Skip to main content

Advertisement

Log in

Structural Manipulation of Aminal-crosslinked Polybutadiene for Recyclable and Healable Elastomers

  • Article
  • Published:
Chinese Journal of Polymer Science Aims and scope Submit manuscript

Abstract

Recently, increasingly growing efforts have been devoted to incorporating dynamic covalent bonds into covalently crosslinked networks to address the persistent trade-offs between chemical crosslinking and malleability. Herein, a series of dynamic aminal bond crosslinked polybutadiene rubbers (PAPB) are prepared by crosslinking aldehyde group-terminated polybutadiene rubber (APB) with piperazine. By varying the molecular weight of APB, the crosslinking density of PAPB is changed, which offers the platform to regulate the mechanical characteristics and dynamic properties. Specially, with the decrease of APB molecular weight, i.e. with the increase of crosslinking density, the modulus of PAPB gradually increases while the elongation at break conversely decreases, and the activation energy for network rearrangement initially decreases and then increases. The resultant PAPB exhibit vitrimer-like behaviors that can alter the network topologies at elevated temperatures without the loss of structural integrity through dissociative aminal exchange reactions, while the protic source can accelerate aminal dissociation and result in network dissolution even at room temperature. Due to the aminal exchange, PAPB are thermally malleable and can almost restore the original mechanical characteristics after recycling; besides, they are capable of healing at a relatively low crosslinking density.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kloxin, C. J.; Bowman, C. N. Covalent adaptable networks: smart, reconfigurable and responsive network systems. Chem. Soc. Rev. 2013, 42, 7161–7173.

    Article  CAS  PubMed  Google Scholar 

  2. Rowan, S. J.; Cantrill, S. J.; Cousins, G. R. L.; Sanders, J. K. M.; Stoddart, J. F. Dynamic covalent chemistry. Angew. Chem. Int. Ed. 2002, 41, 898–952.

    Article  Google Scholar 

  3. Zhang, Z. P.; Rong, M. Z.; Zhang, M. Q. Polymer engineering based on reversible covalent chemistry: a promising innovative pathway towards new materials and new functionalities. Prog. Polym. Sci. 2018, 80, 39–93.

    Article  CAS  Google Scholar 

  4. Wu, S.; Tang, Z.; Guo, B. Design and performance of rubbers cross-linked with dynamic covalent bonds. Acta Polymerica Sinica (in Chinese) 2019, 50, 442–450.

    CAS  Google Scholar 

  5. Jin, Y.; Lei, Z.; Taynton, P.; Huang, S.; Zhang, W. Malleable and recyclable thermosets: the next generation of plastics. Matter 2019, 1, 1456–1493.

    Article  Google Scholar 

  6. Chen, Y.; Tang, Z.; Liu, Y.; Wu, S.; Guo, B. Mechanically robust, self-healable, and reprocessable elastomers enabled by dynamic dual cross-links. Macromolecules 2019, 52, 3805–3812.

    Article  CAS  Google Scholar 

  7. Roy, N.; Bruchmann, B.; Lehn, J. M. Dynamers: dynamic polymers as self-healing materials. Chem. Soc. Rev. 2015, 44, 3786–3807.

    Article  CAS  PubMed  Google Scholar 

  8. Bai, J.; Li, H.; Shi, Z.; Yin, J. An eco-friendly scheme for the cross-linked polybutadiene elastomer via thiol-ene and Diels-Alder click chemistry. Macromolecules 2015, 48, 3539–3546.

    Article  CAS  Google Scholar 

  9. Polgar, L. M.; van Duin, M.; Broekhuis, A. A.; Picchioni, F. Use of Diels-Alder chemistry for thermoreversible cross-linking of rubbers: the next step toward recycling of rubber products? Macromolecules 2015, 48, 7096–7105.

    Article  CAS  Google Scholar 

  10. Denissen, W.; Winne, J. M.; Du Prez, F. E. Vitrimers: permanent organic networks with glass-like fluidity. Chem. Sci. 2016, 7, 30–38.

    Article  CAS  PubMed  Google Scholar 

  11. Montarnal, D.; Capelot, M.; Tournilhac, F.; Leibler, L. Silica-like malleable materials from permanent organic networks. Science 2011, 334, 965–968.

    Article  CAS  PubMed  Google Scholar 

  12. Capelot, M.; Montarnal, D.; Tournilhac, F.; Leibler, L. Metal-catalyzed transesterification for healing and assembling of thermosets. J. Am. Chem. Soc. 2012, 134, 7664–7667.

    Article  CAS  PubMed  Google Scholar 

  13. Yang, Y.; Terentjev, E. M.; Wei, Y.; Ji, Y. Solvent-assisted programming of flat polymer sheets into reconfigurable and self-healing 3D structures. Nat. Commun. 2018, 9, 1906.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Taynton, P.; Yu, K.; Shoemaker, R. K.; Jin, Y.; Qi, H. J.; Zhang, W. Heat- or water-driven malleability in a highly recyclable covalent network polymer. Adv. Mater. 2014, 26, 3938–3942.

    Article  CAS  PubMed  Google Scholar 

  15. Zhang, H.; Wang, D.; Liu, W.; Li, P.; Liu, J.; Liu, C.; Zhang, J.; Zhao, N.; Xu, J. Recyclable polybutadiene elastomer based on dynamic imine bond. J. Polym. Sci., Part A: Polym. Chem. 2017, 55, 2011–2018.

    Article  CAS  Google Scholar 

  16. Lei, Z. Q.; Xiang, H. P.; Yuan, Y. J.; Rong, M. Z.; Zhang, M. Q. Room-temperature self-healable and remoldable cross-linked polymer based on the dynamic exchange of disulfide bonds. Chem. Mater. 2014, 26, 2038–2046.

    Article  CAS  Google Scholar 

  17. Canadell, J.; Goossens, H.; Klumperman, B. Self-healing materials based on disulfide links. Macromolecules 2011, 44, 2536–2541.

    Article  CAS  Google Scholar 

  18. Lu, Y. X.; Tournilhac, F.; Leibler, L.; Guan, Z. Making insoluble polymer networks malleable via olefin metathesis. J. Am. Chem. Soc. 2012, 134, 8424–8427.

    Article  CAS  PubMed  Google Scholar 

  19. Zheng, P.; McCarthy, T. J. A surprise from 1954: siloxane equilibration is a simple, robust, and obvious polymer self-healing mechanism. J. Am. Chem. Soc. 2012, 134, 2024–2027.

    Article  CAS  PubMed  Google Scholar 

  20. Bao, C.; Jiang, Y. J.; Zhang, H.; Lu, X.; Sun, J. Room-temperature self-healing and recyclable tough polymer composites using nitrogen-coordinated boroxines. Adv. Funct. Mater. 2018, 28, 1800560.

    Article  CAS  Google Scholar 

  21. Cromwell, O. R.; Chung, J.; Guan, Z. Malleable and self-healing covalent polymer networks through tunable dynamic boronic ester bonds. J. Am. Chem. Soc. 2015, 137, 6492–6495.

    Article  CAS  PubMed  Google Scholar 

  22. Guerre, M.; Taplan, C.; Nicolay, R.; Winne, J. M.; Du Prez, F. E. Fluorinated vitrimer elastomers with a dual temperature response. J. Am. Chem. Soc. 2018, 140, 13272–13284.

    Article  CAS  PubMed  Google Scholar 

  23. Van Zee, N. J.; Nicolay, R. Vitrimers: permanently crosslinked polymers with dynamic network topology. Prog. Polym. Sci. 2020, 104, 101233–101245.

    Article  CAS  Google Scholar 

  24. Yang, Y.; Zhang, S.; Zhang, X.; Gao, L.; Wei, Y.; Ji, Y. Detecting topology freezing transition temperature of vitrimers by AIE luminogens. Nat. Commun. 2019, 10, 3165–3165.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Capelot, M.; Unterlass, M. M.; Tournilhac, F.; Leibler, L. Catalytic control of the vitrimer glass transition. ACS Macro Lett. 2012, 1, 789–792.

    Article  CAS  Google Scholar 

  26. Denissen, W.; Droesbeke, M.; Nicolay, R.; Leibler, L.; Winne, J. M.; Du Prez, F. E. Chemical control of the viscoelastic properties of vinylogous urethane vitrimers. Nat. Commun. 2017, 8, 14857–14864.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. He, C.; Shi, S.; Wang, D.; Helms, B. A.; Russell, T. P. Poly (oximeester) vitrimers with catalyst-free bond exchange. J. Am. Chem. Soc. 2019, 141, 13753–13757.

    Article  CAS  PubMed  Google Scholar 

  28. Delahaye, M.; Winne, J. M.; Du Prez, F. E. Internal catalysis in covalent adaptable networks: phthalate monoester transesterification as a versatile dynamic cross-linking chemistry. J. Am. Chem. Soc. 2019, 141, 15277–15287.

    Article  CAS  PubMed  Google Scholar 

  29. Ying, H.; Zhang, Y.; Cheng, J. Dynamic urea bond for the design of reversible and self-healing polymers. Nat. Commun. 2014, 5, 1–9.

    Article  CAS  Google Scholar 

  30. Tang, Z.; Liu, Y.; Guo, B.; Zhang, L. Malleable, mechanically strong, and adaptive elastomers enabled by interfacial exchangeable bonds. Macromolecules 2017, 50, 7584–7592.

    Article  CAS  Google Scholar 

  31. Liu, Y.; Tang, Z.; Chen, Y.; Zhang, C.; Guo, B. Engineering of β-hydroxyl esters into elastomer-nanoparticle interface toward malleable, robust, and reprocessable vitrimer composites. ACS Appl. Mater. Interfaces 2018, 10, 2992–3001.

    Article  CAS  PubMed  Google Scholar 

  32. Liu, Y.; Tang, Z.; Chen, J.; Xiong, J.; Wang, D.; Wang, S.; Wu, S.; Guo, B. Tuning the mechanical and dynamic properties of imine bond crosslinked elastomeric vitrimers by manipulating the crosslinking degree. Polym. Chem. 2020, 11, 1348–1355.

    Article  CAS  Google Scholar 

  33. Hayashi, M.; Yano, R. Fair Investigation of cross-Link density effects on the bond-exchange properties for trans-esterification-based vitrimers with identical concentrations of reactive groups. Macromolecules 2020, 53, 182–189.

    Article  CAS  Google Scholar 

  34. Chao, A.; Zhang, D. Investigation of secondary amine-derived aminal bond exchange toward the development of covalent adaptable networks. Macromolecules 2019, 52, 495–503.

    Article  CAS  Google Scholar 

  35. Billman, J. H.; Ho, J. Y. C.; Caswell, L. R. The formation of solid derivatives of aldehydes. I. 2-Substituted-1,3-bis(p-methoxybenzyl)-tetrahydroimidazoles. J. Org. Chem. 1952, 17, 1375–1378.

    Article  CAS  Google Scholar 

  36. Hine, J.; Narducy, K. W. Imines, imidazolidines, and imidazolidinium ions from the reactions of ethylenediamine derivatives with isobutyraldehyde and acetone. J. Am. Chem. Soc. 1973, 95, 3362–3368.

    Article  CAS  Google Scholar 

  37. Tuszynski, G. P.; Kallen, R. G. Tetrahydrofolic acid model studies. I. Equilibrium and kinetic studies of the reactions of symmetrically substituted N, N′-diphenylethylenediamines with formaldehyde. Carbinolamine and imidazolidine formation. J. Am. Chem. Soc. 1975, 97, 2860–2875.

    Article  CAS  PubMed  Google Scholar 

  38. Zhou, Q.; Jie, S.; Li, B.-G. Preparation of hydroxyl-terminated polybutadiene with high cis-1,4 content. Ind. Eng. Chem. Res. 2014, 53, 17884–17893.

    Article  CAS  Google Scholar 

  39. Katritzky, A. R.; Katritzky, A. R.; Yannakopoulou, K.; Yannakopoulou, K.; Lang, H. Aminal exchange. Perkin 2: an International Journal of Physical Organic Chemistry 1994, 1867–1870.

    Google Scholar 

  40. Zhang, L.; Rowan, S. J. Effect of sterics and degree of cross-linking on the mechanical properties of dynamic poly(alkylureaurethane) networks. Macromolecules 2017, 50, 5051–5060.

    Article  CAS  Google Scholar 

  41. Zhang, G.; Zhao, Q.; Yang, L.; Zou, W.; Xi, X.; Xie, T. Exploring dynamic equilibrium of Diels-Alder reaction for solid state plasticity in remoldable shape memory polymer network. ACS Macro Lett. 2016, 5, 805–808.

    Article  CAS  Google Scholar 

  42. Elling, B. R.; Dichtel, W. R. Reprocessable cross-linked polymer networks: are associative exchange mechanisms desirable? ACS Central Sci. 2020, 6, 1488–1496.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The work was financially supported by the National Science Fund for Distinguished Young Scholars (No. 51825303) and the National Natural Science Foundation of China (Nos. 52073097 and 51790503).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zheng-Hai Tang or Bao-Chun Guo.

Electronic Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tang, ZH., Zeng, H., Wei, SQ. et al. Structural Manipulation of Aminal-crosslinked Polybutadiene for Recyclable and Healable Elastomers. Chin J Polym Sci 39, 1337–1344 (2021). https://doi.org/10.1007/s10118-021-2626-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10118-021-2626-8

Keywords

Navigation