Skip to main content
Log in

The Role of Mold Temperature on Morphology and Mechanical Properties of PE Pipe Produced by Rotational Shear

  • Article
  • Published:
Chinese Journal of Polymer Science Aims and scope Submit manuscript

Abstract

The role of mold temperature on the morphology and properties of rotational shearing polyethylene (PE) pipes was studied via a self-developed rotational shear system (RSS). The result indicated that when the mold temperature was 150 °C, the hoop tensile strength and Vicat softening temperature were enhanced rapidly, which were 383.6% and 137.9% higher than those of the conventional PE pipes, respectively. Morphology and crystal structure studies by SEM and DSC revealed that once the rotational shear was applied, the shish-kebab structure began to appear. With the increase of the mold temperature, due to the relaxation of most of the oriented molecular chains, the preservation of shish-kebab structure became difficult. When the mold temperature was 190 °C, only the inner layer of the pipes, where the cooling rate was the largest, could preserve the shish-kebab structure. According to WAXD, there was less shish structure, and the growth of kebab was distorted in the inner layer of the pipes at 210 °C. The result of SAXS suggested that the length of shish changed most within the temperature range from 170 °C to 190 °C. The results of DSC and WAXD showed less change in crystallinity and degree of orientation between the two temperatures. It can be concluded that the reduction of shish length leads to a decrease in mechanical properties and heat-resistance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Krushelnitzky, R. P.; Brachman, R. W. I. Buried high-density polyethylene pipe deflections at elevated temperatures. Geotext. Geomembr.2013, 40, 69–77.

    Google Scholar 

  2. Cai, Z.; Dai, H.; Fu, X. Investigation on the hot melting temperature field simulation of HDPE water supply pipeline in gymnasium pool. Results Phys.2018, 9, 1050–1056.

    Google Scholar 

  3. He, X.; Zha, X.; Xiao, Z.; Xin, Q.; Liu, B. J. Effect of short chain branches distribution on fracture behavior of polyethylene pipe resins. Polym. Test.2018, 68, 219–228.

    CAS  Google Scholar 

  4. Kmetty, Á.; Bárány, T.; Karger-Kocsis. Self-reinforced polymeric materials: a review. Prog. Polym. Sci.2010, 35, 1288–1310.

    CAS  Google Scholar 

  5. Alcock, B.; Peijs, T. Technology and development of self-reinforced polymer composites. Polym. Compos.2013, 251, 1–76.

    CAS  Google Scholar 

  6. Li, Y. B.; Shen, K. Z.; Huang, H. Self-toughening and self-reinforcing injection-molded isotactic polypropylene via vibration injection molding. J. Macromol. Sci. Part B-Phys. 2004, 36, 55–58.

    CAS  Google Scholar 

  7. Li, Y. T.; Chen, G. S.; Guo, S. Y.; Li, H. L. Studies on rheological behavior and structure development of high-density polyethylene in the presence of ultrasonic oscillations during extrusion. Polym. Compos.2006, 45, 39–52.

    CAS  Google Scholar 

  8. Gao, X., Zhang, J., Chen, C. Effect of vibration extrusion on high-density polyethylene. J. Appl. Polym. Sci2010, 106, 552–557.

    Google Scholar 

  9. Lei, J.; Jiang, C.; Shen, K. Biaxially self-reinforced high-density polyethylene prepared by dynamic packing injection molding. I. Processing parameters and mechanical properties. J. Appl. Polym. Sci.2010, 93, 1584–1590.

    Google Scholar 

  10. Martin, J.; Margueron, S.; Fontana, M.; Cochez, M.; Bourson, P. Science study of the molecular orientation heterogeneity in polypropylene injection-molded parts by Raman spectroscopy. Polym. Eng. Sci.2010, 50, 138–143.

    CAS  Google Scholar 

  11. Nie, M.; Wang, Q.; Bai, S. Science morphology and property of polyethylene pipe extruded at the low mandrel rotation. Polym. Eng. Sci.2010, 50, 1743–1750.

    CAS  Google Scholar 

  12. Haddad, Y. M. Mechanical behaviour of engineering materials. Springer Berlin, Heidelberg, 2000, 55, B107–B108.

    Google Scholar 

  13. Groos, B. 1964, UK Pat. 946,371.

  14. Chung, B.; Zachariades, A. E. Science morphological and mechanical property studies of polymer extrudates obtained by the rotational extrusion process. Polym. Eng. Sci.1989, 99, 1511–1515.

    Google Scholar 

  15. Han, R.; Nie, M.; Wang, Q. Control over β-form hybrid shish-kebab crystals in polypropylene pipe via coupled effect of self-assembly β nucleating agent and rotation extrusion. J. Taiwan Inst. Chem. Eng.2015, 52, 158–164.

    CAS  Google Scholar 

  16. Long, J.; Shen, K.; Ji, J.; Guan, Q. A mandrel-rotating die to produce high-hoop-strength HDPE pipe by self-reinforcement. J. Appl. Polym. Sci.2015, 69, 323–328.

    Google Scholar 

  17. Han, R.; Nie, M.; Bai, S, B.; Wang, Q. Control over crystalline form in polypropylene pipe via mandrel rotation extrusion. Polym. Bull.2013, 70, 2083–2096.

    CAS  Google Scholar 

  18. Nie, M.; Li, X.; Hu, X.; Wang, Q. Effect of die temperature on morphology and performance of polyethylene pipe prepared via mandrel rotation extrusion. J. Macromol. Sci. Part B-Phys.2014, 53, 1442–1452.

    CAS  Google Scholar 

  19. Guo, Y.; Wang, Q.; Bai, S. The effect of rotational extrusion on the structure and properties of HDPE pipes. Polym. Plast. Technol. Eng.2010, 49, 908–915.

    CAS  Google Scholar 

  20. Min, N.; Bai, S.; Wang, Q. Effect of the inner wall cooling rate on the structure and properties of a polyethylene pipe extruded at a high rotation speed. J. Appl. Polym. Sci.2010, 119, 1659–1666.

    Google Scholar 

  21. Doufas, A. K.; Dairanieh, I. S.; Mchugh, A. J. A continuum model for flow-induced crystallization of polymer melts. J. Rheol. Macromolecules1998, 43, 85–109.

    Google Scholar 

  22. Coppola, S.; Grizzuti, N.; Maffettone, P. L. Microrheological modeling of flow-induced crystallization. Macromolecules2001, 34, 5030–5036.

    CAS  Google Scholar 

  23. Dlugosz, J.; Grubb, D. T.; Keller, A.; Rhodes, M. B. Morphological verification of “Row nucleation” in isotactic polystyrene; evidence for single crystals within the bulk. J. Mater. Sci.1972, 7, 142–147.

    CAS  Google Scholar 

  24. Ju, J.; Wang, Z.; Su, F.; Ji, Y.; Yang, H.; Chang, J.; Ali, S.; Li, X. Extensional flow-induced dynamic phase transitions in isotactic polypropylene. Macromol. Rapid Commun.2016, 37, 1441–1445.

    PubMed  CAS  Google Scholar 

  25. Phillips, A. W.; Bhatia, A.; Zhu, P. W.; Edward, G. Shish formation and relaxation in sheared isotactic polypropylene containing nucleating particles. Macromolecules2011, 44, 3517.

    CAS  Google Scholar 

  26. Kanaya, T.; Polec, I. A.; Fujiwara, T.; Inoue, R.; Nishida, K.; Matsuura, T.; Ogawa, H.; Ohta, N. Precursor of shish-kebab above the melting temperature by microbeam X-ray scattering. Macromolecules2013, 46, 3031–3036.

    CAS  Google Scholar 

  27. Azzurri, F.; Alfonso, G. C. Insights into formation and relaxation of shear-induced nucleation precursors in isotactic polystyrene. Macromolecules2008, 41, 1155–1167.

    Google Scholar 

  28. Somani, R. H.; Yang, L.; Zhu, L. Flow-induced shish-kebab precursor structures in entangled polymer melts. Polymer2005, 46, 8587–8623.

    CAS  Google Scholar 

  29. Zhou, D.; Yang, S. G.; Lei, J.; Hsiao, B. S.; Li, Z. M. Role of stably entangled chain network density in shish-kebab formation in polyethylene under an intense flow field. Macromolecules2015, 48, 6652–6661.

    CAS  Google Scholar 

  30. Rathee, V.; Krishnaswamy, R.; Pal, A.; Raghunathan, V. A.; Imperor-Clerc, M.; Pansu, B.; Sood, A. K. Reversible shear-induced crystallization above equilibrium freezing temperature in a lyotropic surfactant system. Proc. Nat. Acad. Sci. India A2013, 110, 14849–14854.

    CAS  Google Scholar 

  31. Wang, Z.; Ju, J.; Yang, J.; Ma, Z.; Liu, D.; Cui, K.; Yang, H.; Chang, J.; Huang, N.; Li, L. The non-equilibrium phase diagrams of flow-induced crystallization and melting of polyethylene. Sci. Rep.2016, 6, 32968.

    PubMed  PubMed Central  Google Scholar 

  32. Rueda, D. R.; Ania, F. A USAXS study of melt processed PE with a shish-kebab structure: the influence of temperature on the long periods. Polymer1997, 38, 2027–2032.

    CAS  Google Scholar 

  33. Jiang, Z.; Tang, Y.; Rieger, J.; Enderle, H. F.; Lilge, D.; Roth, S. V.; Gehrke, R.; Wu, Z.; Li, Z. Structural evolution of melt-drawn transparent high-density polyethylene during heating and annealing: synchrotron small-angle X-ray scattering study. Eur. Polym. J.2010, 46, 1866–1877.

    CAS  Google Scholar 

  34. Wang, H.; Song, H. D.; Zou, E. G.; Ge, T. J.; Fang, H. Study on the molecular structure and the performance of PE100 resin for tubing. Adv. Mater. Res. 2014, 850–851, 70–73.

    Google Scholar 

  35. Kimata, S.; Sakurai, T.; Nozue, Y.; Kasahara, T.; Yamaguchi, N.; Karino, T.; Shibayama, M. Molecular basis of the shish-kebab morphology in polymer crystallization. Science2007, 316, 1014–1017.

    PubMed  CAS  Google Scholar 

  36. Xia, X. C.; Yang, W.; Zhang, Q. P.; Wang, L.; He, S.; Yang, M. Large scale formation of various highly oriented structures in polyethylene/polycarbonate microfibril blends subjected to secondary melt flow. Polymer2014, 55, 6399–6408.

    CAS  Google Scholar 

  37. Yang, H. R.; Lei, J.; Li, L.; Fu, Q. Formation of interlinked shish-kebabs in injection-molded polyethylene under the coexistence of lightly cross-linked chain network and oscillation shear flow. Macromolecules2012, 45, 6600–6610.

    CAS  Google Scholar 

  38. Huang, Y. F.; Xu, J. Z.; Xu, J. Y.; Zhang, Z. C.; Hsiao, B. S.; Xu, L.; Li, Z. M. Self-reinforced polyethylene blend for artificial joint application. J. Mater. Chem. B2014, 2, 971–980.

    PubMed  CAS  Google Scholar 

  39. Keum, J. K.; Zuo, F.; Hsiao, B. S. J. M. Formation and stability of shear-induced shish-kebab structure in highly entangled melts of UHMWPE/HDPE blends. Macromolecules2008, 41, 4766–4776.

    CAS  Google Scholar 

  40. Schrauwen, B. A. G.; Breemen, L. C. A. V.; Spoelstra, A. B.; Govaert, L. E.; Peters, G. W. M.; Meijer, H. Structure, deformation, and failure of flow-oriented semicrystalline polymers. Macromolecules2004, 37, 8618–8633.

    CAS  Google Scholar 

  41. Wang, Z.; Mao, Y.; Jarumaneeroj, C.; Thitisak, B.; Tiyapiboonchaiya, P.; Rungswang, W.; Hsiao, B. S. The influence of short chain branch on formation of shish-kebab crystals in bimodal polyethylene under shear at high temperatures. J. Polym. Sci., Part B: Polym. Phys.2018, 56, 786–794.

    CAS  Google Scholar 

  42. Hsiao, B. S.; Yang, L.; Somani, R. H.; Zhu, L. Unexpected shish-kebab structure in a sheared polyethylene melt. Phys. Rev. Lett.2005, 94, 117802.

    PubMed  Google Scholar 

  43. Liu, D.; Tian, N.; Cui, K.; Zhou, W.; Li, X.; Li, L. Correlation between flow-induced nucleation morphologies and strain in polyethylene: from uncorrelated oriented point-nuclei, scaffold-network, and microshish to shish. Macromolecules2013, 66, 3435–3443.

    Google Scholar 

  44. Balzano, L.; Rastogi, S.; Peters, G. W. M. Crystallization and precursors during fast short-term shear. Macromolecules2009, 42, 2088–2092.

    CAS  Google Scholar 

Download references

Acknowledgments

The work was financially supported by the Science and Technology Program of Sichuan Province, China (No. 2018G20332) and the National Natural Science Foundation of China (No. 21627804).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xue-Qin Gao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Du, ZC., Yang, H., Luo, XH. et al. The Role of Mold Temperature on Morphology and Mechanical Properties of PE Pipe Produced by Rotational Shear. Chin J Polym Sci 38, 653–664 (2020). https://doi.org/10.1007/s10118-020-2363-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10118-020-2363-4

Keywords

Navigation