Skip to main content

Advertisement

Log in

Antifouling Activity of Meroterpenes Isolated from the Ascidian Aplidium aff. densum

  • Original Article
  • Published:
Marine Biotechnology Aims and scope Submit manuscript

Abstract

The settlement and growth of fouling organisms on man-made surfaces can be prevented by the application of antifouling paints containing active compounds (biocides, heavy metals), most of which are toxic to non-target organisms. As part of our research program in chemical ecology and blue biotechnology, we are conducting studies to investigate the natural defence mechanisms of marine organisms that are free from epibionts, with the aim of isolating molecules involved in surface defence that could be good candidates as antifouling agents. Ascidians were selected for our investigation because previous studies have shown that they contain abundant and diverse secondary metabolites, which play a defensive role and have been applied to drug discovery. It is therefore relevant to study the role of such secondary metabolites in surface protection. In this study, 5 meroterpenoids (cordiachromene A, didehydroconicol, epiconicol, methoxyconidiol, conidione) from Aplidium aff. densum (ascidian) were investigated as potential antifoulants towards the inhibition of bacterial growth and settlement inhibition of barnacles. Cardiochromene A (IC50 barnacle settlement = 6.04 μg/mL; MIC Gram positive = 125 μg/mL; MIC Gram negative = 32 μg/mL) and epiconicol (IC50 barnacle settlement = 8.05 μg/mL; MIC Bacillus = 63 μg/mL; MIC other strains = 32 μg/mL) were the most promising compounds among those tested in this study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Alemán-Vega M, Sánchez-Lozano I, Hernández-Guerrero CJ, Hellio C, Quintana ET (2020) Exploring antifouling activity of biosurfactants producing marine bacteria isolated from Gulf of California. Int J Mol Sci 21:6068

  • Almeida J, Correia-da-Silva M, Sousa E, Antunes J, Pinto M, Vasconcelos V, Cunha I (2017) Antifouling potential of nature-inspired sulfated compounds. Sci Rep 7:42424

    CAS  PubMed  PubMed Central  Google Scholar 

  • Amara I, Miled W, Ben SR, Ladhari N (2018) Antifouling processes and toxicity effects of antifouling paints on marine environment. A review. Environ Toxicol Pharmacol 57:115–130

    CAS  PubMed  Google Scholar 

  • Appleton DR, Chuen CS, Berridge MV, Webb VL, Copp BR (2009) Rossinones A and B, biologically active meroterpenoids from the antarctic ascidian, Aplidium species. J Org Chem 74:9195–9198

    CAS  PubMed  Google Scholar 

  • Benslimane AF, Pouchus YF, Le Boterff J et al (1988) Substances cytotoxiques et antibactériennes de l’ascidie Aplidium antillense. J Nat Prod 51:582–583

    CAS  PubMed  Google Scholar 

  • Bertanha CS, Januário AH, Alvarenga TA, Pimenta L, Silva M, Cunha W, Pauletti P (2014) Quinone and hydroquinone metabolites from the ascidians of the genus Aplidium. Mar Drugs 12:3608–3633

    PubMed  PubMed Central  Google Scholar 

  • Birringer M, Siems K, Maxones A, Frank J, Lorkowski S (2018) Natural 6-hydroxy-chromanols and-chromenols: structural diversity, biosynthetic pathways and health implications. RSC Adv 8:4803–4841

    CAS  Google Scholar 

  • Blossom N, Szafranski F, Lotz A (2018) Use of copper-based antifouling paint: a US regulatory update. Am Coatings Assoc Ind Mark Anal 9th Ed. https://chemquest.com/wp-content/uploads/2018/03/March-2018-CoatingsTech_Antifouling-article_FINAL.pdf. Accessed 29 Apr 2020

  • Blunt JW, Copp BR, Keyzers RA et al (2018) Marine natural products. Nat Prod Rep 35:8–53

    CAS  PubMed  Google Scholar 

  • Bovio E, Fauchon M, Toueix Y, Mehiri M, Varese GC, Hellio C (2019) The sponge-associated fungus Eurotium chevalieri MUT 2316 and its bioactive molecules: potential applications in the field of antifouling. Mar Biotechnol 21:743–752

    CAS  Google Scholar 

  • Bryan PJ, McClintock JB, Slattery M, Rittschof DP (2003) A comparative study of the non-acidic chemically mediated antifoulant properties of three sympatric species of ascidians associated with seagrass habitats. Biofouling 19:235–245

    CAS  PubMed  Google Scholar 

  • Carbone M, Núñez-Pons L, Paone M, Castelluccio F, Avila C, Gavagnin M (2012) Rossinone-related meroterpenes from the Antarctic ascidian Aplidium fuegiense. Tetrahedron. 68:3541–3544

    CAS  Google Scholar 

  • Carroll AR, Copp BR, Davis RA, Keyzers RA, Prinsep MR (2020) Marine natural products. Nat Prod Rep 37:175–223

    PubMed  Google Scholar 

  • Carson RT, Damon M, Johnson LT, Gonzales JA (2009) Conceptual issues in designing a policy to phase out metal-based antifouling paint on recreational boats in San Diego Bay. J Environ Manag 90:2460–2468

    CAS  Google Scholar 

  • Chan STS, Pearce AN, Januario AH, Page MJ, Kaiser M, McLaughlin RJ, Harper JL, Webb VL, Barker D, Copp BR (2011) Anti-inflammatory and antimalarial meroterpenoids from the New Zealand ascidian Aplidium scabellum. J Org Chem 76:9151–9156

    CAS  PubMed  Google Scholar 

  • Christie AO, Dalley R (1987) Barnacle fouling and its prevention. In: Southward AJ (ed) Barnacle Biology, Crustacean issues 5:419–433

  • Clare AS (1996) Marine natural product antifoulants: status and potential. Biofouling 9:211–229

    CAS  Google Scholar 

  • Culioli G, Ortalo-Magné A, Valls R et al (2008) Antifouling activity of meroditerpenoids from the marine brown alga Halidrys siliquosa. J Nat Prod 71:1121–1126

    CAS  PubMed  Google Scholar 

  • Dafforn KA, Lewis JA, Johnston EL (2011) Antifouling strategies: history and regulation, ecological impacts and mitigation. Mar Pollut Bull 62:453–465

    CAS  PubMed  Google Scholar 

  • Darya M, Sajjadi MM, Yousefzadi M, Sourinejad I, Zarei M (2020) Antifouling and antibacterial activities of bioactive extracts from different organs of the sea cucumber Holothuria leucospilota. Helgol Mar Res 74:4

    Google Scholar 

  • Davis AR (1991) Alkaloids and ascidian chemical defense: evidence for the ecological role of natural products from Eudistoma olivaceum. Mar Biol 111:375–379

    Google Scholar 

  • Davis AR, Wright AE (1989) Interspecific differences in fouling of two congeneric ascidians (Eudistoma olivaceum and E. capsulatum): is surface acidity an effective defense? Mar Biol 102:491–497

    Google Scholar 

  • Davis AR, Wright AE (1990) Inhibition of larval settlement by natural products from the ascidian, Eudistoma olivaceum (Van Name). J Chem Ecol 16:1349–1357

    CAS  PubMed  Google Scholar 

  • Davis AR, Targett NM, McConnell OJ, Young CM (1989) Epibiosis of marine algae and benthic invertebrates: natural products chemistry and other mechanisms inhibiting settlement and overgrowth. In: Scheuer PJ (ed) Bioorganic marine chemistry, vol 3. Springer, Berlin, Heidelberg

    Google Scholar 

  • de Carvalho CCCR (2018) Marine biofilms: a successful microbial strategy with economic implications. Front Mar Sci 5:126

    Google Scholar 

  • De Nys R, Steinberg PD (2002) Linking marine biology and biotechnology. Curr Opin Biotechnol 13:244–248

    PubMed  Google Scholar 

  • Demirel YK, Turan O, Incecik A (2017) Predicting the effect of biofouling on ship resistance using CFD. Appl Ocean Res 62:100–118

    Google Scholar 

  • El Hattab M, Genta-Jouve G, Bouzidi N et al (2015) Cystophloroketals A-E, unusual phloroglucinol-meroterpenoid hybrids from the brown alga Cystoseira tamariscifolia. J Nat Prod 78:1663–1670

    PubMed  Google Scholar 

  • Flach CF, Pal C, Svensson CJ, Kristiansson E, Östman M, Bengtsson-Palme J, Tysklind M, Larsson DGJ (2017) Does antifouling paint select for antibiotic resistance? Sci Total Environ 590-591:461–468

    CAS  PubMed  Google Scholar 

  • Garrido L, Zubía E, Ortega MJ, Salvá J (2002) New Meroterpenoids from the ascidian Aplidium conicum. J Nat Prod 65:1328–1331

    CAS  PubMed  Google Scholar 

  • Hastings J, Owen G, Dekker A, Ennis M, Kale N, Muthukrishnan V, Turner S, Swainston N, Mendes P, Steinbeck C (2016) ChEBI in 2016: improved services and an expanding collection of metabolites. Nucleic Acids Res 44:D1214–D1219

    CAS  PubMed  Google Scholar 

  • Hellio C, Berge JP, Beaupoil C et al (2002) Screening of marine algal extracts for anti-settlement activities against microalgae and macroalgae. Biofouling 18:205–215

    CAS  Google Scholar 

  • Holmström C, Kjelleberg S (1994) The effect of external biological factors on settlement of marine invertebrate and new antifouling technology. Biofouling 8:147–160

    Google Scholar 

  • Jadidi P, Zeinoddini M (2020) Influence of hard marine fouling on energy harvesting from vortex-induced vibrations of a single-cylinder. Renew Energy 152:516–528

    Google Scholar 

  • Jones B, Bolam T (2007) Copper speciation survey from UK marinas, harbours and estuaries. Mar Pollut Bull 54:1127–1138

    CAS  PubMed  Google Scholar 

  • King JR, Edgar S, Qiao K, Stephanopoulos G (2016) Accessing Nature’s diversity through metabolic engineering and synthetic biology. F1000Research 5:397

  • Kjelleberg S, Steinberg P (1994) Marine biofouling: problems and solution-executive summary. In: Biofouling: problems and solutions. Proceedings of the international workshop, UNSW, Sydney, Australia. pp 32–38

  • Koplovitz G (2011) An examination of secondary metabolites and inorganic acids as chemical defences against predation and fouling in antarctic and sub-tropical ascidians. The University of Alabama at Birmingham, ProQuest Dissertations Publishing. 3469618

  • Koryakova MD, Korn OM (1993) Use of barnacle larvae to test the toxicity of some antifouling coatings. Biol morya/Marine Biol Vladivostok 3:106–113

  • Kymenvaara S, Tegnér Anker H, Baaner L et al (2017) Regulating antifouling paints for leisure boats-a patchwork of rules across three Baltic Sea countries. Nord Environ Law J 1:7–32

  • Lau SCK, Qian P (2000) Inhibitory effect of phenolic compounds and marine bacteria on larval settlement of the barnacle Balanus amphitrite amphitrite Darwin. Biofouling 16:47–58

    CAS  Google Scholar 

  • Le Manach C, Paquet T, Wicht K et al (2018) Antimalarial lead-optimization studies on a 2, 6-imidazopyridine series within a constrained chemical space to circumvent atypical dose–response curves against multidrug resistant parasite strains. J Med Chem 61:9371–9385

    PubMed  Google Scholar 

  • Li Y, Ning C (2019) Latest research progress of marine microbiological corrosion and biofouling, and new approaches of marine anti-corrosion and anti-fouling. Bioact Mater 4:189–195

    PubMed  PubMed Central  Google Scholar 

  • Little BJ, Lee JS, Ray RI (2008) The influence of marine biofilms on corrosion: a concise review. Electrochim Acta 54:2–7

    CAS  Google Scholar 

  • López-Legentil S, Turon X, Erwin PM (2016) Feeding cessation alters host morphology and bacterial communities in the ascidian Pseudodistoma crucigaster. Front Zool 13:2

    PubMed  PubMed Central  Google Scholar 

  • Lotz A (2016) Marine coatings: making sense of US, state, and local mandates of copper-based antifouling regulations. JCT CoatingTech 13:50–54

    Google Scholar 

  • Marechal JP, Hellio C (2009) Challenges for the development of new non-toxic antifouling solutions. Int J Mol Sci 10:4623–4637

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mayzel B, Haber M, Ilan M (2014) Chemical defense against fouling in the solitary ascidian Phallusia nigra. Biol Bull 227:232–241

    PubMed  Google Scholar 

  • Menna M, Aiello A, D’Aniello F et al (2013) Conithiaquinones A and B, tetracyclic cytotoxic meroterpenes from the mediterranean ascidian Aplidium conicum. Eur J Org Chem 2013:3241–3246

    CAS  Google Scholar 

  • Moodie LWK, Trepos R, Cervin G, Larsen L, Larsen DS, Pavia H, Hellio C, Cahill P, Svenson J (2017) Probing the structure–activity relationship of the natural antifouling agent polygodial against both micro- and macrofoulers by semisynthetic modification. J Nat Prod 80:515–525

    CAS  PubMed  Google Scholar 

  • Murugan A, Ramasamy MS (2003) Biofouling deterrent activity of the natural product from ascidian, Distaplia nathensis [Chordata]. Indian J Geo-Mar Sci 32:162–164

    Google Scholar 

  • Núñez-Pons L, Carbone M, Vázquez J, Rodríguez J, Nieto RM, Varela MM, Gavagnin M, Avila C (2012) Natural products from antarctic colonial ascidians of the genera Aplidium and Synoicum: variability and defensive role. Mar Drugs 10:1741–1764

    PubMed  PubMed Central  Google Scholar 

  • Odate S, Pawlik JR (2007) The role of vanadium in the chemical defense of the solitary tunicate, Phallusia nigra. J Chem Ecol 33:643–654

    CAS  PubMed  Google Scholar 

  • Palanisamy SK, Rajendran NM, Marino A (2017) Natural products diversity of marine ascidians (tunicates; Ascidiacea) and successful drugs in clinical development. Nat Products Bioprospect 7:1–111

    CAS  Google Scholar 

  • Parry D (1984) Chemical properties of the test of ascidians in relation to predation. Mar Ecol Prog Ser 17:279–282

    CAS  Google Scholar 

  • Piazza V, Roussis V, Garaventa F, Greco G, Smyrniotopoulos V, Vagias C, Faimali M (2011) Terpenes from the red alga Sphaerococcus coronopifolius inhibit the settlement of barnacles. Mar Biotechnol 13:764–772

    CAS  Google Scholar 

  • Piazza V, Dragić I, Sepečić K et al (2014) Antifouling activity of synthetic alkylpyridinium polymers using the barnacle model. Mar Drugs 12:1959–1976

    PubMed  PubMed Central  Google Scholar 

  • Piola FR, Dafforn KA, Johnston EL (2009) The influence of antifouling practices on marine invasions: a mini-review. Biofouling 25:633–644

    CAS  PubMed  Google Scholar 

  • Pisut DP, Pawlik JR (2002) Anti-predatory chemical defenses of ascidians: secondary metabolites or inorganic acids? J Exp Mar Biol Ecol 270:203–214

    CAS  Google Scholar 

  • Ponasik JA, Conova S, Kinghorn D, Kinney WA, Rittschof D, Ganem B (1998) Pseudoceratidine, a marine natural product with antifouling activity: synthetic and biological studies. Tetrahedron 54:6977–6986

    CAS  Google Scholar 

  • Qi S-H, Ma X (2017) Antifouling compounds from marine invertebrates. Mar Drugs 15:263

    PubMed Central  Google Scholar 

  • Qian P-YY, Li Z, Xu Y, Li Y, Fusetani N (2015) Mini-review: marine natural products and their synthetic analogs as antifouling compounds: 2009-2014. Biofouling 31:101–122

    CAS  PubMed  Google Scholar 

  • Ralston E, Swain G (2009) Bioinspiration - the solution for biofouling control? Bioinspir Biomim 4:015007

    PubMed  Google Scholar 

  • Rittschof D (2000) Natural product antifoulant: one perspective on the challenges related to coatings development. Biofouling 15:119–127

    CAS  PubMed  Google Scholar 

  • Rittschof D, Clare AS, Gerhart DJ, Mary SA, Bonaventura J (1992) Barnacle in vitro assays for biologically active substances: toxicity and settlement inhibition assays using mass cultured Balanus amphitrite amphitrite Darwin. Biofouling 6:115–122

    CAS  Google Scholar 

  • Sánchez-Lozano I, Hernández-Guerrero CJ, Muñoz-Ochoa M, Hellio C (2019) Biomimetic approaches for the development of new antifouling solutions: study of incorporation of macroalgae and sponge extracts for the development of new environmentally-friendly coatings. Int J Mol Sci 20:4863

  • Schiff K, Brown J, Diehl D, Greenstein D (2007) Extent and magnitude of copper contamination in marinas of the San Diego region, California, USA. Mar Pollut Bull 54:322–328

    CAS  PubMed  Google Scholar 

  • Schultz MP (2007) Effects of coating roughness and biofouling on ship resistance and powering. Biofouling 23:331–341

    PubMed  Google Scholar 

  • Schultz MP, Bendick JA, Holm ER, Hertel WM (2011) Economic impact of biofouling on a naval surface ship. Biofouling 27:87–98

    CAS  PubMed  Google Scholar 

  • Sera Y, Adachi K, Nishida F, Shizuri Y (1999) A new sesquiterpene as an antifouling substance from a Palauan marine sponge, Dysidea herbacea. J Nat Prod 62:395–396

    CAS  PubMed  Google Scholar 

  • Simon-Levert A, Arrault A, Bontemps-Subielos N, Canal C, Banaigs B (2005) Meroterpenes from the ascidian Aplidium aff. densum. J Nat Prod 68:1412–1415

    CAS  PubMed  Google Scholar 

  • Simon-Levert A, Aze A, Bontemps-Subielos N, Banaigs B, Genevière AM (2007) Antimitotic activity of methoxyconidiol, a meroterpene isolated from an ascidian. Chem Biol Interact 168:106–116

    CAS  PubMed  Google Scholar 

  • Simon-Levert A, Menniti C, Soulère L, Genevière AM, Barthomeuf C, Banaigs B, Witczak A (2010) Marine natural meroterpenes: synthesis and antiproliferative activity. Mar Drugs 8:347–358

    CAS  PubMed  PubMed Central  Google Scholar 

  • Steinberg PD, Schneider R, Kjelleberg S (1997) Chemical defenses of seaweeds against microbial colonization. Biodegradation 8:211–220

    CAS  Google Scholar 

  • Stoecker D (1978) Resistance of a tunicate to fouling. Biol Bull 155:615–626

    Google Scholar 

  • Stoecker D (1980a) Chemical defenses of ascidians against predators. Ecology 61:1327–1334

    CAS  Google Scholar 

  • Stoecker D (1980b) Distribution of acid and vanadium in Rhopalaea birkelandi Tokioka. J Exp Mar Biol Ecol 48:277–281

    CAS  Google Scholar 

  • Tello E, Castellanos L, Arevalo-Ferro C, Rodríguez J, Jiménez C, Duque C (2011) Absolute stereochemistry of antifouling cembranoid epimers at C-8 from the Caribbean octocoral Pseudoplexaura flagellosa. Revised structures of plexaurolones. Tetrahedron 67:9112–9121

    CAS  Google Scholar 

  • Teo SLM, Ryland JS (1995) Potential antifouling mechanisms using toxic chemicals in some British ascidians. J Exp Mar Biol Ecol 188:49–62

    CAS  Google Scholar 

  • Thompson TE (1988) Acidic allomones in marine organisms. J Mar Biol Assoc U K 68:499–517

    Google Scholar 

  • Tianero MD, Kwan JC, Wyche TP et al (2015) Species specificity of symbiosis and secondary metabolism in ascidians. ISME J 9:615–628

    PubMed  Google Scholar 

  • Trepos R, Cervin G, Hellio C, Pavia H, Stensen W, Stensvåg K, Svendsen JS, Haug T, Svenson J (2014) Antifouling compounds from the sub-arctic ascidian Synoicum pulmonaria: Synoxazolidinones A and C, pulmonarins A and B, and synthetic analogues. J Nat Prod 77:2105–2113

    CAS  PubMed  Google Scholar 

  • Tsukamoto S, Kato H, Hirota H, Fusetani N (1997) Antifouling terpenes and steroids against barnacle larvae from marine sponges. Biofouling 11:283–291

    CAS  Google Scholar 

  • Turon X (1992) Periods of non-feeding in Polysyncraton lacazei (Ascidiacea: Didemnidae): a rejuvenative process? Mar Biol 112:647–655

    Google Scholar 

  • Vallee-Rehel K, Mariette B, Hoarau PA, Guerin P, Langlois V, Langlois JY (1998) A new approach in the development and testing of antifouling paints without organotin derivatives. J Coatings Technol 70:55–63

    CAS  Google Scholar 

  • Wahl M, Banaigs B (1991) Marine epibiosis. III. Possible antifouling defense adaptations in Polysyncraton lacazei (Giard)(Didemnidae, Ascidiacea). J Exp Mar Biol Ecol 145:49–63

    Google Scholar 

  • Wahl M, Lafargue F (1990) Marine epibiosis. Oecologia 82:275–282

    PubMed  Google Scholar 

  • Wahl M, Jensen PR, Fenical W (1994) Chemical control of bacterial epibiosis on ascidians. Mar Ecol Prog Ser 110:45–57

    Google Scholar 

  • Wang K-L, Wu Z-H, Wang Y, Wang CY, Xu Y (2017) Mini-review: antifouling natural products from marine microorganisms and their synthetic analogs. Mar Drugs 15:266

    PubMed Central  Google Scholar 

  • Watermann BT, Daehne B, Sievers S, Dannenberg R, Overbeke JC, Klijnstra JW, Heemken O (2005) Bioassays and selected chemical analysis of biocide-free antifouling coatings. Chemosphere 60:1530–1541

    CAS  PubMed  Google Scholar 

  • Wu RSS, Lam PKS, Zhou B (1997) A settlement inhibition assay with cyprid larvae of the barnacle Balanus amphitrite. Chemosphere 35:1867–1874

    CAS  Google Scholar 

  • Xu Y, Li N, Jiao WH, Wang RP, Peng Y, Qi SH, Song SJ, Chen WS, Lin HW (2012) Antifouling and cytotoxic constituents from the South China Sea sponge Acanthella cavernosa. Tetrahedron 68:2876–2883

    CAS  Google Scholar 

  • Yebra DM, Kiil S, Dam-Johansen K (2004) Antifouling technology - past, present and future steps towards efficient and environmentally friendly antifouling coatings. Prog Org Coat 50:75–104

    CAS  Google Scholar 

  • Zega G, Pennati R, Dahlström M, Berntsson K, Sotgia C, de Bernardi F (2007) Settlement of the barnacle Balanus improvisus: the roles of dopamine and serotonin. Ital J Zool 74:351–361

    CAS  Google Scholar 

Download references

Acknowledgements

The authors thank Dr. Guillaume Mitta (Animal Biology, UMR 5555 of CNRS Biology of Helminthes Populations, Perpignan, France) for his advices for antibacterial tests and the Biogenouest (Régions Bretagne, et Pays de Loire) for the support.

Funding

This research program was supported by « La Ligue Contre le Cancer, comité départemental des Pyrénées Orientales”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claire Hellio.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 20 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Levert, A., Foulon, V., Fauchon, M. et al. Antifouling Activity of Meroterpenes Isolated from the Ascidian Aplidium aff. densum. Mar Biotechnol 23, 51–61 (2021). https://doi.org/10.1007/s10126-020-10000-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10126-020-10000-9

Keywords

Navigation