Skip to main content
Log in

Bio-based and Biodegradable Electrospun Fibers Composed of Poly(L-lactide) and Polyamide 4

  • Article
  • Published:
Chinese Journal of Polymer Science Aims and scope Submit manuscript

Abstract

Novel bio-based and biodegradable block copolymers were synthesized by “click” reaction between poly(L-lactide) (PLLA) and polyamide 4 (PA4). Upon tuning the molar mass of PLLA block, the properties of copolymers and electrospun ultrafine fibers were investigated and compared with those of PLLA and PA4 blends. PLLA and PA4 were found incompatible and formed individual crystalline regions, along with reciprocal inhibition in crystallization. Electrospun fibers were highly hydrophobic, even if hydrophilic PA4 was the rich component. The crystallinity of either PLLA or PA4 decreased after electrospinning and PLLA-rich as-spun fibers were almost amorphous. Immersion tests proved that fibers of block copolymers were relatively homogeneous with micro-phase separation between PLLA and PA4. The fibrous structures of copolymers were different from those of the fibers electrospun from blends, for which sheath-core structure induced by macro-phase separation between homopolymers of PLLA and PA4 was confirmed by TEM, EDS, and XPS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Drumright, R. E.; Gruber, P. R.; Henton, D. E. Polylactic acid technology. Adv. Mater.2000, 12, 1841–1846.

    Article  CAS  Google Scholar 

  2. Isono, T.; Kondo, Y.; Otsuka, I.; Nishiyama, Y.; Borsali, R.; Kakuchi, T.; Satoh, T. Synthesis and stereocomplex formation of star-shaped stereoblock polylactides consisting of poly(L-lactide) and poly(D-lactide) arms. Macromolecules2013, 46, 8509–8518.

    Article  CAS  Google Scholar 

  3. Li, T.; Zhang, J.; Schneiderman, D. K.; Francis, L. F.; Bates, F. S. Toughening glassy poly(lactide) with block copolymer micelles. ACS Macro Lett.2016, 5, 359–364.

    Article  CAS  Google Scholar 

  4. Kakroodi, A. R.; Kazemi, Y.; Nofar, M.; Park, C. B. Tailoring poly(lactic acid) for packaging applications via the production of fully bio-based in situ microfibrillar composite films. Chem. Eng. J.2017, 308, 772–782.

    Article  CAS  Google Scholar 

  5. Chen, L.; Hu, K.; Sun, S. T.; Jiang, H.; Huang, D.; Zhang, K. Y.; Pan, L.; Li, Y. S. Toughening poly(lactic acid) with imidazolium-based elastomeric ionomers. Chinese J. Polym. Sci.2018, 36, 1342–1352.

    Article  CAS  Google Scholar 

  6. Chiu, F. C.; Wang, S. W.; Peng, K. Y.; Lee, R. S. Synthesis and characterization of amphiphilic PLA-(PαN3CL-g-PBA) copolymers by ring-opening polymerization and click reaction. Polymer2012, 53, 3476–3484.

    Article  CAS  Google Scholar 

  7. Rasal, R. M.; Janorkar, A. V.; Hirt, D. E. Poly(lactic acid) modifications. Prog. Polym. Sci.2010, 35, 338–356.

    Article  CAS  Google Scholar 

  8. Rogalsky, S.; Bardeau, J. F.; Wu, H.; Lyoshina, L.; Bulko, O.; Tarasyuk, O.; Makhno, S.; Cherniavska, T.; Kyselov, Y.; Koo, J. H. Structural, thermal and antibacterial properties of polyamide 11/polymeric biocide polyhexamethylene guanidine dodecylbenzenesulfonate composites. J. Mater. Sci.2016, 51, 7716–7730.

    Article  CAS  Google Scholar 

  9. Ge, Y. P.; Yuan, D.; Luo, Z. L.; Wang, B. B. Synthesis and characterization of poly(ester amide) from renewable resources through melt polycondensation. eXPRESS Polym. Lett.2014, 8, 50–54.

    Article  Google Scholar 

  10. Stoclet, G.; Seguela, R.; Lefebvre, J. M. Morphology, thermal behavior and mechanical properties of binary blends of compatible biosourced polymers: Polylactide/polyamide11. Polymer2011, 52, 1417–1425.

    Article  CAS  Google Scholar 

  11. Fonseca, A. C.; Gil, M. H.; Simôes, P. N. Biodegradable poly(ester amide)s—A remarkable opportunity for the biomedical area: Review on the synthesis, characterization and applications. Prog. Polym. Sci.2014, 39, 1291–1311.

    Article  CAS  Google Scholar 

  12. Nakayama, A.; Yamano, N.; Kawasaki, N.; Nakayama, Y. Synthesis and biodegradation of poly(2-pyrrolidone-co-ε-caprolactone)s. Polym. Degrad. Stab.2013, 98, 1882–1888.

    Article  CAS  Google Scholar 

  13. Massimo, L.; Arturo, L. Q. M. Block copolymers as a tool for nanomaterial fabrication. Adv. Mater.2003, 15, 1583–1594.

    Article  Google Scholar 

  14. Gardella, L.; Mincheva, R.; De Winter, J.; Tachibana, Y.; Raquez, J. M.; Dubois, P.; Monticelli, O. Synthesis, characterization and stereocomplexation of polyamide 11/polylactide diblock copolymers. Eur. Polym. J.2018, 98, 83–93.

    Article  CAS  Google Scholar 

  15. Barnes, C. E. Nylon 4-development and commercialization. Lenzinger Ber.1987, 62, 62–66.

    CAS  Google Scholar 

  16. Kawasaki, N.; Yamano, N.; Nakayama, A. Polyamide 4-block-poly(vinyl acetate) via a polyamide4 azo macromolecular initiator: Thermal and mechanical behavior, biodegradation, and morphology. J. Appl. Polym. Sci.2015, 132, 42466.

    Article  Google Scholar 

  17. Tachibana, K.; Hashimoto, K.; Yoshikawa, M.; Okawa, H. Isolation and characterization of microorganisms degrading nylon 4 in the composted soil. Polym. Degrad. Stab.2010, 95, 912–917.

    Article  CAS  Google Scholar 

  18. Kazuhiko, H.; Tsuyoshi, H.; Masahiko, O. Degradation of several polyamides in soils. J. Appl. Polym. Sci.1994, 54, 1579–1583.

    Article  Google Scholar 

  19. Tachibana, K.; Urano, Y.; Numata, K. Biodegradability of nylon 4 film in a marine environment. Polym. Degrad. Stab.2013, 98, 1847–1851.

    Article  CAS  Google Scholar 

  20. Kawasaki, N.; Nakayama, A.; Yamano, N.; Takeda, S.; Kawata, Y.; Yamamoto, N.; Aiba, S. I. Synthesis, thermal and mechanical properties and biodegradation of branched polyamide 4. Polymer2005, 46, 9987–9993.

    Article  CAS  Google Scholar 

  21. Yamano, N.; Kawasaki, N.; Ida, S.; Nakayama, Y.; Nakayama, A. Biodegradation of polyamide 4 in vivo. Polym. Degrad. Stab.2017, 137, 281–288.

    Article  CAS  Google Scholar 

  22. Kim, J. W.; Kim, H. S. Synthesis and characteristics of poly(L-lactic acid-block-γ-aminobutyric acid). Text. Sci. Eng.2015, 52, 53–58.

    Article  CAS  Google Scholar 

  23. Lowe, A. B. Thiol-ene “click” reactions and recent applications in polymer and materials synthesis. Polym. Chem.2010, 1, 17–36.

    Article  CAS  Google Scholar 

  24. Li, M. Q.; Tang, Z. H.; Wang, C.; Zhang, Y.; Cui, H. T.; Chen, X. S. Efficient side-chain modification of dextran via base-catalyzed epoxide ring-opening and thiol-ene click chemistry in aqueous media. Chinese. J. Polym. Sci.2014, 32, 969–974.

    Article  CAS  Google Scholar 

  25. Liu, W.; Dong, C. M. Versatile strategy for the synthesis of hyperbranched poly(ε-caprolactone)s and polypseudorotaxanes thereof. Macromolecules2010, 43, 8447–8455.

    Article  CAS  Google Scholar 

  26. Hou, X.; Li, Q.; He, Y.; Jia, L.; Li, Y.; Zhu, Y.; Cao, A. Visualization of spontaneous aggregates by diblock poly(styrene)-b-poly(L-lactide)/poly(D-lactide) pairs in solution with new fluorescent CdSe quantum dot labels. J. Polym. Sci., Part B: Polym. Phys.2009, 47, 1393–1405.

    Article  CAS  Google Scholar 

  27. Kalarickal, N. C.; Rimmer, S.; Sarker, P.; Leroux, J. C. Thiol-functionalized poly(ethylene glycol)-b-polyesters synthesis and characterization. Macromolecules2007, 40, 1874–1880.

    Article  CAS  Google Scholar 

  28. Hoyle, C. E.; Lee, T. Y.; Roper, T. Thiol-enes: Chemistry of the past with promise for the future. J. Polym. Sci., Part A: Polym. Chem.2004, 42, 5301–5338.

    Article  CAS  Google Scholar 

  29. Montanez, M. I.; Campos, L. M.; Antoni, P.; Hed, Y.; Walter, M. V.; Krull, B. T.; Khan, A.; Hult, A.; Hawker, C. J.; Malkoch, M. Accelerated growth of dendrimers via thiol-ene and esterification reactions. Macromolecules2010, 43, 6004–6013.

    Article  CAS  Google Scholar 

  30. Cho, A. R.; Shin, D. M.; Jung, H. W.; Hyun, J. C.; Lee, J. S.; Cho, D.; Joo, Y. L. Effect of annealing on the crystallization and properties of electrospun polylatic acid and nylon 6 fibers. J. Appl. Polym. Sci.2011, 120, 752–758.

    Article  CAS  Google Scholar 

  31. Baji, A.; Mai, Y. W.; Wong, S. C.; Abtahi, M.; Chen, P. Electrospinning of polymer nanofibers: Effects on oriented morphology, structures and tensile properties. Compos. Sci. Technol.2010, 70, 703–718.

    Article  CAS  Google Scholar 

  32. Giller, C. B.; Chase, D. B.; Rabolt, J. F.; Snively, C. M. Effect of solvent evaporation rate on the crystalline state of electrospun nylon 6. Polymer2010, 51, 4225–4230.

    Article  CAS  Google Scholar 

  33. Schroeder, L. R.; Cooper, S. L. Hydrogen bonding in polyamides. J. Appl. Polym. Sci.1976, 47, 4310–4317.

    CAS  Google Scholar 

  34. Zhang, P.; Tian, R.; Na, B.; Lv, R.; Liu, Q. Intermolecular ordering as the precursor for stereocomplex formation in the electrospun polylactide fibers. Polymer2015, 60, 221–227.

    Article  CAS  Google Scholar 

  35. Li, Y. J.; Chen, F.; Nie, J.; Yang, D. Z. Electrospun poly(lactic acid)/chitosan core-shell structure nanofibers from homogeneous solution. Carbohyd. Polym.2012, 90, 1445–1451.

    Article  CAS  Google Scholar 

  36. Zhang, J. F.; Yang, D. Z.; Xu, F.; Zhang, Z. P.; Yin, R. X.; Nie, J. Electrospun core-shell structure nanofibers from homogeneous solution of poly(ethylene oxide)/chitosan. Macromolecules2009, 42, 5278–5284.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Key Research and Development Program of China (Nos. 2017YFB0309301 and 2017YFB0309302) and the Natural Science Foundation of Shanghai, China (No. 17ZR1407200). We are thankful to Dr. Feirong Gong for his help in this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tao Chen.

Electronic Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, T., Zhong, GC., Zhang, YT. et al. Bio-based and Biodegradable Electrospun Fibers Composed of Poly(L-lactide) and Polyamide 4. Chin J Polym Sci 38, 53–62 (2020). https://doi.org/10.1007/s10118-019-2299-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10118-019-2299-8

Keywords

Navigation