Skip to main content
Log in

In silico search and biological validation of microRNAs related to drought response in peach and almond

  • Original Article
  • Published:
Functional & Integrative Genomics Aims and scope Submit manuscript

Abstract

Plant responses to drought stress are regulated at the transcriptional and post-transcriptional levels through noncoding endogenous microRNAs. These microRNAs play key roles in gene expression, mainly by down-regulating target mRNAs. In this work, an in silico search and validation for microRNAs related to drought response in peach (‘G.H. Hill’), almond (‘Sefied’) and an interspecific peach-almond hybrid (‘GN 15’) has been performed. We used qPCR to analyse the gene expression of several miRNAs described as being related to drought response in peach, including miR156, miR159, miR160, miR167, miR171, miR172, miR398, miR403, miR408, miR842 and miR2275 under mild and severe water deficit. These miRNAs were in silico selected on the basis of previous works, their conservation in plants and their drought response. qPCR analysis confirmed the implication of these miRNAs in the dehydration stress response in the three assayed genotypes. Comparison of miRNA expression patterns in the three evaluated genotypes indicated that the hybrid GN 15 showed higher expression levels of specific miRNAs which should be related to the observed drought tolerance. mRNA target transcripts of the miRNAs studied were predicted using the Rose database, which includes transcription factors that regulate plant growth and development. In addition, results showed that the promoter region contains responsive elements to hormone-mediated regulatory elements. Network analysis not only unravelled the interaction between miRNAs and their predicted gene targets but also highlighted the roles of miRNAs in response to drought stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

ABA:

Abscisic acid

ABREs:

ABA response elements

AREs:

Anaerobic induction elements

BLAST:

Basic Local Alignment Search Tool

CSD:

Copper superoxide dismutase

DW:

Dry weight

EST:

Expressed sequence tags

FW:

Fresh weight

HSEs:

Heat stress-responsive elements

LTRs:

Low temperature-responsive elements

MBS:

MYB binding site

mRNA:

Messenger RNA

miRNA:

MicroRNA

NCBI:

National Center for Biotechnology Information

P. persica :

Prunus persica

RNAPs:

RNA polymerases

ROS:

Reactive oxygen species

RT:

Retro transcription

RWC:

Relative water content

SPL:

Squamosa promoter binding protein-like

TW:

Turgid weight

References

  • Abdel-Ghany SE, Pilon M (2008) MicroRNA-mediated systemic down-regulation of copper protein expression in response to low copper availability in Arabidopsis. J Biol Chem 283:15932–15945

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alimohammadi A, Shiran B, Martínez-Gómez P, Ebrahimie E (2013) Identification of water-deficit resistance genes in wild almond Prunus scoparia using cDNA-AFLP. Sci Hortic 159:19–28

    Article  CAS  Google Scholar 

  • Arenas-Huertero C, Perez B, Rabanal F, Blanco-Melo D, De la Rosa C (2009) Conserved and novel miRNAs in the legume Phaseolus vulgaris in response to stress. Plant Mol Biol 70:385–401

    Article  CAS  PubMed  Google Scholar 

  • Babgohari MR, Niazi A, Moghadam AA, Deihimi T, Ebrahimie E (2013) Genome-wide analysis of key salinitytolerance transporter (HKT15) in wheat and wild wheat relatives (A and D genomes). In Vitro Cell Dev Biol Plant 49:97–106

    Article  Google Scholar 

  • Baird WV, Estager AS, Wells JK (1994) Estimating nuclear DNA content in peach and related diploid species using lasser flow-cytometry and DNA hybridization. J Am Soc Hortic Sci 119:1312–1316

    Google Scholar 

  • Barakat A, Sriram A, Park J, Zhebentyayeva T, Main D, Abbott A (2012) Genome wide identification of chilling responsive microRNAs in Prunus persica. BMC Genomics 13:481

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barrera-Figueroa BE, Gao L, Wu Z, Zhou X, Zhu J, Jin H, Zhu JK (2012) High throughput sequencing reveals novel and abiotic stress-regulated microRNAs in the inflorescences of rice. BMC Plant Biol 12:132

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bartel D (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116:281–297

    Article  CAS  PubMed  Google Scholar 

  • Bhargava S, Sawant K (2013) Drought stress adaptation: metabolic adjustment and regulation of gene expression. Plant Breed 132:21–32

    Article  CAS  Google Scholar 

  • Budak H, Akpinar BA (2015) Plant miRNAs: biogenesis, organization and origins. Funct Integr Genomics 15:523–531

    Article  CAS  PubMed  Google Scholar 

  • Budak H, Kantar M, Bulut R, Akpinar BA (2015) Stress responsive miRNAs and isomiRs in cereals. Plant Sci 235:1–13

    Article  CAS  PubMed  Google Scholar 

  • Campalans A, Pages M, Messeguer R (2001) Identification of differentially expressed genes by the cDNA-AFLP technique during dehydration of almond (Prunus amygdalus L.). Tree Physiol 21:633–643

    Article  CAS  PubMed  Google Scholar 

  • Deihimi T, Niazi A, Ebrahimi M, Kajbaf K, Fanaee S, Bakhtiarizadeh MR, Ebrahimie E (2012) Finding the undiscovered roles of genes: an approach using mutual ranking of coexpressed genes and promoter architecture-case study: dual roles of thaumatin like proteins in biotic and abiotic stresses. SpringerPlus 1:30

    Article  PubMed  PubMed Central  Google Scholar 

  • Ding D, Zhang L, Wang H, Liu Z, Zhang Z (2009) Differential expression of miRNAs in response to salt stress in maize roots. Ann Bot 103:29–38

    Article  CAS  PubMed  Google Scholar 

  • Ebrahimi-Khaksefidi R, Mirlohi S, Khalaji F, Fakhari Z, Shiran B, Fallahi H, Rafiei F, Budak H, Ebrahimie E (2015) Differential expression of seven conserved microRNAs in response to abiotic stress and their regulatory network in Helianthus annuus. Front Plant Sci 6:741

    Article  PubMed  PubMed Central  Google Scholar 

  • Eldem V, Akcay UC, Ozhuner E, Bakir Y, Uranbey S, Unver T (2012) Genome-wide identification of miRNAs responsive to drought in peach (Prunus persica) by high-throughput deep sequencing. PLoS ONE 7, e50298

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Esfahlan AJ, Jamei R, Esfahlan RJ (2010) The importance of almond ( Prunus amygdalus L.) and its by-products. Food Chem 120:349–360

    Article  CAS  Google Scholar 

  • Felipe AJ, Gómez-Aparisi J, Socias i Company R (1998) Breeding almond x Peach hybrids rootstocks at Zaragoza. Acta Hortic 470:195–199

    Article  Google Scholar 

  • Ferdous J, Hussain SS, Shi BJ (2015) Role of microRNAs in plant drought tolerance. Plant Biotechnol J 13:293–305

    Article  CAS  PubMed  Google Scholar 

  • Gandikota M, Birkenbihl RP, Hohmann S, Cardon GH, Saedler H, Huijser P (2007) The miRNA156/157 recognition element in the 3 UTR of the Arabidopsis SBP box gene SPL3 prevents early flowering by translational inhibition in seedlings. Plant J 49:683–693

    Article  CAS  PubMed  Google Scholar 

  • Hagen G, Guilfoyle T (2002) Auxin-responsive gene expression: genes, promoters and regulatory factors. Plant Mol Biol 49:373–385

    Article  CAS  PubMed  Google Scholar 

  • Jones-Rhoades MW, Bartel DP, Bartel B (2006) MicroRNAs and their regulatory roles in plants. Annu Rev Plant Biol 57:19–53

    Article  CAS  PubMed  Google Scholar 

  • Kantar M, Unver T, Budak H (2010) Regulation of barley miRNAs upon dehydration stress correlated with target gene expression. Funct Integr Genomics 10:493–507

    Article  CAS  PubMed  Google Scholar 

  • Kantar M, Lucas SJ, Budak H (2011) miRNAs expression of Triticum diccoides in response to drought stress. Planta 233:471–484

    Article  CAS  PubMed  Google Scholar 

  • Kim J, Park JH, Lim CJ, Lim JY, Ryu JY, Lee BW, Choi JP, Kim WB, Lee HY, Choi Y, Kim D, Hur CG, Kim S, Noh YS, Shin C, Kwon SY (2012) Small RNA and transcriptome deep sequencing proferrs insigh into floral gene regulation in Rosa cultivars. BMC Genomics 13:657

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lescot M, Déhais P, Thijs G, Marchal K, Moreau Y, Van de Peer Y, Rombauts S (2002) PlantCARE, a database of plant cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences. Nucleic Acids Res 30:325–327

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li WX, Oono Y, Zhu J, He XJ, Wu JM, Iida K, Lu XY, Cui X, Jin H, Zhu JK (2008) The Arabidopsis NFYA5 transcription factor is regulated transcriptionally and posttranscriptionally to promote drought resistance. Plant Cell 20:2238–2251

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li H, Zhang Z, Huang F, Chang L, Ma Y (2009) MicroRNA expression profiles in conventional and micro propagated strawberry (Fragaria ananassa Duch.) plants. Plant Cell Rep 28:891–902

    Article  CAS  PubMed  Google Scholar 

  • Li T, Li H, Zhang YX, Liu JY (2010) Identification and analysis of seven H2O2- responsive miRNAs and 32 new miRNAs in the seedlings of rice (Oryza sativa L. ssp. indica). Nucleic Acids Res 39:2821–2833

    Article  PubMed  PubMed Central  Google Scholar 

  • Li B, Qin Y, Duan H, Yin W, Xia X (2011) Genome-wide characterization of new and drought stress responsive microRNAs in Populus euphratica. J Exp Bot 62:3765–3779

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu HH, Tian X, Li YJ, Wu CA, Zheng CC (2008) Microarray-based analysis of stress-regulated microRNAs in Arabidopsis thaliana. RNA 14:836–843

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lu S, Sun YH, Chiang VL (2008) Stress-responsive microRNAs in Populus. Plant J 55:131–151

    Article  CAS  PubMed  Google Scholar 

  • Ma C, Burd S, Lers A (2015) miR408 is involved in abiotic stress responses in Arabidopsis. Plant J 84:169–187

    Article  CAS  PubMed  Google Scholar 

  • Martínez-Gómez P, Arulsekar S, Potter D, Gradziel TM (2003) An extended interspecific gene pool available to peach and almond breeding as characterized using simple sequence repeat (SSR) markers. Euphytica 131:313–322

    Article  Google Scholar 

  • Megraw M, Hatzigeorgiou AG (2010) MicroRNA promoter analysis. In: Plant MicroRNAs. Ed. Humana Press. Pág. 149–161

  • Moghadam AA, Taghavi SM, Niazi A, Djavaheri M, Ebrahimie E (2012) Isolation and in silico functional analysis of MtATP6, a 6-kDa subunit of mitochondrial F1F0-ATP synthase, in response to abiotic stress. Genet Mol Res 11:3547–3567

    Article  CAS  PubMed  Google Scholar 

  • Moghadam AA, Ebrahimie E, Taghavi SM, Niazi A, Babgohari MZ, Deihimi T, Djavaheri M, Ramezani A (2013) How the nucleus and mitochondria communicate in energy production during stress: nuclear MtATP6, an early-stress responsive gene, regulates the mitochondrial F1F0-ATP synthase complex. Mol Biotechnol 54:756–769

    Article  CAS  PubMed  Google Scholar 

  • Mousavi SA, Fattahi-Moghadam MR, Zamani Z, Imani A (2009) Qualitative and quantitative particular assessment of a few almond cultivar and genotype. Iran Hort Sci Magazine 41:119–131

    Google Scholar 

  • Mundy J, Yamaguchi-Shinozaki K, Chua NH (1990) Nuclear proteins bind conserved elements in the abscisic acid-responsive promoter of a rice rab gene. Proc Natl Acad Sci 87:1406–1410

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nikitin A, Egorov S, Daraselia N, Mazo I (2003) Pathway studio – the analysis and navigation of molecular networks. Bioinformatics 19:2155–2157

    Article  CAS  PubMed  Google Scholar 

  • Pantaleo V, Szittya G, Moxon S, Miozzi L, Moulton V, Dalmay T, Burgyan J (2010) Identification of grapevine microRNAs and their targets using highthroughput sequencing and degradome analysis. Plant J 62:960–976

    CAS  PubMed  Google Scholar 

  • Reyes JL, Chua NH (2007) ABA induction of miR159 controls transcript levels of two MYB factors during Arabidopsis seed germination. Plant J 49:592–606

    Article  CAS  PubMed  Google Scholar 

  • Rubio-Piña JA, Zapata-Pérez O (2011) Isolation of total RNA from tissues rich in polyphenols and polysaccharides of mangrove plants. Electron J Biotechnol 14:11–21

    Google Scholar 

  • Saini A, Li Y, Jagadeeswaran G, Sunkar R (2012) Role of microRNAs in plant adaptation to environmental stresses. In: Sunkar R (ed) MicroRNAs in plant development and stress responses. Springer, Berlin, pp 219–232

    Chapter  Google Scholar 

  • Schmittgen TD, Livak KJ (2008) Analyzing real-time PCR data by the comparative CT method. Nat Protoc 3:1101–1108

    Article  CAS  PubMed  Google Scholar 

  • Shukla LI, Chinnusamy V, Sunkar R (2008) The role of microRNAs and other endogenous small RNAs in plant stress responses. Biochim Biophys Acta-Gene Regul Mech 1779:743–748

    Article  CAS  Google Scholar 

  • Shulaev V, Korban SS, Sosinski B, Abbott AG, Aldwinckle HS, Folta KM, Iezzoni A, Main D, Arús P, Dandekar AM, Lewers K, Gardiner SE, Potter D, Veilleux E (2008) Multiple models for Rosaceae genomics. Plant Physiol 147:985–1003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Solofoharivelo MC, Walt AP, Stephan D, Burger JT, Murray SL (2014) MicroRNAs in fruit trees: discovery, diversity and future research directions. Plant Biol 16:856–865

    Article  CAS  PubMed  Google Scholar 

  • Sorkheh K, Shiran B, Rouhi V, Asadi E, Jahanbazi H, Moradi H, Gradziel TM, Martínez-Gómez P (2009) Phenotypic diversity within native Iranian almond (Prunus spp.) species and their breeding potential. Genet Resour Crop Evol 56:947–961

    Article  Google Scholar 

  • Sunkar R (2010) MicroRNAs with macro-effects on plant stress responses. Semin Cell Dev Biol 21:805–811

    Article  CAS  PubMed  Google Scholar 

  • Sunkar R, Kapoor A, Zhu JK (2006) Posttranscriptional induction of two Cu/ Zn superoxide dismutase genes in Arabidopsis is mediated by downregulation of miR398 and important for oxidative stress tolerance. Plant Cell 18:2051–2065

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sunkar R, Chinnusamy V, Zhu JH, Zhu JK (2007) Small RNAs as big players in plant abiotic stress responses and nutrient deprivation. Trends Plant Sci 12:301–309

    Article  CAS  PubMed  Google Scholar 

  • Sunkar R, Li YF, Jagadeeswaran G (2012) Functions of microRNAs in plant stress responses. Trends Plant Sci 17:196–203

    Article  CAS  PubMed  Google Scholar 

  • Thapa G, Dey M, Sahoo L, Panda SK (2011) An insight into the drought stress induced alterations in plants. Biol Plant 55:603–613

    Article  CAS  Google Scholar 

  • Trindade C, Capitao C, Dalmay T, Fevereiro M, Santos D (2010) miR398 and miR408 are up-regulated in response to water deficit in Medicago truncatula. Planta 231:705–716

    Article  CAS  PubMed  Google Scholar 

  • Unver T, Budak H (2009) Conserved microRNAs and their targets in model grass species Brachypodium distachyon. Planta 230:659–669

    Article  CAS  PubMed  Google Scholar 

  • Varkonyi-Gasic E, Wu R, Wood M, Walton EF, Hellens RP (2007) Protocol: a highly sensitive RT-PCR method for detection and quantification of microRNAs. Plant Methods 3:12

    Article  PubMed  PubMed Central  Google Scholar 

  • Verde I, Abbott AG, Scalabrin S, Jung S, Shu S et al (2013) The high-quality draft of peach (Prunus persica) identifies unique patterns of genetic diversity, domestication and genome evolution. Nat Genet 45:487–494

    Article  CAS  PubMed  Google Scholar 

  • Wang T, Pan H, Wang J, Weiru Y, Cheng T, Zhang Q (2013) Identification and profiling of novel and conserved microRNAs during the flower opening process in Prunus mume via deep sequencing. Mol Gen Genomics 289:169–183

    Article  Google Scholar 

  • Watson JD, Gann A, Baker TA, Levine M, Bell SP, Harrison SC (2014) Molecular biology of the gene. Cold Spring Harbor: Cold Spring Harbor Laboratory Press, New York, 872 pp

    Google Scholar 

  • Xia R, Zhu H, An Y, Beers EP, Liu Z (2012) Apple miRNAs and tasiRNAs with novel regulatory networks. Genome Biol 13:R47

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu D, Duan X, Wang B, Hong B, Ho T, Wu R (1996) Expression of a late embryogenesis abundant protein gene, HVA1, from barley confers tolerance to water deficit and salt stress in transgenic rice. Plant Physiol 110:249–257

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yamasaki H, Abdel-Ghany SE, Cohu CM, Kobayashi Y, Shikanai T, Pilon M (2007) Regulation of copper homeostasis by micro-RNA in Arabidopsis. J Biol Chem 282:16369–16378

    Article  CAS  PubMed  Google Scholar 

  • Zhang B, Pan XP, Wang QL, Cobb GP, Anderson TA (2005) Identification and characterization of new plant microRNAs using EST analysis. Cell Res 15:336–360

    Article  PubMed  Google Scholar 

  • Zhang BH, Wang QL, Pan XP (2007) MicroRNAs and their regulatory roles in animals and plants. J Cell Physiol 210:279–289

    Article  CAS  PubMed  Google Scholar 

  • Zhang J, Xu Y, Huan Q, Chong K (2009a) Deep sequencing of Brachypodium small RNAs at the global genome level identifies microRNAs involved in cold stress response. BMC Genomics 10:449

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang W, Luo Y, Gong X, Zeng W, Li S (2009b) Computational identification of 48 potato microRNAs and their targets. Comput Biol Chem 33:84–93

    Article  CAS  PubMed  Google Scholar 

  • Zhang JZ, Ai XY, Guo WW, Peng SA, Deng XX, Hu CG (2012) Identification of miRNAs and their target genes using deep sequencing and degradome analysis in trifoliate orange [Poncirus trifoliate (L.) Raf]. Mol Biotechnol 51:44–57

    Article  CAS  PubMed  Google Scholar 

  • Zhao BT, Liang RQ, Ge LF, Li W, Xiao HS (2007) Identification of drought-induced microRNAs in rice. Biochem Biophys Res Commun 354:585–590

    Article  CAS  PubMed  Google Scholar 

  • Zhao B, Ge L, Liang R, Li W, Ruan K (2009) Members of miR-169 family are induced by high salinity and transiently inhibit the NF-YA transcription factor. BMC Mol Biol 10:29

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhu H, Xia R, Zhao B, An YQ, Dardick CD, Callahan AM, Liu Z (2012) Unique expression, processing regulation, and regulatory network of peach (Prunus persica) miRNAs. BMC Plant Biol 12:149

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zuker M (2003) Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res 31:3406–3415

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The authors are grateful to Shahrekord University and the Centre of Excellence for the Biotechnology of Pome Fruits and Almond Diseases in the Central Region of Iran for providing partial financial support to the MSc students (FE). The authors would also like to thank Dr. Esmaeil Ebrahimie of the School of Biological Sciences at the University of Adelaide, Australia, for his help in the construction of a gene network by Pathway Studio software 9. This study has been supported in part by the project AGL2013-43550-R from the Spanish Ministry of Economy and Competiveness.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Behrouz Shiran or Pedro Martínez-Gómez.

Additional information

This article forms part of a special issue of Functional & Integrative Genomics entitled “miRNA in model and complex organisms” (Issue Editors: Hikmet Budak and Baohong Zhang)

Electronic supplementary material

Below is the link to the electronic supplementary material.

Fig. S1

Predicted miRNA targets and their complementary sites within defined mRNAs. Each bottom strand shows the miRNA sequence, and each top strand shows the corresponding complementary site within specific mRNA targets (GIF 35 kb)

High Resolution Image (TIF 570 kb)

Table S1

List of newly identified computer-based miRNAs and their characteristics in P. dulcis by EST analysis. NM: number of mismatches; LM: length of the mature miRNA; LP: length of the miRNA precursor sequence; MFEI: Minimal folding free energy index (DOCX 15 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Esmaeili, F., Shiran, B., Fallahi, H. et al. In silico search and biological validation of microRNAs related to drought response in peach and almond. Funct Integr Genomics 17, 189–201 (2017). https://doi.org/10.1007/s10142-016-0488-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10142-016-0488-x

Keywords

Navigation