21636

    Article  PubMed  Google Scholar 

  3. Braun J, Guo J, Lützkendorf R, Stadler J, Papazoglou S, Hirsch S, Sack I, Bernarding J (2014) High-resolution mechanical imaging of the human brain by three-dimensional multifrequency magnetic resonance elastography at 7T. NeuroImage 90:308–314. doi:10.1016/j.neuroimage.2013.12.032

    Article  PubMed  Google Scholar 

  4. Chauvet D, Imbault M, Capelle L, Demene C, Mossad M, Karachi C, Boch A-L, Gennisson J-L, Tanter M (2015) In vivo measurement of brain tumor elasticity using intraoperative shear wave elastography. Ultraschall der Medizin-Eur J Ultrasound. doi:10.1055/s-0034-1399152

  5. Clayton EH, Genin GM, Bayly PV (2012) Transmission, attenuation and reflection of shear waves in the human brain. J R Soc Interface 9:2899–2910. doi:10.1098/rsif.2012.0325

    Article  PubMed  PubMed Central  Google Scholar 

  6. Fehlner A, Hirsch S, Weygandt M, Christophel T, Barnhill E, Kadobianskyi M, Braun J, Bernarding J, Lützkendorf R, Sack I, Hetzer S (2016) Increasing the spatial resolution and sensitivity of magnetic resonance elastography by correcting for subject motion and susceptibility-induced image distortions. J Magn Reson Imaging. doi:10.1002/jmri.25516

  7. Fehlner A, Papazoglou S, McGarry MD, Paulsen KD, Guo J, Streitberger K-J, Hirsch S, Braun J, Sack I (2015) Cerebral multifrequency MR elastography by remote excitation of intracranial shear waves. NMR Biomed 28:1426–1432. doi:10.1002/nbm.3388

    Article  PubMed  PubMed Central  Google Scholar 

  8. Guo J, Hirsch S, Fehlner A, Papazoglou S, Scheel M, Braun J, Sack I (2013) Towards an elastographic atlas of brain anatomy. PLoS One. doi:10.1371/journal.pone.0071807

  9. Holland D, Kuperman JM, Dale AM (2011) Efficient correction of inhomogeneous static magnetic field-induced distortion in echo planar imaging. NeuroImage 50:1–18. doi:10.1016/j.neuroimage.2009.11.044.Efficient

    Article  CAS  Google Scholar 

  10. Hoover JM, Morris JM, Meyer FB (2011) Use of preoperative magnetic resonance imaging T1 and T2 sequences to determine intraoperative meningioma consistency. Surg Neurol Int 2:142. doi:10.4103/2152-7806.85983

    Article  PubMed  PubMed Central  Google Scholar 

  11. Hughes JD, Fattahi N, Van Gompel J, Arani A, Meyer F, Lanzino G, Link MJ, Ehman R, Huston J (2015) Higher-resolution magnetic resonance elastography in meningiomas to determine intratumoral consistency. Neurosurgery 77:653–659. doi:10.1227/NEU.0000000000000892

    Article  PubMed  PubMed Central  Google Scholar 

  12. Di Ieva A, Grizzi F, Rognone E, Tse ZTH, Parittotokkaporn T, Rodriguez y Baena F, Tschabitscher M, Matula C, Trattnig S, Rodriguez y Baena R (2010) Magnetic resonance elastography: a general overview of its current and future applications in brain imaging. Neurosurg Rev 33:137–145. doi: 10.1007/s10143-010-0249-6

  13. Johnson CL, Holtrop JL, McGarry MD, Weaver JB, Paulsen KD, Georgiadis JG, Sutton BP (2014) 3D multislab, multishot acquisition for fast, whole-brain MR elastography with high signal-to-noise efficiency. Magn Reson Med 71:477–485

    Article  PubMed  PubMed Central  Google Scholar 

  14. Johnson CL, Schwarb H, D.J. McGarry M, Anderson AT, Huesmann GR, Sutton BP, Cohen NJ (2016) Viscoelasticity of subcortical gray matter structures. Hum Brain Mapp doi: 10.1002/hbm.23314

  15. Kai Y, Hamada JI, Morioka M, Yano S, Todaka T, Ushio Y (2002) Appropriate interval between embolization and surgery in patients with meningioma. Am J Neuroradiol 23:139–142

    PubMed  Google Scholar 

  16. Kashimura H, Inoue T, Ogasawara K, Arai H, Otawara Y, Kanbara Y, Ogawa A (2007) Prediction of meningioma consistency using fractional anisotropy value measured by magnetic resonance imaging. J Neurosurg 107:784–787. doi:10.3171/jns-07/10/0784

    Article  PubMed  Google Scholar 

  17. Kruse SA, Rose GH, Glaser KJ, Manduca A, Felmlee JP, Jack CR, Ehman RL (2008) Magnetic resonance elastography of the brain. NeuroImage 39:231–237. doi:10.1016/j.neuroimage.2007.08.030

    Article  PubMed  Google Scholar 

  18. Kurt M, Han Lv, Kaveh Laksari, Lyndia Wu, Karla Epperson, David B. Camarillo, Kim B. Pauly, Max Wintermark (2016) In vivo multi-frequency magnetic resonance elastography of the human brain: which frequencies matter? Proc. 2016 Biomed. Eng. Soc. Annu. Meet.

  19. Low G (2016) General review of magnetic resonance elastography. World J Radiol 8:59. doi:10.4329/wjr.v8.i1.59

    Article  PubMed  PubMed Central  Google Scholar 

  20. Manduca A, Oliphant TE, Dresner MA, Mahowald JL, Kruse SA, Amromin E, Felmlee JP, Greenleaf JF, Ehman RL (2001) Magnetic resonance elastography: non-invasive mapping of tissue elasticity. Med Image Anal 5:237–254. doi:10.1016/S1361-8415(00)00039-6

    Article  PubMed  CAS  Google Scholar 

  21. Mariappan YK, Glaser KJ, Ehman RL (2010) Magnetic resonance elastography: a review. Clin Anat 23:497–511. doi:10.1002/ca.21006

    Article  PubMed  PubMed Central  Google Scholar 

  22. McGrath DM, Ravikumar N, Beltrachini L, Wilkinson ID, Frangi AF, Taylor ZA (2016) Evaluation of wave delivery methodology for brain MRE: insights from computational simulations. Magn Reson Med n/a-n/a. doi:10.1002/mrm.26333

  23. McGrath DM, Ravikumar N, Wilkinson ID, Frangi AF, Taylor ZA (2016) Magnetic resonance elastography of the brain: an in silico study to determine the influence of cranial anatomy. Magn Reson Med 76:645–662. doi:10.1002/mrm.25881

    Article  PubMed  Google Scholar 

  24. Murphy MC, Huston J, Glaser KJ, Manduca A, Meyer FB, Lanzino G, Morris JM, Felmlee JP, Ehman RL (2013) Preoperative assessment of meningioma stiffness using magnetic resonance elastography. J Neurosurg 118:643–648. doi:10.3171/2012.9.JNS12519

    Article  PubMed  Google Scholar 

  25. Muthupillai R, Lomas D, Rossman P, Greenleaf J, Manduca A, Ehman R (1995) Magnetic resonance elastography by direct visualization of propagating acoustic strain waves. Science (80- ) 269:1854–1857. doi: 10.1126/science.7569924

  26. Okamoto RJ, Clayton EH, Bayly PV (2011) Viscoelastic properties of soft gels: comparison of magnetic resonance elastography and dynamic shear testing in the shear wave regime. Phys Med Biol 56:6379–6400. doi:10.1088/0031-9155/56/19/014

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Ortega-Porcayo LA, Ballesteros-Zebadúa P, Marrufo-Meléndez OR, Ramírez-Andrade JJ, Barges-Coll J, Tecante A, Ramírez-Gilly M, Gómez-Amador JL (2015) Prediction of mechanical properties and subjective consistency of meningiomas using T1-T2 assessment versus fractional anisotropy. World Neurosurg 84:1691–1698. doi:10.1016/j.wneu.2015.07.018

    Article  PubMed  Google Scholar 

  28. Papazoglou S, Hirsch S, Braun J, Sack I (2012) Multifrequency inversion in magnetic resonance elastography. Phys Med Biol 57:2329–2346. doi:10.1088/0031-9155/57/8/2329

    Article  PubMed  Google Scholar 

  29. Reiss-Zimmermann M, Streitberger K-J, Sack I, Braun J, Arlt F, Fritzsch D, Hoffmann K-T (2015) High resolution imaging of viscoelastic properties of intracranial tumours by multi-frequency magnetic resonance elastography. Clin Neuroradiol 25:371–378. doi:10.1007/s00062-014-0311-9

    Article  PubMed  CAS  Google Scholar 

  30. Romani R, Tang W, Mao Y, Wang D, Tang H, Zhu F, Che X, Gong Y, Zheng K, Zhong P, Li S, Bao W, Benner C, Wu J, Zhou L (2014) Diffusion tensor magnetic resonance imaging for predicting the consistency of intracranial meningiomas. Acta Neurochir 156:1837–1845. doi:10.1007/s00701-014-2149-y

    Article  PubMed  Google Scholar 

  31. Sack I, Beierbach B, Wuerfel J, Klatt D, Hamhaber U, Papazoglou S, Martus P, Braun J (2009) The impact of aging and gender on brain viscoelasticity. NeuroImage 46:652–657. doi:10.1016/j.neuroimage.2009.02.040

    Article  PubMed  Google Scholar 

  32. Shiroishi MS, Cen SY, Tamrazi B, D’Amore F, Lerner A, King KS, Kim PE, Law M, Hwang DH, Boyko OB, Liu CSJ (2016) Predicting meningioma consistency on preoperative neuroimaging studies. Neurosurg Clin N Am 27:145–154. doi:10.1016/j.nec.2015.11.007

    Article  PubMed  PubMed Central  Google Scholar 

  33. Sitthinamsuwan B, Khampalikit I, Nunta-aree S, Srirabheebhat P, Witthiwej T, Nitising A (2012) Predictors of meningioma consistency: a study in 243 consecutive cases. Acta Neurochir 154:1383–1389. doi:10.1007/s00701-012-1427-9

    Article  PubMed  Google Scholar 

  34. Smith KA, Leever JD, Chamoun RB (2015) Prediction of consistency of pituitary adenomas by magnetic resonance imaging. J Neurol Surgery, Part B Skull Base 76:340–343. doi:10.1055/s-0035-1549005

    Article  Google Scholar 

  35. Teasdale E, Patterson J, McLellan D, Macpherson P (1984) Subselective preoperative embolization for meningiomas. J Neurosurg 60:506–511. doi:10.3171/jns.1984.60.3.0506

    Article  PubMed  CAS  Google Scholar 

  36. Watanabe K, Kakeda S, Yamamoto J, Ide S, Ohnari N, Nishizawa S, Korogi Y (2016) Prediction of hard meningiomas: quantitative evaluation based on the magnetic resonance signal intensity. Acta Radiol 57:333–340. doi:10.1177/0284185115578323

    Article  PubMed  Google Scholar 

  37. Xu L, Lin Y, Han JC, Xi ZN, Shen H, Gao PY (2007) Magnetic resonance elastography of brain tumors: preliminary results. Acta Radiol 48:327–330. doi:10.1080/02841850701199967

    Article  PubMed  CAS  Google Scholar 

  38. Yamaguchi N, Kawase T, Sagoh M, Ohira T, Shiga H, Toya S (1997) Prediction of consistency of meningiomas with preoperative magnetic resonance imaging. Surg Neurol 48:579–583. doi:10.1016/S0090-3019(96)00439-9

    Article  PubMed  CAS  Google Scholar 

  39. Yao A, Pain M, Balchandani P, Shrivastava RK (2016) Can MRI predict meningioma consistency?: a correlation with tumor pathology and systematic review. Neurosurg Rev. doi:10.1007/s10143-016-0801-0

  40. Yrjänä SK, Tuominen H, Karttunen A, Lähdesluoma N, Heikkinen E, Koivukangas J (2006) Low-field MR imaging of meningiomas including dynamic contrast enhancement study: evaluation of surgical and histopathologic characteristics. Am J Neuroradiol 27:2128–2134

    PubMed  Google Scholar 

  41. Zada G, Yashar P, Robison A, Winer J, Khalessi A, Mack WJ, Giannotta SL (2013) A proposed grading system for standardizing tumor consistency of intracranial meningiomas. Neurosurg Focus 35:E1. doi:10.3171/2013.8.FOCUS13274

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Alexander G. Chartrain or Raj K. Shrivastava.

Ethics declarations

This work was performed ethically and complies with the ethical standards of our Institutional Review Board.

Disclosure of funding

None for all of the authors.

Conflict of interest

The authors declare that they have no conflict of interest.

Informed consent

Not required for this review as per our Institutional Review Board.

Additional information

Highlights

- MRE is a promising tool for preoperative meningioma consistency determinations.

- Previous studies have only used a single frequency for measurement acquisition, which may limit the applicability of the results.

- Previous studies have measured the storage modulus, which may not yield clinical results as reliable as the storage and loss moduli do, separately.

- Improved understanding of MRE measurements may be needed prior to clinical application.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chartrain, A.G., Kurt, M., Yao, A. et al. Utility of preoperative meningioma consistency measurement with magnetic resonance elastography (MRE): a review. Neurosurg Rev 42, 1–7 (2019). https://doi.org/10.1007/s10143-017-0862-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10143-017-0862-8

Keywords

Navigation