Skip to main content

Advertisement

Log in

Optical coherence tomography impacts the evaluation of visual pathway tumors

  • Review
  • Published:
Neurosurgical Review Aims and scope Submit manuscript

Abstract

The objective of this systematic literature review is to assess the role of retinal optical coherence tomography (OCT) in the evaluation of patients with tumors of the visual pathway. We performed a PubMed database search according to the guidelines of the Preferred Reporting Items for Systematic Reviews and Meta-Analyses. The search was restricted to articles published in English between 2000 and 2016, with at least 10 human adult participants enrolled. Twenty-seven articles met the eligibility criteria. All studies investigated tumors of the anterior visual pathway. Both time-domain and spectral-domain OCT technologies were used and the role of OCT as diagnostic and/or prognostic tool was studied. Retinal OCT provides structural information about ganglion cell axon integrity and is complementary to visual function examination. OCT is a prognostic factor for post-operative visual outcome.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Akashi A, Kanamori A, Ueda K, Matsumoto Y, Yamada Y, Nakamura M (2014) The detection of macular analysis by SD-OCT for optic chiasmal compression neuropathy and nasotemporal overlap. Invest Ophthalmol Vis Sci 55:4667–4672

    Article  PubMed  Google Scholar 

  2. Budenz DL, Anderson DR, Varma R, Schuman J, Cantor L, Savell J, Greenfield DS, Patella VM, Quigley HA, Tielsch J (2007) Determinants of normal retinal nerve fiber layer thickness measured by stratus OCT. Ophthalmology 114:1046–1052

    Article  PubMed  PubMed Central  Google Scholar 

  3. Cennamo G, Auriemma RS, Cardone D, Grasso LFS, Velotti N, Simeoli C, Di Somma C, Pivonello R, Colao A, Crecchio G (2015) Evaluation of the retinal nerve fiber layer and ganglion cell complex thickness in pituitary macroadenomas without optic chiasmal compression. Eye 29:797–802

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Costa-Cunha LVF, Cunha LP, Malta RFS, Monteiro MLR (2009) Comparison of Fourier-domain and time-domain optical coherence tomography in the detection of band atrophy of the optic nerve. Am J Ophthalmol 147:56–63

    Article  PubMed  Google Scholar 

  5. Danesh-Meyer HV, Carroll SC, Foroozan R, Savino PJ, Fan J, Jiang Y, Vander Hoorn S (2006) Relationship between retinal nerve fiber layer and visual field sensitivity as measured by optical coherence tomography in chiasmal compression. Invest Ophthalmol Vis Sci 47:4827–4835

    Article  PubMed  Google Scholar 

  6. Danesh-Meyer HV, Papchenko T, Savino PJ, Law A, Evans J, Gamble GD (2008) In vivo retinal nerve fiber layer thickness measured by optical coherence tomography predicts visual recovery after surgery for parachiasmal tumors. Invest Ophthalmol Vis Sci 49:1879–1885

    Article  PubMed  Google Scholar 

  7. Danesh-Meyer HV, Wong A, Papchenko T, Matheos K, Stylli S, Nichols A, Frampton C, Daniell M, Savino PJ, Kaye AH (2015) Optical coherence tomography predicts visual outcome for pituitary tumors. J Clin Neurosci 22:1098–1104

    Article  PubMed  Google Scholar 

  8. Drexler W, Fujimoto JG (2008) State-of-the-art retinal optical coherence tomography. Prog Retin Eye Res 27(1):45–88

    Article  PubMed  Google Scholar 

  9. Fujimoto JG, Pitris C, Boppart SA, Brezinski ME (2000) Optical coherence tomography: an emerging technology for biomedical imaging and optical biopsy. Neoplasia 2(1–2):9–25

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Galetta KM, Calabresi PA, Frohman EM, Balcer LJ (2011) Optical coherence tomography (OCT): imaging the visual pathway as a model for neurodegeneration. Neurotherapeutics 8:117–132

    Article  PubMed  PubMed Central  Google Scholar 

  11. Garcia T, Sanchez S, Litre CF, Radoi C, Delemer B, Rousseaux P, Ducasse A, Arndt C (2014) Prognostic value of retinal nerve fiber layer thickness for postoperative peripheral visual field recovery in optic chiasm compression. J Neurosurg 121:165–169

    Article  PubMed  Google Scholar 

  12. Harwerth RS, Wheat JL (2008) Modeling the effects of aging on retinal ganglion cell density and nerve fiber layer thickness. Graefes Arch Clin Exp Ophthalmol 246:305–314

    Article  PubMed  Google Scholar 

  13. Hasegawa T, Akagi T, Yoshikawa M, Suda K, Yamada H, Kimura Y, Nakanishi H, Miyake M, Unoki N, Ikeda HO, Yoshimura N (2015) Microcystic inner nuclear layer changes and retinal nerve fiber layer defects in eyes with glaucoma. PLoS One 10(6):e0130175. doi:10.1371/journal.pone.0130175

    Article  PubMed  PubMed Central  Google Scholar 

  14. Jacob M, Raverot G, Jouanneau E, Borson-Chazot F, Perrin G, Rabilloud M, Tilikete C, Bernard M, Vighetto A (2009) Predicting visual outcome after treatment of pituitary adenomas with optical coherence tomography. Am J Ophthalmol 147:64–70

    Article  PubMed  Google Scholar 

  15. Jindahra P, Petrie A, Plant GT (2009) Retrograde trans-synaptic retinal ganglion cell loss identified by optical coherence tomography. Brain 132:628–634

    Article  PubMed  Google Scholar 

  16. Kanamori A, Nakamura M, Matsui N, Nagai A, Nakanishi Y, Kusuhara S, Yamada Y, Negi A (2004) Optical coherence tomography detects characteristic retinal nerve fiber layer thickness corresponding to band atrophy of the optic disc. Ophthalmology 111:2278–2283

    Article  PubMed  Google Scholar 

  17. Kanamori A, Nakamura M, Yamada Y, Negi A (2013) Spectral-domain optical coherence tomography detects optic atrophy due to optic tract syndrome. Graefes Arch Clin Exp Ophthalmol 251:591–595

    Article  PubMed  Google Scholar 

  18. Keller J, Sanchez-Dalmau BF, Villoslada P (2014) Lesions in the posterior visual pathway promote trans-synaptic degeneration of retinal ganglion cells. PLoS One 9(5):e97444

    Article  PubMed  PubMed Central  Google Scholar 

  19. Leung CKS, Yu M, Weinreb RN, Ye C, Liu S, Lai G, Lam DSC (2012) Retinal nerve fiber layer imaging with spectral-domain optical coherence tomography. Ophthalmology 119:731–737

    Article  PubMed  Google Scholar 

  20. Loo JL, Tian J, Miller NR, Subramanian PS (2013) Use of optical coherence tomography in predicting post-treatment visual outcome in anterior visual pathway meningiomas. Br J Ophthalmol 97:1455–1458

    Article  PubMed  Google Scholar 

  21. Moher D, Liberati A, Tetzlaff J, Altman DG, The PRISMA Group (2009) Preferred reporting items for systematic reviews and meta-analyses. PLoS Med 6(6):e1000097. doi:10.1371/journal.pmed1000097

    Article  PubMed  PubMed Central  Google Scholar 

  22. Monteiro MLR, Costa-Cunha LVF, Cunha LP, Malta RFS (2010) Correlation between macular and retinal nerve fiber layer Fourier-domain OCT measurements and visual loss in chiasmal compression. Eye 24:1382–1390

    Article  CAS  PubMed  Google Scholar 

  23. Monteiro MLR, Cunha LP, Costa-Cunha LVF, Maia OO Jr, Oyamada MK (2009) Relationship between optical coherence tomography, pattern electroretinogram and automated perimetry in eyes with temporal hemianopia from chiasmal compression. Invest Ophthalmol Vis Sci 50:3535–3541

    Article  PubMed  Google Scholar 

  24. Monteiro MLR, Cunha LP, Vessani RM (2008) Comparison of retinal nerve fiber layer measurements using stratus OCT fast and regular scan protocols in eyes with band atrophy of the optic nerve and normal controls. Arq Bras Oftalmol 71(4):534–539

    Article  PubMed  Google Scholar 

  25. Monteiro MLR, Hokazono K, Cunha LP, Oyamada MK (2013) Correlation between multifocal pattern electroretinography and Fourier-domain OCT in eyes with temporal hemianopia from chiasmal compression. Graefes Arch Clin Exp Ophthalmol 251:903–915

    Article  PubMed  Google Scholar 

  26. Monteiro MLR, Hokazono K, Fernandes DB, Costa-Cunha LVF, Sousa RM, Raza AS, Wang DL, Hood DC (2014) Evaluation of inner retinal layers in eyes with temporal hemianoptic visual loss from chiasmal compression using optical coherence tomography. Invest Ophthalmol Vis Sci 55:3328–3336

    Article  PubMed  PubMed Central  Google Scholar 

  27. Monteiro MLR, Leal BC, Rosa AAM, Bronstein MD (2004) Optical coherence tomography analysis of axonal loss in band atrophy of the optic nerve. Br J Ophthalmol 88:896–899

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Monteiro MLR, Moura FC (2008) Comparison of the GDx VCC scanning laser polarimeter and the stratus optical coherence tomograph in the detection of band atrophy of the optic nerve. Eye 22:641–648

    Article  CAS  PubMed  Google Scholar 

  29. Moon CH, Hwang SC, Ohn YH, Park TK (2011) The time course of visual field recovery and changes of retinal ganglion cells after optic chiasmal compression. Invest Ophthalmol Vis Sci 52:7966–7973

    Article  PubMed  Google Scholar 

  30. Moon CH, Lee SH, Kim BT, Hwang SC, Ohn YH, Park TK (2012) Diagnostic ability of retinal nerve fiber layer thickness measurements and neurologic Hemifield test to detect chiasmal compression. Invest Ophthalmol Vis Sci 53:5410–5415

    Article  PubMed  Google Scholar 

  31. Moura FC, Costa-Cunha LVF, Malta RFS, Monteiro MLR (2010) Relationship between visual field sensitivity loss and quadrantic macular thickness measured with stratus-optical coherence tomography in patients with chiasmal syndrome. Arq Bras Oftalmol 73(5):409–413

    Article  PubMed  Google Scholar 

  32. Moura FC, Medeiros FA, Monteiro MLR (2007) Evaluation of macular thickness measurements for detection of band atrophy of the optic nerve using optical coherence tomography. Ophthalmology 114:175–181

    Article  PubMed  Google Scholar 

  33. Nakamura M, Ishikawa-Tabuchi K, Kanamori A, Yamada Y, Negi A (2012) Better performance of RTVue than cirrus spectral-domain optical coherence tomography in detecting band atrophy of the optic nerve. Graefes Arch Clin Exp Ophthalmol 250:1499–1507

    Article  PubMed  Google Scholar 

  34. Ohkubo S, Higashide T, Takeda H, Murotani E, Hayashi Y, Sugiyama K (2012) Relationship between macular ganglion cell complex parameters and visual field parameters after tumor resection in chiasmal compression. Jpn J Ophthalmol 56:68–75

    Article  PubMed  Google Scholar 

  35. Parikh RS, Parikh SR, Sekhar GC, Prabakaran S, Babu JG, Thomas R (2007) Normal age-related decay of retinal nerve fiber layer thickness. Ophthalmology 114:921–926

    Article  PubMed  Google Scholar 

  36. Park HH, Oh MC, Kim EH, Kim CY, Kim SH, Lee KS, Chang JH (2015) Use of optical coherence tomography to predict visual outcome in parachiasmal meningioma. J Neurosurg 123:1489–1499

    Article  PubMed  Google Scholar 

  37. Sibony P, Strachovsky M, Honkanen R, Kupersmith MJ (2014) Optical coherence tomography shape analysis of the peripapillary retinal pigment epithelium layer in presumed optic nerve sheath meningiomas. J Neuroophthalmol 34:130–136

    Article  PubMed  Google Scholar 

  38. Ueda K, Kanamori A, Akashi A, Matsumoto Y, Yamada Y, Nakamura M (2015) Evaluation of the distribution pattern of the circumpapillary retinal nerve fiber layer from the nasal hemiretina. Br J Ophthalmol 99:1419–1423

    Article  PubMed  Google Scholar 

  39. Wolff B, Azar G, Vasseur V, Sahel JA, Vignal C, Mauget-Faysse M (2014) Microcystic changes in the retinal internal nuclear layer associated with optic atrophy: a prospective study. J Ophthalmol 2014:395189. doi:10.1155/2014/395189

    Article  PubMed  PubMed Central  Google Scholar 

  40. Yoneoka Y, Hatase T, Watanabe N, Jinguji S, Okada M, Takagi M, Fujii Y (2015) Early morphological recovery of the optic chiasm is associated with excellent visual outcome in patients with compressive chiasmal syndrome caused by pituitary tumors. Neurol Res 37(1):1–8

    Article  PubMed  Google Scholar 

  41. Ziemssen T, Ziemssen F (2013) Perspectives of an innovative ophthalmological technology: optical coherence tomography (OCT)—what should be of interest to the neurologist? Clin Neurol Neurosurg 115(Suppl 1):S55–S59

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ana Banc.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Banc, A., Stan, C. & Florian, I.S. Optical coherence tomography impacts the evaluation of visual pathway tumors. Neurosurg Rev 41, 415–426 (2018). https://doi.org/10.1007/s10143-016-0772-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10143-016-0772-1

Keywords

Navigation