Skip to main content
Log in

Identification of Sex-determining Loci in Pacific White Shrimp Litopeneaus vannamei Using Linkage and Association Analysis

  • Original Article
  • Published:
Marine Biotechnology Aims and scope Submit manuscript

Abstract

The Pacific white shrimp Litopenaeus vannamei is a predominant aquaculture shrimp species in the world. Like other animals, the L. vannamei exhibited sexual dimorphism in growth trait. Mapping of the sex-determining locus will be very helpful to clarify the sex determination system and further benefit the shrimp aquaculture industry towards the production of mono-sex stocks. Based on the data used for high-density linkage map construction, linkage-mapping analysis was conducted. The sex determination region was mapped in linkage group (LG) 18. A large region from 0 to 21.205 cM in LG18 showed significant association with sex. However, none of the markers in this region showed complete association with sex in the other populations. So an association analysis was designed using the female parent, pool of female progenies, male parent, and pool of male progenies. Markers were de novo developed and those showing significant differences between female and male pools were identified. Among them, three sex-associated markers including one fully associated marker were identified. Integration of linkage and association analysis showed that the sex determination region was fine-mapped in a small region along LG18. The identified sex-associated marker can be used for the sex detection of this species at genetic level. The fine-mapped sex-determining region will contribute to the mapping of sex-determining gene and help to clarify sex determination system for L. vannamei.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Alcivar-Warren A, Meehan-Meola D, Park SW, Xu Z, Delaney M, Zuniga G (2007) ShrimpMap: a low-density, microsatellite-based linkage map of the pacific whiteleg shrimp, Litopenaeus vannamei: identification of sex-linked markers in linkage group 4. J Shellfish Res 26:1259–1277

    Article  Google Scholar 

  • Anderson JL, Rodriguez Mari A, Braasch I, Amores A, Hohenlohe P, Batzel P, Postlethwait JH (2012) Multiple sex-associated regions and a putative sex chromosome in zebrafish revealed by RAD mapping and population genomics. PLoS One 7:e40701

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Benzie JAH (1998) Penaeid genetics and biotechnology. Aquaculture 164:23–47

    Article  Google Scholar 

  • Briggs M, Funge-Smith S, Subasinghe RP, Phillips M (2005) Introductions and movement of two penaeid shrimp species in Asia and the Pacific. Food and Agriculture Organization of the United Nations. FAO Fisheries Technical Paper 476

  • Campos-Ramos R, Garza-Torres R, Guerrero-Tortolero DA, Maeda-Martinez AM, Obregon-Barboza H (2006) Environmental sex determination, external sex differentiation and structure of the androgenic gland in the Pacific white shrimp Litopenaeus vannamei (Boone). Aquac Res 37:1583–1593

    Article  Google Scholar 

  • Campos-Ramos R (1997) Chromosome studies on the marine shrimps Penaeus vannamei and P-californiensis (Decapoda). J Crustac Biol 17:666–673

    Article  Google Scholar 

  • Charlesworth D, Mank JE (2010) The birds and the bees and the flowers and the trees: lessons from genetic mapping of sex determination in plants and animals. Genetics 186:9–31

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen SL et al (2014) Whole-genome sequence of a flatfish provides insights into ZW sex chromosome evolution and adaptation to a benthic lifestyle. Nat Genet 46:253–260

    Article  CAS  PubMed  Google Scholar 

  • Cnaani A et al (2008) Genetics of sex determination in tilapiine species. Sex Dev 2:43–54

    Article  CAS  PubMed  Google Scholar 

  • DePristo MA et al (2011) A framework for variation discovery and genotyping using next-generation DNA sequencing data. Nat Genet 43:491–498

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Du ZQ, Ciobanu DC, Onteru SK, Gorbach D, Mileham AJ, Jaramillo G, Rothschild MF (2010) A gene-based SNP linkage map for pacific white shrimp, Litopenaeus vannamei. Anim Genet 41:286–294

    Article  CAS  PubMed  Google Scholar 

  • Fumagalli M, Vieira FG, Korneliussen TS, Linderoth T, Huerta-Sanchez E, Albrechtsen A, Nielsen R (2013) Quantifying population genetic differentiation from next-generation sequencing data. Genetics 195:979–992

    Article  PubMed  PubMed Central  Google Scholar 

  • Gamble T, Zarkower D (2014) Identification of sex-specific molecular markers using restriction site-associated DNA sequencing. Mol Ecol Resour 14:902–913

    CAS  PubMed  Google Scholar 

  • Gitterle T et al (2005) Genetic (co)variation in harvest body weight and survival in Penaeus (Litopenaeus) vannamei under standard commercial conditions. Aquaculture 243:83–92

    Article  Google Scholar 

  • Gonzalez JR, Armengol L, Sole X, Guino E, Mercader JM, Estivill X, Moreno V (2007) SNPassoc: an R package to perform whole genome association studies. Bioinformatics 23:644–645

    PubMed  Google Scholar 

  • Houston RD et al (2012) Characterisation of QTL-linked and genome-wide restriction site-associated DNA (RAD) markers in farmed Atlantic salmon. BMC Genomics 13:244

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kafkas S, Khodaeiaminjan M, Guney M, Kafkas E (2015) Identification of sex-linked SNP markers using RAD sequencing suggests ZW/ZZ sex determination in Pistacia vera L. BMC Genomics 16:98

    Article  PubMed  PubMed Central  Google Scholar 

  • Kamiya T et al (2012) A trans-species missense SNP in Amhr2 is associated with sex determination in the tiger pufferfish, Takifugu rubripes (fugu). PLoS Genet 8:e1002798

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kent WJ (2002) BLAT—the BLAST-like alignment tool. Genome Res 12:656–664

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kerstens HHD, Crooijmans RPMA, Veenendaal A, Dibbits BW, Chin-A-Woeng TFC, den Dunnen JT, Groenen MAM (2009) Large scale single nucleotide polymorphism discovery in unsequenced genomes using second generation high throughput sequencing technology: applied to turkey. BMC Genomics 10:479

    Article  PubMed  PubMed Central  Google Scholar 

  • Kim SY et al (2010) Design of association studies with pooled or un-pooled next-generation sequencing data. Genet Epidemiol 34:479–491

    Article  PubMed  PubMed Central  Google Scholar 

  • Koyama T et al (2015) Identification of sex-linked SNPs and sex-determining regions in the yellowtail genome. Mar Biotechnol (NY) 17:502–510

    Article  CAS  Google Scholar 

  • Larson WA, Seeb LW, Everett MV, Waples RK, Templin WD, Seeb JE (2014) Genotyping by sequencing resolves shallow population structure to inform conservation of Chinook salmon (Oncorhynchus tshawytscha). Evol Appl 7:355–369

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Legrand JJ, Legrandhamelin E, Juchault P (1987) Sex determination in Crustacea. Biol Rev 62:439–470

    Article  Google Scholar 

  • Li B et al (2014) Construction of a high-density genetic map based on large-scale markers developed by specific length amplified fragment sequencing (SLAF-seq) and its application to QTL analysis for isoflavone content in Glycine max. BMC Genomics 15:1086

    Article  PubMed  PubMed Central  Google Scholar 

  • Li YT et al (2003) Genetic mapping of the kuruma prawn Penaeus japonicus using AFLP markers. Aquaculture 219:143–156

    Article  CAS  Google Scholar 

  • Pérez-Rostro CI, Ibarra AM (2003) Heritabilities and genetic correlations of size traits at harvest in sexually dimorphic Pacific white shrimp (Litopenaeus vannamei) grown in two environments. Aquac Res 34:1079–1085

    Article  Google Scholar 

  • Pérez F, Erazo C, Zhinaula M, Volckaert F, Calderón J (2004) A sex-specific linkage map of the white shrimp Penaeus (Litopenaeus) vannamei based on AFLP markers. Aquaculture 242:105–118

    Article  Google Scholar 

  • Palaiokostas C et al (2013a) Mapping the sex determination locus in the Atlantic halibut (Hippoglossus hippoglossus) using RAD sequencing. BMC Genomics 14:566

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Palaiokostas C, Bekaert M, Khan MGQ, Taggart JB, Gharbi K, McAndrew BJ, Penman DJ (2013b) Mapping and validation of the major sex-determining region in Nile tilapia (Oreochromis niloticus L.) using RAD sequencing. PLoS One 8(7):e68389

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pan ZJ, Li XY, Zhou FJ, Qiang XG, Gui JF (2015) Identification of sex-specific markers reveals male heterogametic sex determination in Pseudobagrus ussuriensis. Mar Biotechnol (NY) 17:441–451

    Article  CAS  Google Scholar 

  • Robinson NA et al (2014) QTL for white spot syndrome virus resistance and the sex-determining locus in the Indian black tiger shrimp (Penaeus monodon). BMC Genomics 15:731

    Article  PubMed  PubMed Central  Google Scholar 

  • Sanchez L (2008) Sex-determining mechanisms in insects. Int J Dev Biol 52:837–856

    Article  CAS  PubMed  Google Scholar 

  • Shao C et al (2015) Genome-wide SNP identification for the construction of a high-resolution genetic map of Japanese flounder (Paralichthys olivaceus): applications to QTL mapping of Vibrio anguillarum disease resistance and comparative genomic analysis. DNA Res 22:161–170

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Staelens J, Rombaut D, Vercauteren I, Argue B, Benzie J, Vuylsteke M (2008) High-density linkage maps and sex-linked markers for the black tiger shrimp (Penaeus monodon). Genetics 179:917–925

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stevens L (1997) Sex chromosomes and sex determining mechanisms in birds. Sci Prog 80(Pt 3):197–216

    CAS  PubMed  Google Scholar 

  • Sun XW et al (2013) SLAF-seq: an efficient method of large-scale de novo SNP discovery and genotyping using high-throughput sequencing. PLoS One 8(3):e58700

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vale L, Dieguez R, Sanchez L, Martinez P, Vinas A (2014) A sex-associated sequence identified by RAPD screening in gynogenetic individuals of turbot (Scophthalmus maximus). Mol Biol Rep 41:1501–1509

    Article  CAS  PubMed  Google Scholar 

  • Van Ooijen JW (2004) MapQTL 5. Software for the mapping of quantitative trait loci in experimental populations of diploid species. Kyazma BV, Wageningen, Netherlands

  • Ventura T, Aflalo ED, Weil S, Kashkush K, Sagi A (2011) Isolation and characterization of a female-specific DNA marker in the giant freshwater prawn Macrobrachium rosenbergii. Heredity (Edinb) 107:456–461

    Article  CAS  Google Scholar 

  • Wu J et al (2014) High-density genetic linkage map construction and identification of fruit-related QTLs in pear using SNP and SSR markers. J Exp Bot 65:5771–5781

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yu Y, Wei JK, Zhang XJ, Liu JW, Liu CZ, Li FH, Xiang JH (2014) SNP discovery in the transcriptome of white Pacific shrimp Litopenaeus vannamei by next generation sequencing. PLoS One 9(1):e87218

    Article  PubMed  PubMed Central  Google Scholar 

  • Yu Y et al (2015) Genome survey and high-density genetic map construction provide genomic and genetic resources for the Pacific white shrimp Litopenaeus vannamei. Sci Rep 5:15612

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang L, Yang C, Zhang Y, Li L, Zhang X, Zhang Q, Xiang J (2006) A genetic linkage map of Pacific white shrimp (Litopenaeus vannamei): sex-linked microsatellite markers and high recombination rates. Genetica 131:37–49

    Article  PubMed  Google Scholar 

  • Zhang Y et al (2013) Construction of a high-density genetic map for sesame based on large scale marker development by specific length amplified fragment (SLAF) sequencing. BMC Plant Biol 13:141

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Fuhua Li or Jianhai Xiang.

Ethics declarations

Funding

This work is supported by National Natural Science Foundation of China (Grant Nos. 31502161 and 31302171, the Joint NSFC-ISF Research Program (31461143007), China Agriculture Research System-47 (CARS-47), and the Scientific and Technological Innovation Project Financially Supported by Qingdao National Laboratory for Marine Science and Technology (No. 2015ASKJ02).

Conflict of Interest

The authors declare that they have no competing interests.

Electronic supplementary material

Supplementary Fig. S1

Demonstration of sequence difference of Marker24863 between female and male individuals in the mapping family. (GIF 127 kb)

High-resolution image (TIFF 991 kb)

Supplementary Fig. S2

Demonstration of sequence difference of Marker24577 between female and male individuals in the mapping family. (GIF 144 kb)

High-resolution image (TIFF 1080 kb)

Supplementary Fig. S3

Demonstration of sequence difference of Marker19299 between female and male individuals in the mapping family. (GIF 176 kb)

High-resolution image (TIFF 1243 kb)

Supplementary Table S1

Association analysis of candidate sex markers with phenotypic sex trait using R/SNPassoc in the mapping family. (XLSX 10 kb)

Supplementary Table S2

Marker name and sequences of candidate sex-associated polymorphic SLAF markers. (XLSX 9 kb)

Supplementary Table S3

Marker name and sequences of candidate sex-associated non-polymorphic SLAF markers. (XLSX 10 kb)

Supplementary Table S4

Primer sequences for amplifying the sex-linked markers identified by association analysis. (XLSX 9 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, Y., Zhang, X., Yuan, J. et al. Identification of Sex-determining Loci in Pacific White Shrimp Litopeneaus vannamei Using Linkage and Association Analysis. Mar Biotechnol 19, 277–286 (2017). https://doi.org/10.1007/s10126-017-9749-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10126-017-9749-5

Keywords

Navigation