Skip to main content

Advertisement

Log in

Tolerance to Various Toxicants by Marine Bacteria Highly Resistant to Mercury

  • Published:
Marine Biotechnology Aims and scope Submit manuscript

Abstract

Bacteria highly resistant to mercury isolated from seawater and sediment samples were tested for growth in the presence of different heavy metals, pesticides, phenol, formaldehyde, formic acid, and trichloroethane to investigate their potential for growth in the presence of a variety of toxic xenobiotics. We hypothesized that bacteria resistant to high concentrations of mercury would have potential capacities to tolerate or possibly degrade a variety of toxic materials and thus would be important in environmental pollution bioremediation. The mercury-resistant bacteria were found to belong to Pseudomonas, Proteus, Xanthomonas, Alteromonas, Aeromonas, and Enterobacteriaceae. All these environmental bacterial strains tolerant to mercury used in this study were capable of growth at a far higher concentration (50 ppm) of mercury than previously reported. Likewise, their ability to grow in the presence of toxic xenobiotics, either singly or in combination, was superior to that of bacteria incapable of growth in media containing 5 ppm mercury. Plasmid-curing assays done in this study ascertained that resistance to mercury antibiotics, and toxic xenobiotics is mediated by chromosomally borne genes and/or transposable elements rather than by plasmids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  1. L.T. Axelsson S.E. Ahrne M.C. Andersson S.R. Stahl (1988) ArticleTitleIdentification and cloning of a plasmid plasmid-encoded erythromycin-resistance determinant from Lactobacillus reuteri. Plasmid 20 IssueID2 171–174 Occurrence Handle1:CAS:528:DyaL1MXovFGjtA%3D%3D Occurrence Handle3237864

    CAS  PubMed  Google Scholar 

  2. P. Barbieri G. Galassi E. Galli (1989) ArticleTitlePlasmid-encoded mercury resistance in a Pseudomonas stutzeri strain that degrades o-xylene. FEMS Microbiol Ecol 62 375–384 Occurrence Handle10.1016/0378-1097(89)90006-2 Occurrence Handle1:CAS:528:DyaL1MXlvFWgur8%3D

    Article  CAS  Google Scholar 

  3. P. Barbieri G. Bestetti D. Reniero E. Galli (1996) ArticleTitleMercury resistance in aromatic compound degrading Pseudomonas strains. FEMS Microbiol Ecol 20 185–194 Occurrence Handle10.1016/0168-6496(96)00029-3 Occurrence Handle1:CAS:528:DyaK28XjvFGhtLc%3D

    Article  CAS  Google Scholar 

  4. N.L. Brown J. Camakaris B.T.O. Lee T. Williams A.P. Morby J. Parkhill D.A. Rouch (1991) ArticleTitleBacterial resistance to mercury and copper. J Cells Biochem 46 106–114 Occurrence Handle1:CAS:528:DyaK3MXks1yjt7o%3D

    CAS  Google Scholar 

  5. S. De Flora C. Bennicelli M. Bagnasco (1994) ArticleTitleGenotoxicity of mercury compounds: a review. Mut Res 317 57–79 Occurrence Handle10.1016/0165-1110(94)90012-4 Occurrence Handle1:CAS:528:DyaK2cXhvVCksrY%3D

    Article  CAS  Google Scholar 

  6. U. Förstner G.T.W. Wittmann (1979) Metal Pollution in the Aquatic Environment. Springer-Verlag. New York, N.Y.

    Google Scholar 

  7. G.M. Gadd (1992) ArticleTitleMetals and microorganisms; a problem of definition. FEMS Microbiol Lett 100 197–204 Occurrence Handle10.1016/0378-1097(92)90209-7 Occurrence Handle1:CAS:528:DyaK3sXlsFKksA%3D%3D

    Article  CAS  Google Scholar 

  8. A.S. Gerlach (1981) Marine Pollution: Diagnosis and Therapy. Springer-Verlag New York, N.Y.

    Google Scholar 

  9. N. Hideomi T. Ishikawa S. Yasunaga I. Kondo S. Mitsuhasi (1977) ArticleTitleFrequency of heavy-metal resistance in bacteria from inpatients in Japan. Nature 266 165–167 Occurrence Handle404561

    PubMed  Google Scholar 

  10. M.G. Jobling S.E. Peters E.A. Ritchi (1988) ArticleTitlePlasmid borne mercury resistance in aquatic bacteria. FEMS Microbiol Lett 49 31–37 Occurrence Handle10.1016/0378-1097(88)90097-3 Occurrence Handle1:CAS:528:DyaL1cXhtV2ntb8%3D

    Article  CAS  Google Scholar 

  11. J.O. Ka W.E. Holben J.M. Tiedje (1994) ArticleTitleGenetic and phenotypic diversity of 2,4-dichlorophenoxyacetic acid (2,4-D)-degrading bacteria isolated from 2,4-D treated field soils. Appl Environ Microbiol 60 1106–1115

    Google Scholar 

  12. K.S. Kim H.S. Pai S.Y. Lee D.D.Y. Ryu (1990) ArticleTitleEffect of intercalating dyes on the production of antibiotics by Microspora rosaria and Micromonospora purpurea. Enzyme Microbiol Technol 12 IssueID8 564–570 Occurrence Handle10.1016/0141-0229(90)90128-D Occurrence Handle1:CAS:528:DyaK3cXkvFCmuro%3D

    Article  CAS  Google Scholar 

  13. M.L. Liu J.K. Kondo M.B. Barnes D.T. Bartholomew (1988) ArticleTitlePlasmid-linked maltose utilization in Lactobacillus ssp. Biochemie 70 IssueID3 351–355 Occurrence Handle10.1016/0300-9084(88)90207-6 Occurrence Handle1:CAS:528:DyaL1cXltVGls7o%3D

    Article  CAS  Google Scholar 

  14. F. Meinhardt R. Schaffrath M. Larsen (1997) ArticleTitleMicrobial linear plasmids. Appl Microbiol Biotechnol 47 329–336 Occurrence Handle1:CAS:528:DyaK2sXivFOiurk%3D Occurrence Handle9163946

    CAS  PubMed  Google Scholar 

  15. T.K. Misra (1992) ArticleTitleBacteria resistance to inorganic mercury salts and organomercurials. Plasmid 27 4–16 Occurrence Handle1:CAS:528:DyaK38XnslyqsA%3D%3D Occurrence Handle1311113

    CAS  PubMed  Google Scholar 

  16. K. Nakamura S. Mineshi H. Uchiyama O. Yagi (1990) ArticleTitleOrganomercurial volatilizing bacteria in the mercury polluted sediment of Minamata Bay, Japan. Appl Env Microbiol 56 304–305 Occurrence Handle1:CAS:528:DyaK3cXntlGqtg%3D%3D

    CAS  Google Scholar 

  17. D.H. Nies (1992) ArticleTitleResistance to cadmium, cobalt, zinc and nickel in microbes. Plasmid 27 17–28 Occurrence Handle1:CAS:528:DyaK38XnslyqsQ%3D%3D Occurrence Handle1741458

    CAS  PubMed  Google Scholar 

  18. D.H. Nies (1999) ArticleTitleMicrobial heavy metal resistance. Appl Microbiol Biotechnol 51 730–750 Occurrence Handle10.1007/s002530051457 Occurrence Handle1:CAS:528:DyaK1MXks1OhtLY%3D Occurrence Handle10422221

    Article  CAS  PubMed  Google Scholar 

  19. A.M. Osborn K.D. Bruce P. Strike D.A. Ritchie (1995) ArticleTitleSequence conservation between regulatory mercury resistance genes in bacteria from mercury polluted and pristine environments. Syst Appl Microbiol 18 1–6 Occurrence Handle1:CAS:528:DyaK2MXnt1Cgu7s%3D

    CAS  Google Scholar 

  20. A.M. Osborn K.D. Bruce P. Strike D.A. Ritchie (1997) ArticleTitleDistribution, diversity and evolution of the bacterial mercury resistance (mer) operon. FEMS Microbiol Rev 19 239–262 Occurrence Handle10.1016/S0168-6445(97)00003-X Occurrence Handle1:CAS:528:DyaK2sXivV2murg%3D Occurrence Handle9167257

    Article  CAS  PubMed  Google Scholar 

  21. K. Pahan S. Ray R. Gachhui J. Chaudhuri A. Mondal (1990) ArticleTitleEcological and biochemical studies on MRB. Ind J Env Health 32 IssueID3 250–261 Occurrence Handle1:CAS:528:DyaK3MXksFKlt7Y%3D

    CAS  Google Scholar 

  22. N. Ramaiah V.D. Kenkre X.N. Verlekar (2002) ArticleTitleMarine environmental pollution stress detection through direct viable counts of bacteria. Water Res 36 2383–2393 Occurrence Handle10.1016/S0043-1354(01)00435-3 Occurrence Handle1:CAS:528:DC%2BD38Xjslarsro%3D Occurrence Handle12108730

    Article  CAS  PubMed  Google Scholar 

  23. J. Ravel J.M. Amoroso R.R. Colwell R.T. Hill (1998a) ArticleTitleMercury-resistant actinomycetes form the Chesapeake Bay. FEMS Microbiol Lett 162 177–184 Occurrence Handle1:CAS:528:DyaK1cXisFalt70%3D

    CAS  Google Scholar 

  24. J. Ravel H. Schrempf R.T. Hill (1998b) ArticleTitleMercury resistance is encoded by transferable giant linear plasmids in two Chesapeake Bay Streptomyces strains. Appl Environ Microbiol 64 3383–3388 Occurrence Handle1:CAS:528:DyaK1cXmtVajt70%3D

    CAS  Google Scholar 

  25. J. Ravel M.H. Elizabeth R.T. Hill (2000a) ArticleTitleInterspecific transfer of Streptomyces giant linear plasmids in sterile amended soil microcosms. Appl Environ Microbiol 66 529–534 Occurrence Handle1:CAS:528:DC%2BD3cXhtFerurk%3D

    CAS  Google Scholar 

  26. J. Ravel J. DiRuggiero F.T. Robb R.T. Hill (2000b) ArticleTitleCloning and sequence analysis of the mercury resistance operon of Streptomyces sp. strain CHR28 reveals a novel putative second regulatory gene. J Bacteriol 182 2345–2349 Occurrence Handle1:CAS:528:DC%2BD3cXitlGgu7c%3D

    CAS  Google Scholar 

  27. N.J. Robinson A. Gupta A.P. Fordham-Skelton R.R.D. Croy B.A. Whitton J.W. Huckel (1990) ArticleTitleProkaryotic metallothionein gene characterization and expression: chromosome crawling by ligation mediated PCR. Proc R Soc Lond B 242 241–247 Occurrence Handle1:CAS:528:DyaK3MXit1amtL0%3D Occurrence Handle1983770

    CAS  PubMed  Google Scholar 

  28. T. Shiratori C. Inoue K. Sugawara T. Kusano Y. Kitagawa (1989) ArticleTitleCloning and expression of Thiobacillus ferrooxidans mercury ion resistance genes in Escherichia coli. J Bacteriol 171 6.3458–3464

    Google Scholar 

  29. S. Silver L.T. Phung (1996) ArticleTitleBacterial heavy metal resistance: new surprises. Annu Rev Microbiol 50 753–789 Occurrence Handle1:CAS:528:DyaK28XmtFGht78%3D Occurrence Handle8905098

    CAS  PubMed  Google Scholar 

  30. A.O. Summers S. Silver (1978) ArticleTitleMicrobiological transformation of metals. Annu Rev Microbiol 32 637–672 Occurrence Handle1:CAS:528:DyaE1cXlvFemsb8%3D Occurrence Handle360977

    CAS  PubMed  Google Scholar 

  31. J.M. Wood F.S. Kennedy C.G. Rogen (1968) ArticleTitleSynthesis of methyl mercury compounds by extracts of a methylogenic bacterium. Nature 220 173–174 Occurrence Handle1:CAS:528:DyaF1MXhtV2r Occurrence Handle5693442

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge the encouragement, support, and facilitation by Drs. E. Desa and S.Y.S. Singbal. Mr. R. Nagarajan helped a great deal during sampling. We thank Dr. Russell Hill at the Center of Marine Biotechnology, Baltimore, Md., for various suggestions on this manuscript. Our sincere thanks to two anonymous reviewers for their constructive criticisms and valuable suggestions that helped improve the manuscript. This is National Institute of Oceanography contribution number 3751.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jaysankar De.

Rights and permissions

Reprints and permissions

About this article

Cite this article

De, J., Ramaiah, N., Mesquita, A. et al. Tolerance to Various Toxicants by Marine Bacteria Highly Resistant to Mercury . Mar. Biotechnol. 5, 185–193 (2003). https://doi.org/10.1007/s10126-002-0061-6

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10126-002-0061-6

Keywords

Navigation