Skip to main content
Log in

Recent Progress in Fluorescent Vesicles with Aggregation-induced Emission

  • Review
  • Published:
Chinese Journal of Polymer Science Aims and scope Submit manuscript

Abstract

Fluorescent vesicles have recently attracted increasing attention because of their potential applications in bioimaging, diagnostics, and theranostics, for example, in vivo study of the delivery and the distribution of active substances. However, fluorescent vesicles containing conventional organic dyes often suffer from the problem of aggregation-caused quenching (ACQ) of fluorescence. Fluorescent vesicles working with aggregation-induced emission (AIE) offer an extraordinary tool to tackle the ACQ issue, showing advantages such as high emission efficiency, superior photophysical stability, low background interference, and high sensitivity. AIE fluorescent vesicles represent a new type of fluorescent and functional nanomaterials. In this review, we summarize the recent advances in the development of AIE fluorescent vesicles. The review is organized according to the chemical structures and architectures of the amphiphilic molecules that constitute the AIE vesicles, i.e., small-molecule amphiphiles, amphiphilic polymers, and amphiphilic supramolecules and supramacromolecules. The studies on the applications of these AIE vesicles as stimuli-responsive vesicles, fluorescence-guided drug release carriers, cell imaging tools, and fluorescent materials based on fluorescence resonance energy transfer (FRET) are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hocine, S.; Li, M. H. Thermoresponsive self-assembled polymer colloids in water. Soft Matter 2013, 9, 5839–5861.

    Article  CAS  Google Scholar 

  2. Blanazs, A.; Armes, S. P.; Ryan, A. J. Self-assembled block copolymer aggregates: From micelles to vesicles and their biological applications. Macromol. Rapid Commun. 2009, 30, 267–77.

    Article  CAS  PubMed  Google Scholar 

  3. Karami, Z.; Hamidi, M. Cubosomes: Remarkable drug delivery potential. Drug Discov. Today 2016, 21, 789–801.

    Article  CAS  PubMed  Google Scholar 

  4. Percec, V.; Wilson, D. A.; Leowanawat, P.; Wilson, C. J.; Hughes, A. D.; Kaucher, M. S.; Hammer, D. A.; Levine, D. H.; Kim, A. J.; Bates, F. S.; Davis, K. P.; Lodge, T. P.; Klein, M. L.; DeVane, R. H.; Aqad, E.; Rosen, B. M.; Argintaru, A. O.; Sienkowska, M. J.; Rissanen, K.; Nummelin, S.; Ropponen, J. Self-assembly of Janus dendrimers into uniform dendrimersomes and other complex architectures. Science 2010, 328, 1009–1014.

    Article  CAS  PubMed  Google Scholar 

  5. Lombardo, D.; Kiselev, M. A.; Magazù, S.; Calandra, P. Amphiphiles self-Assembly: Basic concepts and future perspectives of supramolecular approaches. Adv. Cond. Matter Phys. 2015, 2015, 1–22.

    Article  CAS  Google Scholar 

  6. Discher, D. E.; Ahmed, F. Polymersomes. Annu. Rev. Biomed. Eng. 2006, 8, 323–341.

    Article  CAS  PubMed  Google Scholar 

  7. Ahmed, F.; Pakunlu, R. I.; Brannan, A.; Bates, F.; Minko, T.; Discher, D. E. Biodegradable polymersomes loaded with both paclitaxel and doxorubicin permeate and shrink tumors, inducing apoptosis in proportion to accumulated drug. J. Control. Release 2006, 116, 150–158.

    Article  CAS  PubMed  Google Scholar 

  8. Eloy, J. O.; Claro de Souza, M.; Petrilli, R.; Barcellos, J. P. A.; Lee, R. J.; Marchetti, J. M. Liposomes as carriers of hydrophilic small molecule drugs: Strategies to enhance encapsulation and delivery. Colloids Surf. B 2014, 123, 345–363.

    Article  CAS  Google Scholar 

  9. Antonietti, M.; Förster, S. Vesicles and liposomes: A self-assembly principle beyond lipids. Adv. Mater. 2003, 15, 1323–1333.

    Article  CAS  Google Scholar 

  10. Broz, P.; Benito, S. M.; Saw, C.; Burger, P.; Heider, H.; Pfisterer, M.; Marsch, S.; Meier, W.; Hunziker, P. Cell targeting by a generic receptor-targeted polymer nanocontainer platform. J. Control. Release 2005, 102, 475–488.

    Article  CAS  PubMed  Google Scholar 

  11. Lin, Y. S.; Lee, M. Y.; Yang, C. H.; Huang, K. S. Active targeted drug delivery for microbes using nano-carriers. Curr. Top. Med. Chem. 2015, 15, 1525–1531.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. De Oliveira, H.; Thevenot, J.; Lecommandoux, S. Smart polymersomes for therapy and diagnosis: Fast progress toward multifunctional biomimetic nanomedicines. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 2012, 4, 525–546.

    Article  CAS  PubMed  Google Scholar 

  13. Deng, Y.; Ling, J.; Li, M. H. Physical stimuli-responsive liposomes and polymersomes as drug delivery vehicles based on phase transitions in the membrane. Nanoscale 2018, 10, 6781–6800.

    Article  CAS  PubMed  Google Scholar 

  14. Li, M. H.; Keller, P. Stimuli-responsive polymer vesicles. Soft Matter 2009, 5, 927–937.

    Article  CAS  Google Scholar 

  15. Mabrouk, E.; Cuvelier, D.; Brochard-Wyart, F.; Nassoy, P.; Li, M. H. Bursting of sensitive polymersomes induced by curling. Proc. Natl. Acad. Sci 2009, 106, 7294–7298.

    Article  PubMed  Google Scholar 

  16. Meng, F. H.; Zhong, Z. Y.; Feijen, J. Stimuli-responsive polymersomes for programmed drug delivery. Biomacromolecules 2009, 10, 197–209.

    Article  CAS  PubMed  Google Scholar 

  17. Du, J.; O’Reilly, R. K. Advances and challenges in smart and functional polymer vesicles. Soft Matter 2009, 3544–3561.

    Google Scholar 

  18. Smart, T.; Lomas, H.; Massignani, M.; Flores-Merino, M. V.; Perez, L. R.; Battaglia, G. Block copolymer nanostructures. Nano Today 2008, 3, 38–46.

    Article  CAS  Google Scholar 

  19. Discher, B. M.; Bermudez, H.; Hammer, D. A.; Discher, D. E.; Won, Y. Y.; Bates, F. S.. Cross-linked polymersome membranes: Vesicles with broadly adjustable properties. J. Phys. Chem. B 2002, 106, 2848–2854.

    Article  CAS  Google Scholar 

  20. Kikuchi, K. Design, synthesis and biological application of chemical probes for bio-imaging. Chem. Soc. Rev. 2010, 39, 2048–2053.

    Article  CAS  PubMed  Google Scholar 

  21. Haugland, R. P. in The molecular probes handbook: A guide to fluorescent probes and labeling technologies. Life Technologies: Carlsbad, CA, 2010.

    Google Scholar 

  22. Liang, J.; Tang, B. Z.; Liu, B. Specific light-up bioprobes based on AIEgen conjugates. Chem. Soc. Rev. 2015, 44, 2798–2811.

    Article  CAS  PubMed  Google Scholar 

  23. Zhang, X.; Zhang, X.; Tao, L.; Chi, Z.; Xu, J.; Wei, Y. Aggregation induced emission-based fluorescent nanoparticles: Fabrication methodologies and biomedical applications. J. Mater. Chem. B 2014, 2, 4398–4414.

    Article  CAS  Google Scholar 

  24. Yan, L.; Zhang, Y.; Xu, B.; Tian, W. Fluorescent nanoparticles based on AIE fluorogens for bioimaging. Nanoscale 2016, 8, 2471–2487.

    Article  CAS  PubMed  Google Scholar 

  25. Li, K.; Liu, B. Polymer-encapsulated organic nanoparticles for fluorescence and photoacoustic imaging. Chem. Soc. Rev. 2014, 43, 6570–6597.

    Article  CAS  PubMed  Google Scholar 

  26. Chen, M.; Yin, M. Design and development of fluorescent nanostructures for bioimaging. Prog. Polym. Sci. 2014, 39, 365–395.

    Article  CAS  Google Scholar 

  27. Ghoroghchian, P. P.; Frail, P. R.; Susumu, K.; Blessington, D.; Brannan, A. K.; Bates, F. S.; Chance, B.; Hammer, D. A.; Therien, M. J. Near-infrared-emissive polymersomes: Self-assembled soft matter for in vivo optical imaging. Proc. Natl. Acad. Sci. 2005, 102, 2922–2927.

    Article  CAS  PubMed  Google Scholar 

  28. Kamat, N. P.; Liao, Z.; Moses, L. E.; Rawson, J.; Therien, M. J.; Dmochowski, I. J.; Hammer, D. A. Sensing membrane stress with near IR-emissive porphyrins. Proc. Natl. Acad. Sci. 2011, 108, 13984–13989.

    Article  PubMed  Google Scholar 

  29. Duncan, T. V.; Ghoroghchian, P. P.; Rubtsov, I. V.; Hammer, D. A.; Therien, M. J. Ultrafast excited-state dynamics of nanoscale near-infrared emissive polymersomes. J. Am. Chem. Soc. 2008, 130, 9773–9784.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Christian, N. A.; Benencia, F.; Milone, M. C.; Li, G.; Frail, P. R.; Therien, M. J.; Coukos, G.; Hammer, D. A. In vivo dendritic cell tracking using fluorescence lifetime imaging and near-infrared-emissive polymersomes. Mol. Imaging Biol. 2009, 11, 167–177.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Birks, J. B. in Photophysics of aromatic molecules. Wiley, New York, 1970.

    Google Scholar 

  32. Luo, J.; Xie, Z.; Lam, J. W. Y.; Cheng, L.; Chen, H.; Qiu, C.; Kwok, H. S.; Zhan, X.; Liu, Y.; Zhu, D.; Tang, B. Z. Aggregation-induced emission of 1-methyl-1,2,3,4,5-pentaphenylsilole. Chem. Commun. 2001, 0, 1740–1741.

    Article  CAS  Google Scholar 

  33. Mei, J.; Leung, N. L.; Kwok, R. T.; Lam, J. W.; Tang, B. Z. Aggregation-induced emission: Together we shine, united we soar! Chem. Rev. 2015, 115, 11718–11940.

    Article  CAS  PubMed  Google Scholar 

  34. Mei, J.; Hong, Y.; Lam, J. W. Y.; Qin, A.; Tang, Y.; Tang, B. Z. Aggregation-induced emission: The whole is more brilliant than the parts. Adv. Mater. 2014, 26, 5429–5479.

    Article  CAS  PubMed  Google Scholar 

  35. Ding, D.; Li, K.; Liu, B.; Tang, B. Z. Bioprobes based on AIE fluorogens. Acc. Chem. Res. 2013, 46, 2441–2453.

    Article  CAS  PubMed  Google Scholar 

  36. Huang, J.; Yu, Y.; Wang, L.; Wang, X.; Gu, Z.; Zhang, S. Tetraphenylethylene-induced cross-linked vesicles with tunable luminescence and controllable stability. ACS Appl. Mater. Interfaces 2017, 9, 29030–29037.

    Article  CAS  PubMed  Google Scholar 

  37. Nonappa; Maitra, U. Unlocking the potential of bile acids in synthesis, supramolecular/materials chemistry and nanoscience. Org. Biomol. Chem. 2008, 6, 657–669.

    Article  CAS  PubMed  Google Scholar 

  38. Zhang, M.; Yin, X.; Tian, T.; Liang, Y.; Li, W.; Lan, Y.; Li, J.; Zhou, M.; Ju, Y.; Li, G. AIE-induced fluorescent vesicles containing amphiphilic binding pockets and the FRET triggered by host-guest chemistry. Chem. Commun. 2015, 51, 10210–10213.

    Article  CAS  Google Scholar 

  39. Dan, N., in Nanostructures for drug delivery, Core-shell drug carriers: Liposomes, polymersomes, and niosomes. Elsevier, 2017, pp 63–105.

    Book  Google Scholar 

  40. Wang, X.; Yang, Y.; Zhuang, Y.; Gao, P.; Yang, F.; Shen, H.; Guo, H.; Wu, D. Fabrication of pH-responsive nanoparticles with an AIE feature for imaging intracellular drug delivery. Biomacromolecules 2016, 17, 2920–2929.

    Article  CAS  PubMed  Google Scholar 

  41. Wang, X.; Yang, Y.; Zuo, Y.; Yang, F.; Shen, H.; Wu, D. Facile creation of FRET systems from a pH-responsive AIE fluorescent vesicle. Chem. Commun. 2016, 52, 5320–5323.

    Article  CAS  Google Scholar 

  42. Wang, X.; Yang, Y.; Yang, F.; Shen, H.; Wu, D. pH-triggered decomposition of polymeric fluorescent vesicles to induce growth of tetraphenylethylene nanoparticles for long-term live cell imaging. Polymer 2017, 118, 75–84.

    Article  CAS  Google Scholar 

  43. Li, G.; Du, F.; Wang, H.; Bai, R. Synthesis and self-assembly of carbazole-based amphiphilic triblock copolymers with aggregation-induced emission enhancement. React. Funct. Polym. 2014, 75, 75–80.

    Article  CAS  Google Scholar 

  44. Ma, C. P.; Chi, Z. G.; Zhou, X.; Zhang, Y.; Liu, S. W.; Xu, J. R. AIE vesicles consisting of tetraphenylethylene-based amphiphilic diblock copolymer with a poly(N-isopropylacrylamide) sequence. J. Control. Release 2013, 172, e95.

    Article  Google Scholar 

  45. Zhao, Y.; Wu, Y.; Yan, G.; Zhang, K. Aggregation-induced emission block copolymers based on ring-opening metathesis polymerization. RSC Adv. 2014, 4, 51194–51200.

    Article  CAS  Google Scholar 

  46. Zhao, Y.; Zhu, W.; Ren, L.; Zhang, K. Aggregation-induced emission polymer nanoparticles with pH-responsive fluorescence. Polym. Chem. 2016, 7, 5386–5395.

    Article  CAS  Google Scholar 

  47. Zhang, N.; Chen, H.; Fan, Y.; Zhou, L.; Trepout, S.; Guo, J.; Li, M. H. Fluorescent polymersomes with aggregation-induced emission. ACS Nano 2018, 12, 4025–4035.

    Article  CAS  PubMed  Google Scholar 

  48. Liu, Q.; Xia, Q.; Wang, S.; Li, B. S.; Tang, B. Z. In situ visualizable self-assembly, aggregation-induced emission and circularly polarized luminescence of tetraphenylethene and alaninebased chiral polytriazole. J. Mater. Chem. C 2018, 6, 4807–4816.

    Article  CAS  Google Scholar 

  49. Wang, C.; Wang, Z. Q.; Zhang, X. Amphiphilic building blocks for self-assembly: From amphiphiles to supra-amphiphiles. Acc. Chem. Res. 2012, 45, 608–618.

    Article  CAS  PubMed  Google Scholar 

  50. Zhang, X.; Wang, C. Supramolecular amphiphiles. Chem. Soc. Rev. 2011, 40, 94–101.

    Article  CAS  PubMed  Google Scholar 

  51. Chen, L. J.; Ren, Y. Y.; Wu, N. W.; Sun, B.; Ma, J. Q.; Zhang, L.; Tan, H.; Liu, M.; Li, X.; Yang, H. B. Hierarchical self-assembly of discrete organoplatinum(II) metallacycles with polysaccharide via electrostatic interactions and their application for heparin detection. J. Am. Chem. Soc. 2015, 137, 11725–11735.

    Article  CAS  PubMed  Google Scholar 

  52. Zheng, W.; Yang, G.; Jiang, S. T.; Shao, N.; Yin, G. Q.; Xu, L.; Li, X.; Chen, G.; Yang, H. B. A tetraphenylethylene (TPE)-based supra-amphiphilic organoplatinum(II) metallacycle and its self-assembly behaviour. Mater. Chem. Front. 2017, 1, 1823–1828.

    Article  CAS  Google Scholar 

  53. Zhang, C. W.; Ou, B.; Jiang, S. T.; Yin, G. Q.; Chen, L. J.; Xu, L.; Li, X.; Yang, H. B. Cross-linked AIE supramolecular polymer gels with multiple stimuli-responsive behaviours constructed by hierarchical self-assembly. Polym. Chem. 2018, 9, 2021–2030.

    Article  CAS  Google Scholar 

  54. Chi, X.; Zhang, H.; Vargas-Zuniga, G. I.; Peters, G. M.; Sessler, J. L. A Dual-responsive bola-type supra-amphiphile constructed from a water-soluble calix[4] pyrrole and a tetraphenylethene-containing pyridine bis-N-oxide. J. Am. Chem. Soc. 2016, 138, 5829–5832.

    Article  CAS  PubMed  Google Scholar 

  55. Li, J.; Shi, K.; Drechsler, M.; Tang, B. Z.; Huang, J.; Yan, Y. A supramolecular fluorescent vesicle based on a coordinating aggregation induced emission amphiphile: Insight into the role of electrical charge in cancer cell division. Chem. Commun. 2016, 52, 12466–12469.

    Article  CAS  Google Scholar 

  56. Li, J.; Liu, K.; Chen, H.; Li, R.; Drechsler, M.; Bai, F.; Huang, J.; Tang, B. Z.; Yan, Y. Functional built-in template directed siliceous fluorescent supramolecular vesicles as diagnostics. ACS Appl. Mater. Interfaces 2017, 9, 21706–21714.

    Article  CAS  PubMed  Google Scholar 

  57. Li, J.; Liu, K.; Han, Y.; Tang, B. Z.; Huang, J.; Yan, Y. Fabrication of propeller-shaped supra-amphiphile for construction of enzyme-responsive fluorescent vesicles. ACS Appl. Mater. Interfaces 2016, 8, 27987–27995.

    Article  CAS  PubMed  Google Scholar 

  58. Wei, Y.; Wang, L.; Huang, J.; Zhao, J.; Yan, Y. Multifunctional metallo-organic vesicles displaying aggregation-Induced emission: Two-photon cell-Imaging, drug delivery, and specific detection of zinc ion. ACS Appl. Nano Mater. 2018, 1, 1819–1827.

    Article  CAS  Google Scholar 

  59. Kong, Q.; Zhuang, W.; Li, G.; Jiang, Q.; Wang, Y. Cation-anion interaction-directed formation of functional vesicles and their biological application for nucleus-specific imaging. New J. Chem. 2018, 42, 9187–9192.

    Article  CAS  Google Scholar 

  60. He, L.; Liu, X.; Liang, J.; Cong, Y.; Weng, Z.; Bu, W. Fluorescence responsive conjugated poly(tetraphenylethene) and its morphological transition from micelle to vesicle. Chem. Commun. 2015, 51, 7148–7151.

    Article  CAS  Google Scholar 

  61. Ji, X. F.; Li, Y.; Wang, H.; Zhao, R.; Tang, G. P.; Huang, F. H. Facile construction of fluorescent polymeric aggregates with various morphologies by self-assembly of supramolecular amphiphilic graft copolymers. Polym. Chem. 2015, 6, 5021–5025.

    Article  CAS  Google Scholar 

  62. Shen, J.; Pang, J.; Xu, G.; Xin, X.; Yang, Y.; Luan, X.; Yuan, S. Smart stimuli-responsive fluorescent vesicular sensor based on inclusion complexation of cyclodextrins with Tyloxapol. RSC Adv. 2016, 6, 11683–11690.

    Article  CAS  Google Scholar 

  63. Shen, J.; Wang, Z.; Sun, D.; Xia, C.; Yuan, S.; Sun, P.; Xin, X. pH-responsive nanovesicles with enhanced emission co-assembled by Ag(I) nanoclusters and polyethyleneimine as a superior sensor for Al3+. ACS Appl. Mater. Interfaces 2018, 10, 3955–3963.

    Article  CAS  PubMed  Google Scholar 

  64. Zhang, X.; Rehm, S.; Safont-Sempere, M. M.; Würthner, F. Vesicular perylene dye nanocapsules as supramolecular fluorescent pH sensor systems. Nat. Chem. 2009, 1, 623–629.

    Article  CAS  PubMed  Google Scholar 

  65. Sapsford, K. E.; Berti, L.; Medintz, I. L. Fluorescence resonance energy transfer: Concepts, applications and advances. Minerva. Biotecnol. 2004, 16, 247–273.

    Google Scholar 

Download references

Acknowledgments

This work was financially supported by the French National Research Agency (No. ANR-16-CE29-0028) and the National Natural Science Foundation of China (Nos. 21604001 and 21528402).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Min-Hui Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, H., Li, MH. Recent Progress in Fluorescent Vesicles with Aggregation-induced Emission. Chin J Polym Sci 37, 352–371 (2019). https://doi.org/10.1007/s10118-019-2204-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10118-019-2204-5

Keywords

Navigation