Skip to main content
Log in

Ectopic expression of CSD1 and CSD2 targeting genes of miR398 in grapevine is associated with oxidative stress tolerance

  • Original Article
  • Published:
Functional & Integrative Genomics Aims and scope Submit manuscript

Abstract

MicroRNAs (miRNAs) are endogenous small RNAs of −21 nucleotides that play an important role in diverse plant physiological processes at the post-transcriptional level by directing mRNA cleavage or translational inhibition. Previous studies have indicated that down-regulation of miR398 in response to oxidative stress allows up-regulation of the two target genes, cytosolic CSD1 and chloroplastic CSD2 (copper/zinc superoxide dismutase), resulting in protecting the plants to tolerate oxidative stress. In this study, we provide evidence that grapevine miR398 (Vv-miR398), by regulating the expression of its target genes, VvCSD1 and VvCSD2, mediates responses of grapevine to copper (Cu) stress which have been magnified due to increase in Cu-containing pesticide application. The expression of Vv-miR398 was inhibited by different concentrations of Cu stress; on the other hand, there was a steady increase in the activity of VvCSD1 and VvCSD2 genes. The function of VvCSD1 and VvCSD2 under Cu stress was thoroughly examined by overexpressing the use of the VvCSD1 and VvCSD2 in transgenic tobacco (Nicotiana tabacum). We found that both the overexpressed transgenic lines had lower Cu sensitivity and higher Cu tolerance compared with the wild type. In addition, lower levels of ROS and higher levels of SOD activities were accumulated in the transgenic lines in comparison with the wild type under the higher Cu conditions. Furthermore, these transgenic tobacco lines also recorded a higher UV and salt tolerance than the WT plants. These results suggested that overexpressing the VvCSDs will enhance the ROS-scavenging systems and protect the plant against more oxidative damage. Also, more investigations in this line are needed that would provide significant improvements in our understanding the resistance of fruit crops to environmental stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Abdel-Ghany SE, Pilon M (2008) MicroRNA-mediated systemic downregulation of copper protein expression in response to low copper availability in Arabidopsis. J Biol Chem 283:15932–15945

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Adai A, Johnson C, Mlotshwa S, Archer-Evans S, Manocha V, Vance V et al (2005) Computational prediction of miRNAs in Arabidopsis thaliana. Genome Res 15:78–91

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Akpinar BA, Kantar M, Budak H (2015) Root precursors of microRNAs in wild emmer and modern wheats show major differences in response to drought stress. Funct Integr Genomics 15(5):587–598

    Article  CAS  PubMed  Google Scholar 

  • Alptekin B, Langridge P, Budak H (2017) Abiotic stress miRNomes in the Triticeae. Funct Integr Genomics 17(2–3):145–170

    Article  CAS  PubMed  Google Scholar 

  • Apel K, Hirt H (2004) Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu rev Plant Biol 55:373–399

    Article  CAS  PubMed  Google Scholar 

  • Birben E, Sahiner UM, Sackesen C, Erzurum S, Kalayci O (2012) Oxidative stress and antioxidant defense. World Allergy Organ J 5(1):9–19

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Budak H, Akpinar BA (2015) Plant miRNAs: biogenesis, organization and origins. Funct Integr Genomics 15(5):523–531

    Article  CAS  PubMed  Google Scholar 

  • Budak H, Hussain B, Khan Z, Ozturk NZ, Ullah N (2015a) From genetics to functional genomics: improvement in drought signaling and tolerance in wheat. Front Plant Sci 6:1012

    Article  PubMed  PubMed Central  Google Scholar 

  • Budak H, Kantar M, Bulut R, Akpinar BA (2015b) Stress responsive miRNAs and isomiRs in cereals. Plant Sci 235:1–13

    Article  CAS  PubMed  Google Scholar 

  • Chen CN, Pan SM (1996) Assay of superoxide dismutase activity by combining electrophoresis and densitometry. Bot Bull Acad Sin 37:107–111

    CAS  Google Scholar 

  • Chiou TJ, Aung K, Lin SI, Wu CC, Chiang SF, Su CL (2006) Regulation of phosphate homeostasis by microRNA in Arabidopsis. Plant Cell 18:412–421

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Foyer CH, Noctor G (2003) Redox sensing and signaling associated with reactive oxygen in chloroplasts, peroxisomes and mitochondria. Physiol Plant 119:355–364

    Article  CAS  Google Scholar 

  • Fujii H, Chiou TJ, Lin SI, Aung K, Zhu JK (2005) A miRNA involved in phosphate-starvation response in Arabidopsis. Curr Biol 15:2038–2043

    Article  CAS  PubMed  Google Scholar 

  • Gill SS, Tuteja N (2010) Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol Biochem 48(12):909–930

    Article  CAS  PubMed  Google Scholar 

  • Guan QM, Lu XY, Zeng HT, Zhang YY, Zhu JH (2013) Heat stress induction of miR398 triggers a regulatory loop that is critical for thermotolerance in Arabidopsis. Plant J 74:840–851

    Article  CAS  PubMed  Google Scholar 

  • Han J, Fang JG, Wang C, Yin YL, Sun X, Leng XP et al (2014) Grapevine microRNAs responsive to exogenous gibberellin. BMC Genomics 15:111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Holzmeister C, Gaupels F, Geerlof A, Sarioglu H, Sattler M, Durner J, Lindermayr C (2015) Differential inhibition of Arabidopsis superoxide dismutases by peroxynitrite-mediated tyrosine nitration. J Exp bot 66(3):989–999

    Article  CAS  PubMed  Google Scholar 

  • Huang XS, Liu JH, Chen XJ (2010) Overexpression of PtrABF gene, a bZIP transcription factor isolated from Poncirus trifoliata, enhances dehydration and drought tolerance in tobacco via scavenging ROS and modulating expression of stress-responsive genes. BMC Plant Biol 10:230

    Article  PubMed  PubMed Central  Google Scholar 

  • Jagadeeswaran G, Saini A, Sunkar R (2009) Biotic and abiotic stress downregulate miR398 expression in Arabidopsis. Planta 229(4):1009–1014

    Article  CAS  PubMed  Google Scholar 

  • Jia HF, Zhang C, Pervaiz T, Zhao PC, Liu ZJ, Wang BJ et al (2016) Jasmonic acid involves in grape fruit ripening and resistant against Botrytis Cinerea. Funct Integr Genomics 16(1):79–94

    Article  CAS  PubMed  Google Scholar 

  • Joo JH, Wang S, Chen JG, Jones AM, Fedoroff NV (2005) Different signaling and cell death roles of heterotrimeric G protein alpha and beta subunits in the Arabidopsis oxidative stress response to ozone. Plant Cell 17(3):957–970

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kantar M, Unver T, Budak H (2010) Regulation of barley miRNAs upon dehydration stress correlated with target gene expression. Funct Integr Genomics 10(4):493–507

    Article  CAS  PubMed  Google Scholar 

  • Kantar M, Lucas SJ, Budak H (2011) miRNA expression patterns of Triticum dicoccoides in response to shock drought stress. Planta 233(3):471–484

    Article  CAS  PubMed  Google Scholar 

  • Khayatnezhad M, Gholamin R, Somarin SJ, Mahmoodabad RZ (2011) The leaf chlorophyll content and stress resistance relationship considering in corn cultivars (Zea mays). Adv Environ Bio 5:118–122

    Google Scholar 

  • Khraiwesh B, Zhu JK, Zhu J (2012) Role of miRNAs and siRNAs in biotic and abiotic stress responses of plants. Biochim Biophys Acta 1819:137–148

    Article  CAS  PubMed  Google Scholar 

  • Leng XP, Mu Q, Wang XM, Li XP, Zhu XD, Shangguan LF et al (2015a) Transporters, chaperones, and P-type ATPases controlling grapevine copper homeostasis. Funct Integr Genomics 15:673–684

    Article  CAS  PubMed  Google Scholar 

  • Leng XP, Jia HF, Sun X, Shangguan LF, Mu Q, Wang BJ et al (2015b) Comparative transcriptome analysis of grapevine in response to copper stress. Sci Rep 5:17749

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leng XP, Wang PP, Zhao PC, Wang MQ, Cui LW, Shangguan LF et al (2017) Conservation of microRNA-mediated regulatory networks in response to copper stress in grapevine. Plant Growth Regul 82:293–304

    Article  CAS  Google Scholar 

  • Liang G, Ai Q, Yu D (2015) Uncovering miRNAs involved in crosstalk between nutrient deficiencies in Arabidopsis. Sci Rep 5:11813

    Article  PubMed  PubMed Central  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2− ΔΔCT method. Methods 25(4):402–408

    Article  CAS  PubMed  Google Scholar 

  • Lu YZ, Feng Z, Bian LY, Xie H, Liang JS (2011) miR398 regulation in rice of the responses to abiotic and biotic stresses depends on CSD1 and CSD2 expression. Funct Plant Biol 38:44–53

    Article  CAS  Google Scholar 

  • Mendoza-Soto AB, Sánchez F, Hernández G (2012) MicroRNAs as regulators in plant metal toxicity response. Front Plant Sci 3:105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miller G, Suzuki N, Ciftci-Yilmaz S, Mittler R (2010) Reactive oxygen species homeostasis and signalling during drought and salinity stresses. Plant Cell Environ 33(4):453–467

    Article  CAS  PubMed  Google Scholar 

  • Mittler R (2002) Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci 7:405–410

    Article  CAS  PubMed  Google Scholar 

  • Mittler R, Vanderauwera S, Gollery M, Van Breusegem F (2004) Reactive oxygen gene network of plants. Trends Plant Sci 9(10):490–498

    Article  CAS  PubMed  Google Scholar 

  • Nie SS, Xu L, Wang Y, Huang DQ, Muleke EM, Sun XC et al (2015) Identification of bolting-related microRNAs and their targets reveals complex miRNA-mediated flowering-time regulatory networks in radish (Raphanus sativus L.) Sci Rep 5:14034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pagliarani C, Vitali M, Ferrero M, Vitulo N, Incarbone M, Lovisolo C et al (2017) The accumulation of miRNAs differentially modulated by drought stress is affected by grafting in grapevine. Plant Physiol 173(4):2180–2195

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Patterson BD (1984) Estimation of hydrogen peroxide in plant extracts using titanium (IV). Anal Biochem 139:487–492

    Article  CAS  PubMed  Google Scholar 

  • Perry JJ, Shin DS, Getzoff ED, Tainer JA (2010) The structural biochemistry of the superoxide dismutases. Biochim Biophys Acta 1804(2):245–262

    Article  CAS  PubMed  Google Scholar 

  • Pitcher LH, Zilinskas BA (1996) Overexpression of copper/zinc superoxide dismutase in the cytosol of transgenic tobacco confers partial resistance to ozone-induced foliar necrosis. Plant Physiol 110:583–588

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schmedes A, Holmer G (1989) A new thiobarbituric acid (TBA) method for determining free malondialdehyde (MDA) and hydroperoxides selectively as a measure of lipid peroxidation. J am oil Chem Soc 66:813–817

    Article  CAS  Google Scholar 

  • Sen Gupta A, Heinen JL, Holaday AS, Burke JJ, Allen RD (1993a) Increased resistance to oxidative stress in transgenic plants that overexpress chloroplastic cu/Zn superoxide dismutase. PNAS 90:1629–1633

    Article  CAS  Google Scholar 

  • Sen Gupta A, Webb RP, Holaday AS, Allen RD (1993b) Over-expression of superoxide dismutase protects plants from oxidative stress: induction of ascorbate peroxidase in superoxide dismutase-overexpressing plants. Plant Physiol 103:1067–1073

    Article  CAS  Google Scholar 

  • Shalata A, Mittova V, Volokita M, Guy M, Tal M (2001) Response of the cultivated tomato and its wild salt-tolerant relative Lycopersicon pennellii to salt-dependent oxidative stress: the root antioxidative system. Physiol Plant 112:487–494

    Article  CAS  PubMed  Google Scholar 

  • Shi R, Chiang VL (2005) Facile means for quantifying microRNA expression by real-time PCR. BioTechniques 39:519–525

    Article  CAS  PubMed  Google Scholar 

  • Singla-Pareek SL, Reddy MK, Sopory SK (2003) Genetic engineering of the glyoxalase pathway in tobacco leads to enhanced salinity tolerance. PNAS 100(25):14672–14677

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sun X, Kibet NK, Han J, Shangguan LF, Emrul K, Leng XP et al (2012) Characterization of grapevine microR164 and its target genes. Mol Biol Rep 39:9463–9472

    Article  CAS  PubMed  Google Scholar 

  • Sunkar R, Zhu JK (2004) Novel and stress-regulated microRNAs and other small RNAs from Arabidopsis. Plant Cell 16:2001–2019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sunkar R, Kapoor A, Zhu JK (2006) Posttranscriptional induction of two cu/Zn superoxide dismutase genes in Arabidopsis is mediated by downregulation of miR398 and important for oxidative stress tolerance. Plant Cell 18:2051–2065

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Suzuki N, Mittler R (2006) Reactive oxygen species and temperature stresses: a delicate balance between signaling and destruction. Physiol Plant 126:45–51

    Article  CAS  Google Scholar 

  • Wang C, Wang X, Nicholas KK, Song C, Zhang C, Li X et al (2011) Deep sequencing of grapevine flower and berry short RNA library for discovery of new microRNAs and validation of precise sequences of grapevine microRNAs deposited in miRBase. Physiol Plant 143:64–81

    Article  CAS  PubMed  Google Scholar 

  • Wang C, Han J, Kibet NK, Wang XC, Liu H, Li XY et al (2013) Characterization of target mRNAs for grapevine microRNAs with an integrated strategy of modified RLM-RACE, newly developed PPM-RACE and qPCRs. J Plant Physiol 170:943–957

    Article  CAS  PubMed  Google Scholar 

  • Wang C, Leng XP, Zhang YY, Kayesh E, Zhang YP, Sun X et al (2014) Transcriptome-wide analysis of dynamic variations in regulation modes of grapevine microRNAs on their target genes during grapevine development. Plant Mol Biol 84:269–285

    Article  CAS  PubMed  Google Scholar 

  • Wilson DN, Chung H, Elliott RC, Bremer E, George D, Koh S (2005) Microarray analysis of postictal transcriptional regulation of neuropeptides. J Mol Neurosci 25:285–298

    Article  CAS  PubMed  Google Scholar 

  • Yamasaki H, Abdel-Ghany SE, Cohu CM, Kobayashi Y, Shikanai T, Pilon M (2007) Regulation of copper homeostasis by microRNA in Arabidopsis. J Biol Chem 282:16369–16378

    Article  CAS  PubMed  Google Scholar 

  • Yu Y, Li Y, Li L, Lin J, Zheng C, Zhang L (2009) Overexpression of PwTUA1, a pollen-specific tubulin gene, increases pollen tube elongation by altering the distribution of alpha-tubulin and promoting vesicle transport. J Exp Bot 60:2737–2749

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from China Postdoctoral Science Foundation (2015M581811), the Natural Science Foundation of China (NSFC) (No. 31401846), the Fundamental Research Funds for the Central Universities (KJQN201540), the Postdoc Foundation of China (2014M561664), the Postdoc Foundation of Jiangsu Province (1401051B).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lingfei Shangguan or Jinggui Fang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Leng, X., Wang, P., Zhu, X. et al. Ectopic expression of CSD1 and CSD2 targeting genes of miR398 in grapevine is associated with oxidative stress tolerance. Funct Integr Genomics 17, 697–710 (2017). https://doi.org/10.1007/s10142-017-0565-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10142-017-0565-9

Keywords

Navigation