Skip to main content
Log in

Benzothiadiazole-based Conjugated Polymers for Organic Solar Cells

  • Review
  • Published:
Chinese Journal of Polymer Science Aims and scope Submit manuscript

Abstract

Benzothiadiazole (BT) is an electron-deficient unit with fused aromatic core, which can be used to construct conjugated polymers for application in organic solar cells (OSCs). In the past twenty years, huge numbers of conjugated polymers based on BT unit have been developed, focusing on the backbone engineering (such as by using different copolymerized building blocks), side chain engineering (such as by using linear or branch side units), using heteroatoms (such as F, O and S atoms, and CN group), etc. These modifications enable BT-polymers to exhibit distinct absorption spectra (with onset varied from 600 nm to 1000 nm), different frontier energy levels and crystallinities. As a consequence, BT-polymers have gained much attention in recent years, and can be simultaneously used as electron donor and electron acceptor in OSCs, providing the power conversion efficiencies (PCEs) over 18% and 14% in non-fullerene and all-polymer OSCs. In this article, we provide an overview of BT-polymers for OSCs, from donor to acceptor, via selecting some typical BT-polymers in different periods. We hope that the summary in this article can invoke the interest to study the BT-polymers toward high performance OSCs, especially with thick active layers that can be potentially used in large-area devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Yeh, N.; Yeh, P. Organic solar cells: their developments and potentials. Renew. Sus. Energy Rev. 2013, 21, 421–431.

    Article  CAS  Google Scholar 

  2. He, P.; Li, Z.; Hou, Q.; Wang, Y. Application of benzothiadiazole in organic solar cells. Chinese J. Org. Chem. 2013, 33, 288–304.

    Article  CAS  Google Scholar 

  3. Cui, H. Q.; Peng, R. X.; Song, W.; Zhang, J. F.; Huang, J. M.; Zhu, L. Q.; Ge, Z. Y. Optimization of ethylene glycol doped PEDOT:PSS transparent electrodes for flexible organic solar cells by drop-coating method. Chinese J. Polym. Sci. 2019, 37, 760–766.

    Article  CAS  Google Scholar 

  4. Yan, N.; Zhao, C.; You, S.; Zhang, Y.; Li, W. Recent progress of thin-film photovoltaics for indoor application. Chin. Chem. Lett. 2020, 31, 643–653.

    Article  CAS  Google Scholar 

  5. Li, Y.; Xu, Y.; Yang, F.; Jiang, X.; Li, C.; You, S.; Li, W. Simple non-fullerene electron acceptors with unfused core for organic solar cells. Chin. Chem. Lett. 2019, 30, 222–224.

    Article  CAS  Google Scholar 

  6. Nielsen, C. B.; Holliday, S.; Chen, H. Y.; Cryer, S. J.; Mcculloch, I. Non-fullerene electron acceptors for use in organic solar cells. Acc. Chem. Res. 2015, 48, 2803–2812.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Dang, D.; Yu, D.; Wang, E. Conjugated donor-acceptor terpolymers toward high-efficiency polymer solar cells. Adv. Mater. 2019, 31, 1807019.

    Article  Google Scholar 

  8. Li, C.; Wu, X.; Sui, X.; Wu, H.; Wang, C.; Feng, G.; Wu, Y.; Liu, F.; Liu, X.; Tang, Z.; Li, W. Crystalline cooperativity of donor and acceptor segments in double-cable conjugated polymers toward efficient single-component organic solar cells. Angew. Chem. Int. Ed. 2019, 58, 15532–15540.

    Article  CAS  Google Scholar 

  9. Zhao, C.; Guo, Y.; Zhang, Y.; Yan, N.; You, S.; Li, W. Diketopyrrolopyrrole-based conjugated materials for non-fullerene organic solar cells. J. Mater. Chem. A 0019, 7, 10174–10199.

    Article  Google Scholar 

  10. Feng, G.; Li, J.; He, Y.; Zheng, W.; Wang, J.; Li, C.; Tang, Z.; Osvet, A.; Li, N.; Brabec, C. J.; Yi, Y.; Yan, H.; Li, W. Thermal-driven phase separation of double-cable polymers enables efficient single-component organic solar cells. Joule 2019, 3, 1765–1781.

    Article  CAS  Google Scholar 

  11. Liu, F.; Wang, D.; Li, J. Y.; Xiao, C. Y.; Wu, Y. G.; Li, W. W.; Fu, G. S. Side-chains engineering of conjugated polymers toward additive-free non-fullerene organic solar cells. Chinese J. Polym. Sci. 2021, 39, 43–50.

    Article  Google Scholar 

  12. Liu, F.; Li, C.; Li, J.; Wang, C.; Xiao, C.; Wu, Y.; Li, W. Ternary organic solar cells based on polymer donor, polymer acceptor and PCBM components. Chin. Chem. Lett. 2020, 31, 865–868.

    Article  CAS  Google Scholar 

  13. Geng, Y. Crystalline cooperativity in double-cable conjugated polymers. Acta Phys. Chim. Sin. 2019, 35, 1311–1312.

    Article  Google Scholar 

  14. Cui, Y.; Yao, H.; Hong, L.; Zhang, T.; Xu, Y.; Xian, K.; Gao, B.; Qin, J.; Zhang, J.; Wei, Z.; Hou, J. Achieving over 15% efficiency in organic photovoltaic cells via copolymer design. Adv. Mater. 2019, 31, 1808356.

    Article  Google Scholar 

  15. Lin, Y.; Wang, J.; Zhang, Z. G.; Bai, H.; Li, Y.; Zhu, D.; Zhan, X. An electron acceptor challenging fullerenes for efficient polymer solar cells. Adv. Mater. 2015, 27, 1170–1174.

    Article  CAS  PubMed  Google Scholar 

  16. Zhang, Y.; Xu, Y.; Ford, M. J.; Li, F.; Sun, J.; Ling, X.; Wang, Y.; Gu, J.; Yuan, J.; Ma, W. Thermally stable all-polymer solar cells with high tolerance on blend ratios. Adv. Energy Mater. 2018, 8, 1800029.

    Article  Google Scholar 

  17. Liu, S.; Yuan, J.; Deng, W.; Luo, M.; Xie, Y.; Liang, Q.; Zou, Y.; He, Z.; Wu, H.; Cao, Y. High-efficiency organic solar cells with low non-radiative recombination loss and low energetic disorder. Nat. Photonics 2020, 14, 300–305.

    Article  CAS  Google Scholar 

  18. Guo, Y.; Liu, Y.; Zhu, Q.; Li, C.; Jin, Y.; Puttisong, Y.; Chen, W.; Liu, F.; Zhang, F.; Ma, W.; Li, W. Effect of side groups on the photovoltaic performance based on porphyrin-perylene bisimide electron acceptors. ACS Appl. Mater. Interfaces 2018, 10, 32454–32461.

    Article  CAS  PubMed  Google Scholar 

  19. Feng, S.; Lu, H.; Liu, Z.; Liu, Y.; Li, C.; Bo, Z. Designing a highperformance A-D-A fused-ring electron acceptor via noncovalently conformational locking and tailoring Iits end groups. Acta Phys. Chim. Sin. 2019, 35, 355–360.

    Article  Google Scholar 

  20. Liu, Q.; Jiang, Y.; Jin, K.; Qin, J.; Xu, J.; Li, W.; Xiong, J.; Liu, J.; Xiao, Z.; Sun, K.; Yang, S.; Zhang, X.; Ding, L. 18% Efficiency organic solar cells. Sci. Bull. 2020, 65, 272–275.

    Article  CAS  Google Scholar 

  21. Wang, M.; Hu, X.; Liu, P.; Li, W.; Gong, X.; Huang, F.; Cao, Y. Donor-acceptor conjugated polymer based on naphtho[1,2-c:5,6-c]bis[1,2,5]thiadiazole for high-performance polymer solar cells. J. Am. Chem. Soc. 2011, 133, 9638–9641.

    Article  CAS  PubMed  Google Scholar 

  22. Liu, F.; Xiao, C.; Feng, G.; Li, C.; Wu, Y.; Zhou, E.; Li, W. End group engineering on the side chains of conjugated polymers toward efficient non-fullerene organic solar cells. ACS Appl. Mater. Interfaces 2020, 12, 6151–6158.

    Article  CAS  PubMed  Google Scholar 

  23. Ma, J.; Feng, G.; Liu, F.; Yang, F.; Guo, Y.; Wu, Y.; Li, W. A conjugated polymer based on alkylthio-substituted benzo[1,2-c:4,5-c′]dithiophene-4,8-dione acceptor for polymer solar cells. Dyes Pigments 2019, 165, 335–340.

    Article  CAS  Google Scholar 

  24. Zheng, Z.; Yao, H.; Ye, L.; Xu, Y.; Zhang, S.; Hou, J. PBDB-T and its derivatives: a family of polymer donors enables over 17% efficiency in organic photovoltaics. Mater. Today 2020, 535, 115–130.

    Article  Google Scholar 

  25. Yang, F.; Zhao, W.; Zhu, Q.; Li, C.; Ma, W.; Hou, J.; Li, W. Boosting the performance of non-fullerene organic solar cells via cross-linked donor polymers design. Macromolecules 2019, 52, 2214–2221.

    Article  CAS  Google Scholar 

  26. Zhang, Y.; Wang, Y.; Ma, R.; Luo, Z.; Liu, T.; Kang, S. H.; Yan, H.; Yuan, Z.; Yang, C.; Chen, Y. Wide band-gap two-dimension conjugated polymer donors with different amounts of chlorine substitution on alkoxyphenyl conjugated side chains for non-fullerene polymer solar cells. Chinese J. Polym. Sci. 2020, 38, 797–805.

    Article  CAS  Google Scholar 

  27. Ning, Z.; Tian, H. Triarylamine: a promising core unit for efficient photovoltaic materials. Cheminform 2009, 41, 5483–5495.

    Google Scholar 

  28. Pivrikas, A.; Neugebauer, H.; Sariciftci, N. S. Influence of processing additives to nano-morphology and efficiency of bulk-heterojunction solar cells: a comparative review. Sol. Energy 2011, 85, 1226–1237.

    Article  CAS  Google Scholar 

  29. Li, Y. Molecular design of photovoltaic materials for polymer solar cells: toward suitable electronic energy levels and broad absorption. Acc. Chem. Res. 2012, 45, 723–733.

    Article  CAS  PubMed  Google Scholar 

  30. Qin, R.; Li, W.; Li, C.; Du, C.; Veit, C.; Schleiermacher, H. F.; Andersson, M.; Bo, Z.; Liu, Z.; Inganäs, O.; Wuerfel, U.; Zhang, F. A planar copolymer for high efficiency polymer solar cells. J. Am. Chem. Soc. 2009, 131, 14612–14613.

    Article  CAS  PubMed  Google Scholar 

  31. Bouffard, J.; Swager, T. M. Fluorescent conjugated polymers that incorporate substituted 2,1,3-benzooxadiazole and 2,1,3-benzothiadiazole units. Macromolecules 2008, 41, 5559–5562.

    Article  CAS  Google Scholar 

  32. Zhou, H.; Yang, L.; Stuart, A. C.; Price, S. C.; Liu, S.; You, W. Development of fluorinated benzothiadiazole as a structural unit for a polymer solar cell of 7% efficiency. Angew. Chem. Int. Ed. 2011, 50, 2995–2998.

    Article  CAS  Google Scholar 

  33. Neto, B. A. D.; Lapis, A. A. M.; da Silva Júnior, E. N.; Dupont, J. 2,1,3-Benzothiadiazole and derivatives: synthesis, properties, reactions, and applications in light technology of small molecules. Eur. J. Org. Chem. 2013, 2013, 228–255.

    Article  CAS  Google Scholar 

  34. Heiskanen, J. P.; Vivo, P.; Saari, N. M.; Hukka, T. I.; Kastinen, T.; Kaunisto, K.; Lemmetyinen, H. J.; Hormi, O. E. O. Synthesis of benzothiadiazole derivatives by applying C-C cross-couplings. J. Org. Chem. 2016, 81, 1535–1546.

    Article  CAS  PubMed  Google Scholar 

  35. Dhanabalan, A.; van Dongen, J. L. J.; van Duren, J. K. J.; Janssen, H. M.; van Hal, P. A.; Janssen, R. A. J. Synthesis, characterization, and electrooptical properties of a new alternating N-dodecylpyrrole-benzothiadiazole copolymer. Macromolecules 2001, 34, 2495–2501.

    Article  CAS  Google Scholar 

  36. Zhao, J.; Li, Y.; Yang, G.; Jiang, K.; Lin, H.; Ade, H.; Ma, W.; Yan, H. Efficient organic solar cells processed from hydrocarbon solvents. Nat. Energy 2016, 1, 15027.

    Article  CAS  Google Scholar 

  37. Jia, T.; Zhang, J.; Zhong, W.; Liang, Y.; Zhang, K.; Dong, S.; Ying, L.; Liu, F.; Wang, X.; Huang, F.; Cao, Y. 14.4% Efficiency allpolymer solar cell with broad absorption and low energy loss enabled by a novel polymer acceptor. Nano Energy 2020, 72, 104718.

    Article  CAS  Google Scholar 

  38. Wang, M.; Li, C.; Lv, A.; Wang, Z.; Bo, Z. Spirobifluorene-based conjugated polymers for polymer solar cells with high open-circuit voltage. Macromolecules 2012, 45, 3017–3022.

    Article  CAS  Google Scholar 

  39. Wang, N.; Chen, Z.; Wei, W.; Jiang, Z. Fluorinated benzothiadiazole-based conjugated polymers for highperformance polymer solar cells without any processing additives or post-treatments. J. Am. Chem. Soc. 2013, 135, 17060–17068.

    Article  CAS  PubMed  Google Scholar 

  40. Chochos, C. L.; Leclerc, N.; Gasparini, N.; Zimmerman, N.; Tatsi, E.; Katsouras, A.; Moschovas, D.; Serpetzoglou, E.; Konidakis, I.; Fall, S.; Lévêque, P.; Heiser, T.; Spanos, M.; Gregoriou, V. G.; Stratakis, E.; Ameri, T.; Brabec, C. J.; Avgeropoulos, A. The role of chemical structure in indacenodithienothiophene-alt-benzothiadiazole copolymers for high performance organic solar cells with improved photo-stability through minimization of burn-in loss. J. Mater. Chem. A 2017, 5, 25064–25076.

    Article  CAS  Google Scholar 

  41. Kini, G. P.; Hoang, Q. V.; Song, C. E.; Lee, S. K.; Shin, W. S.; So, W. W.; Uddin, M. A.; Woo, H. Y.; Lee, J. C. Thiophene-benzothiadiazole based D-A1-D-A2 type alternating copolymers for polymer solar cells. Polym. Chem. 2017, 8, 3622–3631.

    Article  CAS  Google Scholar 

  42. Kim, J. H.; Schaefer, C.; Ma, T.; Zhao, J.; Turner, J.; Ghasemi, M.; Constantinou, I.; So, F.; Yan, H.; Gadisa, A.; Ade, H. The critical impact of material and process compatibility on the active layer morphology and performance of organic ternary solar cells. Adv. Energy Mater. 2019, 9, 1802293.

    Article  Google Scholar 

  43. Singh, R.; Suranagi, S. R.; Lee, J.; Lee, H.; Kim, M.; Cho, K. Unraveling the efficiency-limiting morphological issues of the perylene diimide-based non-fullerene organic solar cells. Sci. Rep. 2018, 8, 2849.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Peet, J.; Kim, J. Y.; Coates, N. E.; Ma, W. L.; Moses, D.; Heeger, A. J.; Bazan, G. C. Efficiency enhancement in low-bandgap polymer solar cells by processing with alkane dithiols. Nat. Mater. 2007, 6, 497–500.

    Article  CAS  PubMed  Google Scholar 

  45. Dhanabalan, A.; van Duren, J. K. J.; van Hal, P. A.; van Dongen, J. L. J.; Janssen, R. A. J. Synthesis and characterization of a low bandgap conjugated polymer for bulk heterojunction photovoltaic cells. Adv. Funct. Mater. 2001, 11, 255–262.

    Article  CAS  Google Scholar 

  46. Svensson, M.; Zhang, F. L.; Veenstra, S. C.; Verhees, W. J. H.; Hummelen, J. C.; Kroon, J. M.; Inganäs, O.; Andersson, M. R. High-performance polymer solar cells of an alternating polyfluorene copolymer and a fullerene derivative. Adv. Mater. 2003, 15, 988–991.

    Article  CAS  Google Scholar 

  47. Blouin, N.; Michaud, A.; Leclerc, M. A low-bandgap poly(2,7-carbazole) derivative for use in high-performance solar cells. Adv. Mater. 2007, 19, 2295–2300.

    Article  CAS  Google Scholar 

  48. Bundgaard, E.; Krebs, F. C. A comparison of the photovoltaic response of head-to-head and head-to-tail coupled poly{(benzo-2,1,3-thiadiazol-4,7-diyl)-(dihexyl[2,2′]dithiophene-5,5′-diyl}. Polym. Bull. 2005, 55, 157–164.

    Article  CAS  Google Scholar 

  49. Zhu, Z.; Waller, D.; Gaudiana, R.; Morana, M.; Mühlbacher, D.; Scharber, M.; Brabec, C. Panchromatic conjugated polymers containing alternating donor/acceptor units for photovoltaic applications. Macromolecules 2007, 40, 1981–1986.

    Article  CAS  Google Scholar 

  50. Beaupré, S.; Leclerc, M. PCDTBT: en route for low cost plastic solar cells. J. Mater. Chem. A 2013, 1, 11097.

    Article  Google Scholar 

  51. Park, S. H.; Roy, A.; Beaupré, S.; Cho, S.; Coates, N.; Moon, J. S.; Moses, D.; Leclerc, M.; Lee, K.; Heeger, A. J. Bulk heterojunction solar cells with internal quantum efficiency approaching 100%. Nat. Photonics 2009, 3, 297–302.

    Article  CAS  Google Scholar 

  52. Song, J.; Bo, Z. Planar copolymers for high-efficiency polymer solar cells. Sci. China Chem. 2019, 62, 9–13.

    Article  CAS  Google Scholar 

  53. Subbiah, J.; Purushothaman, B.; Chen, M.; Qin, T.; Gao, M.; Vak, D.; Scholes, F. H.; Chen, X.; Watkins, S. E.; Wilson, G. J.; Holmes, A. B.; Wong, W. W. H.; Jones, D. J. Organic solar cells using a high-molecular-weight benzodithiophene-benzothiadiazole copolymer with an efficiency of 9.4%. Adv. Mater. 2015, 27, 702–705.

    Article  CAS  PubMed  Google Scholar 

  54. Hu, H.; Jiang, K.; Yang, G.; Liu, J.; Li, Z.; Lin, H.; Liu, Y.; Zhao, J.; Zhang, J.; Huang, F.; Qu, Y.; Ma, W.; Yan, H. Terthiophene-based D-A polymer with an asymmetric arrangement of alkyl chains that enables efficient polymer solar cells. J. Am. Chem. Soc. 2015, 137, 14149–14157.

    Article  CAS  PubMed  Google Scholar 

  55. Liu, Y.; Zhao, J.; Li, Z.; Mu, C.; Ma, W.; Hu, H.; Jiang, K.; Lin, H.; Ade, H.; Yan, H. Aggregation and morphology control enables multiple cases of high-efficiency polymer solar cells. Nat. Commun. 2014, 5, 5293.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Hu, H.; Chow, P. C. Y.; Zhang, G.; Ma, T.; Liu, J.; Yang, G.; Yan, H. Design of donor polymers with strong temperature-dependent aggregation property for efficient organic photovoltaics. Acc. Chem. Res. 2017, 50, 2519–2528.

    Article  CAS  PubMed  Google Scholar 

  57. Chen, Z.; Cai, P.; Chen, J.; Liu, X.; Zhang, L.; Lan, L.; Peng, J.; Ma, Y.; Cao, Y. Low band-gap conjugated polymers with strong interchain aggregation and very high hole mobility towards highly efficient thick-film polymer solar cells. Adv. Mater. 2014, 26, 2586–2591.

    Article  CAS  PubMed  Google Scholar 

  58. Hou, J.; Chen, H. Y.; Zhang, S.; Li, G.; Yang, Y. Synthesis, characterization, and photovoltaic properties of a low band gap polymer based on silole-containing polythiophenes and 2,1,3-benzothiadiazole. J. Am. Chem. Soc. 2008, 130, 16144–16145.

    Article  CAS  PubMed  Google Scholar 

  59. You, J.; Dou, L.; Yoshimura, K.; Kato, T.; Ohya, K.; Moriarty, T.; Emery, K.; Chen, C. C.; Gao, J.; Li, G.; Yang, Y. A polymer tandem solar cell with 10.6% power conversion efficiency. Nat. Commun. 2013, 4, 1446.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Shi, S.; Liao, Q.; Tang, Y.; Guo, H.; Zhou, X.; Wang, Y.; Yang, T.; Liang, Y.; Cheng, X.; Liu, F.; Guo, X. Head-to-head linkage containing bithiophene-based polymeric semiconductors for highly efficient polymer solar cells. Adv. Mater. 2016, 88, 9969–9977.

    Article  Google Scholar 

  61. Li, W.; Cai, J.; Cai, F.; Yan, Y.; Yi, H.; Gurney, R. S.; Liu, D.; Iraqi, A.; Wang, T. Achieving over 11% power conversion efficiency in PffBT4T-2OD-based ternary polymer solar cells with enhanced open-circuit-voltage and suppressed charge recombination. Nano Energy 2018, 44, 155–163.

    Article  Google Scholar 

  62. Li, W.; Hendriks, K. H.; Furlan, A.; Roelofs, W. S. C.; Wienk, M. M.; Janssen, R. A. J. Universal correlation between fibril width and quantum efficiency in diketopyrrolopyrrole-based polymer solar cells. J. Am. Chem. Soc. 2013, 135, 18942–18948.

    Article  CAS  PubMed  Google Scholar 

  63. Nketia-Yawson, B.; Lee, H. S.; Seo, D.; Yoon, Y.; Park, W. T.; Kwak, K.; Son, H. J.; Kim, B.; Noh, Y. Y. A highly planar fluorinated benzothiadiazole-based conjugated polymer for highperformance organic thin-film transistors. Adv. Mater. 2015, 27, 3045–3052.

    Article  CAS  PubMed  Google Scholar 

  64. Liu, X.; Nian, L.; Gao, K.; Zhang, L.; Qing, L.; Wang, Z.; Ying, L.; Xie, Z.; Ma, Y.; Cao, Y.; Liu, F.; Chen, J. Low band gap conjugated polymers combining siloxane-terminated side chains and alkyl side chains: side-chain engineering achieving a large active layer processing window for PCE > 10% in polymer solar cells. J. Mater. Chem. A 2017, 5, 17619–17631.

    Article  CAS  Google Scholar 

  65. Yan, C.; Barlow, S.; Wang, Z.; Yan, H.; Jen, A. K. Y.; Marder, S. R.; Zhan, X. Non-fullerene acceptors for organic solar cells. Nat. Rev. Mater. 2018, 3, 18003.

    Article  CAS  Google Scholar 

  66. Hou, J.; Inganäs, O.; Friend, R. H.; Gao, F. Organic solar cells based on non-fullerene acceptors. Nat. Mater. 2018, 17, 119.

    Article  CAS  PubMed  Google Scholar 

  67. Zhang, Z.; Zhang, S.; Liu, Z.; Zhang, Z.; Li, Y.; Li, C.; Chen, H. A simple electron acceptor with unfused backbone for polymer solar cells. Acta Phys. Chim. Sin. 2019, 35, 394–400.

    Article  Google Scholar 

  68. Lin, H.; Chen, S.; Li, Z.; Lai, J. Y. L.; Yang, G.; McAfee, T.; Jiang, K.; Li, Y.; Liu, Y.; Hu, H.; Zhao, J.; Ma, W.; Ade, H.; Yan, H. Highperformance non-fullerene polymer solar cells based on a pair of donor-acceptor materials with complementary absorption properties. Adv. Mater. 2015, 27, 7299–7304.

    Article  CAS  PubMed  Google Scholar 

  69. Kini, G. P.; Choi, J. Y.; Jeon, S. J.; Suh, I. S.; Moon, D. K. Effect of mono alkoxy-carboxylate-functionalized benzothiadiazole-based donor polymers for non-fullerene solar cells. Dyes Pigments 2019, 164, 62–71.

    Article  CAS  Google Scholar 

  70. An, C.; Zheng, Z.; Hou, J. Recent progress in wide bandgap conjugated polymer donors for high-performance nonfullerene organic photovoltaics. Chem. Commun. 2020, 56, 4750–4760.

    Article  CAS  Google Scholar 

  71. Hu, H.; Jiang, K.; Chow, P. C. Y.; Ye, L.; Zhang, G.; Li, Z.; Carpenter, J. H.; Ade, H.; Yan, H. Influence of donor polymer on the molecular ordering of small molecular acceptors in nonfullerene polymer solar cells. Adv. Energy Mater. 2018, 8, 1701674.

    Article  Google Scholar 

  72. Zhang, J.; Liu, W.; Zhang, M.; Xu, S.; Liu, F.; Zhu, X. PCE11-based polymer solar cells with high efficiency over 13% achieved by room-temperature processing. J. Mater. Chem. A 2020, 8, 8661–8668.

    Article  CAS  Google Scholar 

  73. Chen, Z.; Hu, Z.; Liang, Y.; Zhou, C.; Xiao, J.; Zhang, G.; Huang, F. Highly efficient, green-solvent processable, and stable non-fullerene polymer solar cells enabled by a random polymer donor. Org. Electron. 2020, 85, 105874.

    Article  CAS  Google Scholar 

  74. Lin, Y.; Zhao, F.; Wu, Y.; Chen, K.; Xia, Y.; Li, G.; Prasad, S. K. K.; Zhu, J.; Huo, L.; Bin, H.; Zhang, Z. G.; Guo, X.; Zhang, M.; Sun, Y.; Gao, F.; Wei, Z.; Ma, W.; Wang, C.; Hodgkiss, J.; Bo, Z.; Inganäs, O.; Li, Y.; Zhan, X. Mapping polymer donors toward high-efficiency fullerene free organic solar cells. Adv. Mater. 2017, 29, 1604155.

    Article  Google Scholar 

  75. Gong, X.; Li, G.; Feng, S.; Wu, L.; Liu, Y.; Hou, R.; Li, C.; Chen, X.; Bo, Z. Influence of polymer side chains on the photovoltaic performance of non-fullerene organic solar cells. J. Mater. Chem. C 2017, 5, 937–942.

    Article  CAS  Google Scholar 

  76. Xie, Y.; Xia, R.; Li, T.; Ye, L.; Zhan, X.; Yip, H. L.; Sun, Y. Highly transparent organic solar cells with all-near-infrared photoactive materials. Small Methods 2019, 3, 1900424.

    Article  CAS  Google Scholar 

  77. Zhao, J.; Li, Y.; Lin, H.; Liu, Y.; Jiang, K.; Mu, C.; Ma, T.; Lai, J. Y. L.; Hu, H.; Yu, D.; Yan, H. High-efficiency non-fullerene organic solar cells enabled by a difluorobenzothiadiazole-based donor polymer combined with a properly matched small molecule acceptor. Energy Environ. Sci. 2015, 8, 520–525.

    Article  CAS  Google Scholar 

  78. Chen, S.; Zhang, L.; Ma, C.; Meng, D.; Zhang, J.; Zhang, G.; Li, Z.; Chow, P. C. Y.; Ma, W.; Wang, Z.; Wong, K. S.; Ade, H.; Yan, H. Alkyl chain regiochemistry of benzotriazole-based donor polymers influencing morphology and performances of non-fullerene organic solar cells. Adv. Energy Mater. 2018, 8, 1702427.

    Article  Google Scholar 

  79. Chen, S.; Wang, Y.; Zhang, L.; Zhao, J.; Chen, Y.; Zhu, D.; Yao, H.; Zhang, G.; Ma, W.; Friend, R. H.; Chow, P. C. Y.; Gao, F.; Yan, H. Efficient nonfullerene organic solar cells with small driving forces for both hole and electron transfer. Adv. Mater. 2018, 30, 1804215.

    Article  Google Scholar 

  80. Liu, J.; Chen, S.; Qian, D.; Gautam, B.; Yang, G.; Zhao, J.; Bergqvist, J.; Zhang, F.; Ma, W.; Ade, H.; Inganäs, O.; Gundogdu, K.; Gao, F.; Yan, H. Fast charge separation in a non-fullerene organic solar cell with a small driving force. Nat. Energy 2016, 1, 16089.

    Article  CAS  Google Scholar 

  81. Zhang, J.; Li, Y.; Huang, J.; Hu, H.; Zhang, G.; Ma, T.; Chow, P. C. Y.; Ade, H.; Pan, D.; Yan, H. Ring-fusion of perylene diimide acceptor enabling efficient nonfullerene organic solar cells with a small voltage loss. J. Am. Chem. Soc. 2017, 139, 16092–16095.

    Article  CAS  PubMed  Google Scholar 

  82. Zhang, X.; Zhang, J.; Lu, H.; Wu, J.; Li, G.; Li, C.; Li, S.; Bo, Z. A 1,8-naphthalimide based small molecular acceptor for polymer solar cells with high open circuit voltage. J. Mater. Chem. C 2015, 3, 6979–6985.

    Article  CAS  Google Scholar 

  83. Hou, R.; Feng, S.; Gong, X.; Liu, Y.; Zhang, J.; Li, C.; Bo, Z. Side chain effect of nonfullerene acceptors on the photovoltaic performance of wide band gap polymer solar cells. Synth. Met. 2016, 220, 578–584.

    Article  CAS  Google Scholar 

  84. Zhang, J.; Zhang, X.; Li, G.; Xiao, H.; Li, W.; Xie, S.; Li, C.; Bo, Z. A nonfullerene acceptor for wide band gap polymer based organic solar cells. Chem. Commun. 2016, 52, 469–472.

    Article  CAS  Google Scholar 

  85. Kang, H.; Uddin, M. A.; Lee, C.; Kim, K. H.; Nguyen, T. L.; Lee, W.; Li, Y.; Wang, C.; Woo, H. Y.; Kim, B. J. Determining the role of polymer molecular weight for high-performance all-polymer solar cells: its effect on polymer aggregation and phase separation. J. Am. Chem. Soc. 2015, 137, 2359–2365.

    Article  CAS  PubMed  Google Scholar 

  86. Kranthiraja, K.; Kim, S.; Lee, C.; Gunasekar, K.; Sree, V. G.; Gautam, B.; Gundogdu, K.; Jin, S. H.; Kim, B. J. The impact of sequential fluorination of π-conjugated polymers on charge generation in all-polymer solar cells. Adv. Funct. Mater. 2017, 27, 1701256.

    Article  Google Scholar 

  87. Wang, N.; Zhang, S.; Zhao, R.; Feng, J.; Ding, Z.; Ma, W.; Hu, J.; Liu, J. Designed polymer donors to match an amorphous polymer acceptor in all-polymer solar cells. ACS Appl. Electron. Mater. 2020, 2, 2274–2281.

    Article  CAS  Google Scholar 

  88. Ge, C. W.; Mei, C. Y.; Ling, J.; Wang, J. T.; Zhao, F. G.; Liang, L.; Li, H. J.; Xie, Y. S.; Li, W. S. Acceptor-acceptor conjugated copolymers based on perylenediimide and benzothiadiazole for all-polymer solar cells. J. Polym. Sci., Part A: Polym. Chem. 2014, 52, 1200–1215.

    Article  CAS  Google Scholar 

  89. Liu, F.; Li, H.; Wu, Y.; Gu, C.; Fu, H. Naphthalene diimide and benzothiadiazole copolymer acceptor for all-polymer solar cells with improved open-circuit voltage and morphology. RSC Adv. 2015, 5, 92151–92158.

    Article  CAS  Google Scholar 

  90. Liu, M.; Yang, J.; Yin, Y.; Zhang, Y.; Zhou, E.; Guo, F.; Zhao, L. Novel perylene diimide-based polymers with electron-deficient segments as the comonomer for efficient all-polymer solar cells. J. Mater. Chem. A 2018, 6, 414–422.

    Article  CAS  Google Scholar 

  91. Tang, A.; Li, J.; Zhang, B.; Peng, J.; Zhou, E. Low-bandgap n-type polymer based on a fused-DAD-type heptacyclic ring for allpolymer solar cell application with a power conversion efficiency of 10.7%. ACS Macro Lett. 2020, 9, 706–712.

    Article  CAS  Google Scholar 

  92. Zhao, R.; Wang, N.; Yu, Y.; Liu, J. Organoboron polymer for 10% efficiency all-polymer solar cells. Chem. Mater. 2020, 32, 1308–1314.

    Article  CAS  Google Scholar 

  93. Wang, N.; Yu, Y.; Zhao, R.; Ding, Z.; Liu, J.; Wang, L. Improving active layer morphology of all-polymer solar cells by solution temperature. Macromolecules 2020, 53, 3325–3331.

    Article  CAS  Google Scholar 

  94. McNeill, C. R.; Abrusci, A.; Zaumseil, J.; Wilson, R.; McKiernan, M. J.; Burroughes, J. H.; Halls, J. J. M.; Greenham, N. C.; Friend, R. H. Dual electron donor/electron acceptor character of a conjugated polymer in efficient photovoltaic diodes. Appl. Phys. Lett. 2007, 90, 193506.

    Article  Google Scholar 

  95. McNeill, C. R.; Halls, J. J. M.; Wilson, R.; Whiting, G. L.; Berkebile, S.; Ramsey, M. G.; Friend, R. H.; Greenham, N. C. Efficient polythiophene/polyfluorene copolymer bulk heterojunction photovoltaic devices: device physics and annealing effects. Adv. Funct. Mater. 2008, 18, 2309–2321.

    Article  CAS  Google Scholar 

  96. Sepe, A.; Rong, Z.; Sommer, M.; Vaynzof, Y.; Sheng, X.; Müller-Buschbaum, P.; Smilgies, D. M.; Tan, Z. K.; Yang, L.; Friend, R. H.; Steiner, U.; Hüttner, S. Structure formation in P3HT/F8TBT blends. Energy Environ. Sci. 2014, 7, 1725–1736.

    Article  CAS  Google Scholar 

  97. McNeill, C. R.; Abrusci, A.; Hwang, I.; Ruderer, M. A.; Müller-Buschbaum, P.; Greenham, N. C. Photophysics and photocurrent generation in polythiophene/polyfluorene copolymer blends. Adv. Funct. Mater. 2009, 19, 3103–3111.

    Article  CAS  Google Scholar 

  98. Shi, S.; Chen, P.; Chen, Y.; Feng, K.; Liu, B.; Chen, J.; Liao, Q.; Tu, B.; Luo, J.; Su, M.; Guo, H.; Kim, M. G.; Facchetti, A.; Guo, X. A narrow-bandgap n-type polymer semiconductor enabling efficient all-polymer solar cells. Adv. Mater. 2019, 31, 1905161.

    Article  CAS  Google Scholar 

  99. Feng, K.; Huang, J.; Zhang, X.; Wu, Z.; Shi, S.; Thomsen, L.; Tian, Y.; Woo, H. Y.; McNeill, C. R.; Guo, X. High-performance allpolymer solar cells enabled by n-type polymers with an ultranarrow bandgap down to 1.28 eV. Adv. Mater. 2020, 32, 2001476.

    Article  CAS  Google Scholar 

  100. Yuan, J.; Zhang, Y.; Zhou, L.; Zhang, G.; Yip, H. L.; Lau, T. K.; Lu, X.; Zhu, C.; Peng, H.; Johnson, P. A.; Leclerc, M.; Cao, Y.; Ulanski, J.; Li, Y.; Zou, Y. Single-junction organic solar cell with over 15% efficiency using fused-ring acceptor with electron-deficient core. Joule 2019, 3, 1140–1151.

    Article  CAS  Google Scholar 

  101. Wang, W.; Wu, Q.; Sun, R.; Guo, J.; Wu, Y.; Shi, M.; Yang, W.; Li, H.; Min, J. Controlling molecular mass of low-band-gap polymer acceptors for high-performance all-polymer solar cells. Joule 2020, 4, 1070–1086.

    Article  CAS  Google Scholar 

  102. Du, J.; Hu, K.; Meng, L.; Angunawela, I.; Zhang, J.; Qin, S.; Liebman-Pelaez, A.; Zhu, C.; Zhang, Z.; Ade, H.; Li, Y. Highperformance all-polymer solar cells: synthesis of polymer acceptor by a random ternary copolymerization strategy. Angew. Chem. Int. Ed. 2020, 59, 15181–15185.

    Article  CAS  Google Scholar 

  103. Gobalasingham, N. S.; Carlé, J. E.; Krebs, F. C.; Thompson, B. C.; Bundgaard, E.; Helgesen, M. Conjugated polymers via direct arylation polymerization in continuous flow: minimizing the cost and batch-to-batch variations for high-throughput energy conversion. Macromol. Rapid Commun. 2017, 38, 1700526.

    Article  Google Scholar 

  104. Qian, D.; Ye, L.; Zhang, M.; Liang, Y.; Li, L.; Huang, Y.; Guo, X.; Zhang, S.; Tan, Z. A.; Hou, J. Design, application, and morphology study of a new photovoltaic polymer with strong aggregation in solution state. Macromolecules 2012, 45, 9611–9617.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the Ministry of Science and Technology (Nos. 2018YFA0208504 and 2017YFA0204702) and the National Natural Science Foundation of China (Nos. 51773207, 52073016, and 21905018). This work was further supported by Fundamental Research Funds for the Central Universities (No. XK1802-2) and Jiangxi Provincial Department of Science and Technology (No. 20192ACB20009) and the Natural Science Foundation of Hebei Province (No. B2020201032).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Feng Liu, Yong-Gang Wu or Wei-Wei Li.

Additional information

Biographies

Feng Liu received his B.S. degree in 2011 from Hebei University, M.S. degree in 2014 from Hebei University and Ph.D. degree in 2018 from Hebei University. Then, he joined the Postdoctoral Mobile Station of Hebei University (2018–2020) as a postdoctor. His research interests focus on design and synthesis of conjugated materials along with the application in OPVs and OFETs.

Yong-Gang Wu received his B.S. degree in 2001 from Hebei University and Ph.D. degree in 2008 from the Institute of Chemistry, Chinese Academy of Sciences (ICCAS). Then, he has been working at Hebei University as a Professor. His research interests focus on design and synthesis of conjugated materials and their application in organic electronics.

Wei-Wei Li received his B.S. degree in 2005 from the University of Science and Technology of China (USTC) and Ph.D. degree in 2010 from the Institute of Chemistry, Chinese Academy of Sciences (ICCAS). He then joined Prof. Jillian Buriak’s group at the University of Alberta (2010–2011) and Prof. René A. J. Janssen’s group at the Eindhoven University of Technology (2011–2014) as a postdoctor. Since 2015, he has been a Professor at ICCAS. His research interests include design and synthesis of conjugated materials and their application in organic electronics.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, C., Liu, F., Chen, QM. et al. Benzothiadiazole-based Conjugated Polymers for Organic Solar Cells. Chin J Polym Sci 39, 525–536 (2021). https://doi.org/10.1007/s10118-021-2537-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10118-021-2537-8

Keywords

Navigation