Skip to main content
Log in

Tumor Photothermal Therapy Employing Photothermal Inorganic Nanoparticles/Polymers Nanocomposites

  • Review
  • Published:
Chinese Journal of Polymer Science Aims and scope Submit manuscript

Abstract

The past decade has witnessed the booming developments of the new methodologies for noninvasive tumor treatment, which are considered to overcome the current limitation of low treating efficacy, high risk of tumor recurrence, and severe side effects. Among a variety of novel therapeutic methods, photothermal therapy, employing nanometer-sized agents as the heat generators under near-infrared (NIR) light irradiation to ablate tumors, gives new insights into noninvasive tumor treatments with minimal side effects. Although many nanomaterials possess photothermal effects, inorganic nanoparticles and polymers are the most competitive alternatives considering the high photothermal performance and good biocompatibility. In this review, we summarized the tumor photothermal therapy using the nanocomposites composed of inorganic nanoparticles and polymers. Extinction coefficient and photothermal transduction efficiency are the two main factors to evaluate the photothermal performance of nanocomposites in vitro. Considering the improvement in the stability, biocompatibility, blood circulation half-life, and tumor uptake rate after polymer coating, these nanocomposites should be designed with inorganic core and polymer shell, thus improving the tumor treating efficacy in vivo. Such structure fulfills the requirements of high photothermal performance and good bio-security, making it possible to achieve complete ablation for shallow and small tumors under the safe limitation of NIR laser power density.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Gong, P.; Liang, S.; Carlton, E. J.; Jiang, Q.; Wu, J.; Wang, L.; Remals, J. V. Urbanisation and health in China. Lancet 2012, 379, 843–852.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Chen, W. Cancer incidence and mortality in China, 2013. Cancer Lett. 2017, 401, 63–71.

    Article  CAS  PubMed  Google Scholar 

  3. Choueiri, T. K.; Motzer, R. J. Systemic therapy for metastatic renal-cell carcinoma. N. Engl. J. Med. 2017, 376, 354–366.

    Article  CAS  PubMed  Google Scholar 

  4. Peer, D.; Karp, J. M.; Hong, S.; Farokhzad, O. C.; Margalit, R.; Langer, R. Nanocarriers as an emerging platform for cancer therapy. Nat. Nanotechnol. 2007, 2, 751–760.

    Article  CAS  PubMed  Google Scholar 

  5. Fang, R. H.; Kroll, A. V.; Gao, W.; Zhang, L. Cell membrane coating nanotechnology. Adv. Mater. 2018, 30, 1706759.

    Article  CAS  Google Scholar 

  6. Wang, Z.; Liu, W.; Shi, J.; Chen, N.; Fan, C. Nanoscale delivery systems for cancer immunotherapy. Mater. Horiz. 2018, 5, 344–362.

    Article  CAS  Google Scholar 

  7. Vankayala, R.; Hwang, K. C. Near-infrared-light-activatable nanomaterials-mediated phototheranostic nanomedicines: an emerging paradigm for cancer treatment. Adv. Mater. 2018, 30, 1706320.

    Article  CAS  Google Scholar 

  8. Xu, L.; Mou, F.; Gong, H.; Luo, M.; Guan, J. Light-driven micro/nanomotors: From fundamentals to applications. Chem. Soc. Rev. 2017, 46, 6905–6926.

    Article  CAS  PubMed  Google Scholar 

  9. Gai, S.; Yang, G.; Yang, P.; He, F.; Lin, J.; Jin, D.; Xing, B. Recent advances in functional nanomaterials for lighttriggered cancer therapy. Nano Today 2018, 19, 146–187.

    Article  CAS  Google Scholar 

  10. Zhao, J.; Zhong, D.; Zhou, S. NIR-I-to-NIR-II fluorescent nanomaterials for biomedical imaging and cancer therapy. J. Mater. Chem. B 2018, 6, 349–365.

    Article  CAS  PubMed  Google Scholar 

  11. Liu, B.; Li, C.; Cheng, Z.; Hou, Z.; Huang, S.; Lin, J. Functional nanomaterials for near-infrared-triggered cancer therapy. Biomater. Sci. 2016, 4, 890–909.

    Article  CAS  PubMed  Google Scholar 

  12. Zhang, P.; Hu, C.; Ran, W.; Meng, J.; Yin, Q.; Li, Y. Recent progress in light-triggered nanotheranostics for cancer treatment. Theranostics 2016, 6, 948–968.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Kang, H.; Mintri, S.; Menon, A. V.; Lee, H. Y.; Choi, H. S.; Kim, J. Pharmacokinetics, pharmacodynamics and toxicology of theranostic nanoparticles. Nanoscale 2015, 7, 18848–18862.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Jung, H. S.; Verwilst, P.; Sharma, A.; Shin, J.; Sessler, J. L.; Kim, J. S. Organic molecule-based photothermal agents: An expanding photothermal therapy universe. Chem. Soc. Rev. 2018, 47, 2280–2297.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Wu, M. X.; Yang, Y. W. Metal-organic framework (MOF)-based drug/cargo delivery and cancer therapy. Adv. Mater. 2017, 29, 1606134.

    Article  CAS  Google Scholar 

  16. Yang, X.; Yang, M.; Pang, B.; Vara, M.; Xia, Y. Gold nanomaterials at work in biomedicine. Chem. Rev. 2015, 115, 10410–10488.

    Article  CAS  PubMed  Google Scholar 

  17. Spyratou, E.; Makropoulou, M.; Efstathopoulos, E. P.; Georgakilas, A. G.; Sihver, L. Recent advances in cancer therapy based on dual mode gold nanoparticles. Cancers 2017, 9, 173.

    Article  CAS  PubMed Central  Google Scholar 

  18. Gu, Z.; Zhu, S.; Yan, L.; Zhao, F.; Zhao, Y. Graphene-based smart platforms for combined cancer therapy. Adv. Mater. 2018, 1800662.

    Google Scholar 

  19. Wang, H.; Chen, Q.; Zhou, S. Carbon-based hybrid nanogels: a synergistic nanoplatform for combined biosensing, bioimaging, and responsive drug delivery. Chem. Soc. Rev. 2018, 47, 4198–4232.

    Article  CAS  PubMed  Google Scholar 

  20. Hassan, M.; Gomes, V. G.; Dehghani, A.; Ardekani, S. M. Engineering carbon quantum dots for photomediated theranostics. Nano Res. 2018, 11, 1–41.

    Article  CAS  Google Scholar 

  21. Cai, Y.; Si, W.; Huang, W.; Chen, P.; Shao, J.; Dong, X. Organic dye based nanoparticles for cancer phototheranostics. Small 2018, 14, 1704247.

    Article  CAS  Google Scholar 

  22. Wang, H.; Li, X.; Tse, B. W. C.; Yang, H.; Thorling, C. A.; Liu, Y.; Touraud, M.; Chouane, J. B.; Liu, X.; Roberts, M. S.; Liang, X. Indocyanine green-incorporating nanoparticles for cancer theranostics. Theranostics 2018, 8, 1227–1242.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Liang, X.; Li, Y.; Li, X.; Jing, L.; Deng, Z.; Yue, X.; Li, C.; Dai, Z. PEGylated polypyrrole nanoparticles conjugating gadolinium chelates for dual-modal MRI/photoacoustic imaging guided photothermal therapy of cancer. Adv. Funct. Mater. 2015, 25, 1451–1462.

    Article  CAS  Google Scholar 

  24. Song, X.; Gong, H.; Yin, S.; Cheng, L.; Wang, C.; Li, Z.; Li, Y.; Wang, X.; Liu, G.; Liu, Z. Ultra-small iron oxide doped polypyrrole nanoparticles for in vivo multimodal imaging guided photothermal therapy. Adv. Funct. Mater. 2014, 24, 1194–1201.

    Article  CAS  Google Scholar 

  25. Yang, Y.; Aw, J.; Xing, B. Nanostructures for NIR light-controlled therapies. Nanoscale 2017, 9, 3698–3718.

    Article  CAS  PubMed  Google Scholar 

  26. Lin, M.; Wang, D. D., Liu, S. W., Zhou, D.; Zhang, H.; Liu, C.; Sun, H. C. Construction of nanoparticle/polymer composite photothermal nanoplatforms and therapeutic applications. Acta Polymerica Sinica (in Chinese) 2015, 133–146.

    Google Scholar 

  27. Lin, M.; Guo, C.; Li, J.; Zhou, D.; Liu, K.; Zhang, X.; Xu, T.; Zhang, H.; Wang, L.; Yang, B. Polypyrrole-coated chainlike gold nanoparticle architectures with the 808 nm photothermal transduction efficiency up to 70%. ACS Appl. Mater. Interfaces 2014, 6, 5860–5868.

    Article  CAS  PubMed  Google Scholar 

  28. Roper, D. K.; Ahn, W.; Hoepfner, M. Microscale heat transfer transduced by surface plasmon resonant gold nanoparticles. J. Phys. Chem. C 2007, 111, 3636–3641.

    Article  CAS  Google Scholar 

  29. Dykman, L. A.; Khlebtsov, N. G. Multifunctional gold-based nanocomposites for theranostics. Biomaterials 2016, 108, 13–34.

    Article  CAS  PubMed  Google Scholar 

  30. Abadeer, N. S.; Murphy, C. J. Recent progress in cancer thermal therapy using gold nanoparticles. J. Phys. Chem. C 2016, 120, 4691–4716.

    Article  CAS  Google Scholar 

  31. Zhu, S.; Gong, L.; Xie, J.; Gu, Z.; Zhao, Y. Design, synthesis, and surface modification of materials based on transition-metal dichalcogenides for biomedical applications. Small Methods 2017, 1, 1700220.

    Article  CAS  Google Scholar 

  32. Li, X.; Shan, J.; Zhang, W.; Su, S.; Yuwen, L.; Wang, L. Recent advances in synthesis and biomedical applications of two-dimensional transition metal dichalcogenide nanosheets. Small 2017, 13, 1602660.

    Article  CAS  Google Scholar 

  33. Estelrich, J.; Busquets, M. A. Iron oxide nanoparticles in photothermal therapy. Molecules 2018, 23, 1567.

    Article  CAS  PubMed Central  Google Scholar 

  34. Xie, X.; Li, Z.; Zhang, Y.; Guo, S.; Pendharkar, A. I.; Lu, M.; Huang, L.; Huang, W.; Han, G. Emerging ≈ 800 nm excited lanthanide-doped upconversion nanoparticles. Small 2017, 13, 1602843.

    Article  CAS  Google Scholar 

  35. Sun, L.; Wei, R.; Feng, J.; Zhang, H. Tailored lanthanidedoped upconversion nanoparticles and their promising bioapplication prospects. Coord. Chem. Rev. 2018, 364, 10–32.

    Article  CAS  Google Scholar 

  36. Jabeen, F.; Najam-ul-Haq, M.; Javeed, R.; Huck, C. W.; Bonn, G. K. Au-nanomaterials as a superior choice for near-infrared photothermal therapy. Molecules 2014, 19, 20580–20593.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Cheng, L.; Wang, C.; Feng, L.; Yang, K.; Liu, Z. Functional nanomaterials for phototherapies of cancer. Chem. Rev. 2014, 114, 10869–10939.

    Article  CAS  PubMed  Google Scholar 

  38. Dickerson, E. B.; Dreaden, E. C.; Huang, X.; El-Sayed, I. H.; Chu, H.; Pushpanketh, S.; McDonald, J. F.; El-Sayed, M. A. Gold nanorod assisted near-infrared plasmonic photothermal therapy (PPTT) of squamous cell carcinoma in mice. Cancer Lett. 2008, 269, 57–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. An, L.; Wang, Y.; Tian, Q.; Yang, S. Small gold nanorods: Recent advances in synthesis, biological imaging, and cancer therapy. Materials 2017, 10, 1372.

    Article  CAS  PubMed Central  Google Scholar 

  40. Dong, L.; Li, Y.; Li, Z.; Xu, N.; Liu, P.; Du, H.; Zhang, Y.; Huang, Y.; Zhu, J.; Ren, G.; Xie, J.; Wang, K.; Zhou, Y.; Shen, C.; Zhu, J.; Tao, J. Au nanocage-strengthened dissolving microneedles for chemo-photothermal combined therapy of superficial skin tumors. ACS Appl. Mater. Interfaces 2018, 10, 9247–9256.

    Article  CAS  PubMed  Google Scholar 

  41. Sun, H.; Su, J.; Meng, Q.; Yin, Q.; Chen, L.; Gu, W.; Zhang, Z.; Yu, H.; Zhang, P.; Wang, S.; Li, Y. Cancer cell membrane-coated gold nanocages with hyperthermia-triggered drug release and homotypic target inhibit growth and metastasis of breast cancer. Adv. Funct. Mater. 2017, 27, 1604300.

    Article  CAS  Google Scholar 

  42. Yang, D. P.; Liu, X.; Teng, C. P.; Owh, C.; Win, K. Y.; Lin, M.; Loh, X. J.; Wu, Y. L.; Li, Z.; Ye, E. Unexpected formation of gold nanoflowers by a green synthesis method as agents for a safe and effective photothermal therapy. Nanoscale 2017, 9, 15753–15759.

    Article  CAS  PubMed  Google Scholar 

  43. Li, S.; Zhang, L.; Wang, T.; Li, L.; Wang, C.; Su, Z. The facile synthesis of hollow Au nanoflowers for synergistic chemo-photothermal cancer therapy. Chem. Commun. 2015, 51, 14338–14341.

    Article  CAS  Google Scholar 

  44. Gobin, A. M.; Lee, M. H.; Halas, N. J.; James, W. D.; Drezek, R. A.; West, J. L. Near-infrared resonant nanoshells for combined optical imaging and photothermal cancer therapy. Nano Lett. 2007, 7, 1929.

    Article  CAS  PubMed  Google Scholar 

  45. Bi, C.; Chen, J.; Chen, Y.; Song, Y.; Li, A.; Mao, Z.; Gao, C.; Wang, D.; Möhwald, H.; Xia, H. Realizing a record photothermal conversion efficiency of spiky gold nanoparticles in the second near-infrared window by structure-based rational design. Chem. Mater. 2018, 30, 2709–2718.

    Article  CAS  Google Scholar 

  46. Zhao, Y.; Liu, W.; Tian, Y.; Yang, Z.; Wang, X.; Zhang, Y.; Tang, Y.; Zhao, S.; Wang, C.; Liu, Y.; Sun, J.; Teng, Z.; Wang, S.; Lu, G. Anti-EGFR peptide-conjugated triangular gold nanoplates for computed tomography/photoacoustic imaging-guided photothermal therapy of non-small cell lung cancer. ACS Appl. Mater. Interfaces 2018, 10, 16992–17003.

    Article  CAS  PubMed  Google Scholar 

  47. Wang, L.; Chen, Y.; Lin, H. Y.; Hou, Y. T.; Yang, L. C.; Sun, A. Y.; Liu, J. Y.; Chang, C. W.; Wan, D. Near-IR-absorbing gold nanoframes with enhanced physiological stability and improved biocompatibility for in vivo biomedical applications. ACS Appl. Mater. Interfaces 2017, 9, 3873–3884.

    Article  CAS  PubMed  Google Scholar 

  48. Yang, K.; Yang, G.; Chen, L.; Cheng, L.; Wang, L.; Ge, C.; Liu, Z. FeS nanoplates as a multifunctional nano-theranostic for magnetic resonance imaging guided photothermal therapy. Biomaterials 2015, 38, 1–9.

    Article  CAS  PubMed  Google Scholar 

  49. Miao, Z. H.; Lv, L. X.; Li, K.; Liu, P. Y.; Li, Z.; Yang, H.; Zhao, Q.; Chang, M.; Zhen, L.; Xu, C. Y. Liquid exfoliation of colloidal rhenium disulfide nanosheets as a multifunctional theranostic agent for in vivo photoacoustic/CT imaging and photothermal therapy. Small 2018, 14, 1703789.

    Article  CAS  Google Scholar 

  50. Bu, X.; Zhou, D.; Li, J.; Zhang, X.; Zhang, K.; Zhang, H.; Yang, B. Copper sulfide self-assembly architectures with improved photothermal performance. Langmuir 2014, 30, 1416–1423.

    Article  CAS  PubMed  Google Scholar 

  51. Sun, S.; Li, P.; Liang, S.; Yang, Z. Diversified copper sulfide (Cu2-xS) micro-/nanostructures: A comprehensive review on synthesis, modifications and applications. Nanoscale 2017, 9, 11357–11404.

    Article  CAS  PubMed  Google Scholar 

  52. Tian, Q.; Tang, M.; Sun, Y.; Zou, R.; Chen, Z.; Zhu, M.; Yang, S.; Wang, J.; Wang, J.; Hu, J. Hydrophilic flower-like CuS superstructures as an efficient 980 nm laser-driven photothermal agent for ablation of cancer cells. Adv. Mater. 2011, 23, 3542–3547.

    Article  CAS  PubMed  Google Scholar 

  53. Tian, Q.; Jiang, F.; Zou, R.; Liu, Q.; Chen, Z.; Zhu, M.; Yang, S.; Wang, J.; Wang, J.; Hu, J. Hydrophilic Cu9S5 nanocrystals: A photothermal agent with a 25.7% heat conversion efficiency for photothermal ablation of cancer cells in vivo. ACS Nano 2011, 5, 9761–9771.

    Article  CAS  PubMed  Google Scholar 

  54. Agrawal, A.; Cho, S. H.; Zandi, O.; Ghosh, S.; Johns, R. W.; Milliron, D. J. Localized surface plasmon resonance in semiconductor nanocrystals. Chem. Rev. 2018, 118, 3121–3207.

    Article  CAS  PubMed  Google Scholar 

  55. Liu, T.; Liu, Z. 2D MoS2 nanostructures for biomedical applications. Adv. Healthcare Mater. 2018, 7, 1701158.

    Article  CAS  Google Scholar 

  56. Chen, H.; Liu, T.; Su, Z.; Shang, L.; Wei, G. 2D transition metal dichalcogenide nanosheets for photo/thermo-based tumor imaging and therapy. Nanoscale Horiz. 2018, 3, 74–89.

    Article  CAS  PubMed  Google Scholar 

  57. Huang, X.; Zhang, W.; Guan, G.; Song, G.; Zou, R.; Hu, J. Design and functionalization of the NIR-responsive photothermal semiconductor nanomaterials for cancer theranostics. Acc. Chem. Res. 2017, 50, 2529–2538.

    Article  CAS  PubMed  Google Scholar 

  58. Hu, Y.; Mignani, S.; Majoral, J. P.; Shen, M.; Shi, X. Construction of iron oxide nanoparticle-based hybrid platforms for tumor imaging and therapy. Chem. Soc. Rev. 2018, 47, 1874–1900.

    Article  CAS  PubMed  Google Scholar 

  59. Shen, L.; Li, B.; Qiao, Y. Fe3O4 nanoparticles in targeted drug/gene delivery systems. Materials 2018, 11, 324.

    Article  CAS  PubMed Central  Google Scholar 

  60. Chen, Y.; Ye, D.; Wu, M.; Chen, H.; Zhang, L.; Shi, J.; Wang, L. Break-up of two-dimensional MnO2 nanosheets promotes ultrasensitive pH-triggered theranostics of cancer. Adv. Mater. 2014, 26, 7019–7026.

    Article  CAS  PubMed  Google Scholar 

  61. Manthiram, K.; Alivisatos, A. P. Tunable localized surface plasmon resonances in tungsten oxide nanocrystals. J. Am. Chem. Soc. 2012, 134, 3995–3998.

    Article  CAS  PubMed  Google Scholar 

  62. Chen, Z.; Wang, Q.; Wang, H.; Zhang, L.; Song, G.; Song, L.; Hu, J.; Wang, H.; Liu, J.; Zhu, M.; Zhao, D. Ultrathin PEGylated W18O49 nanowires as a new 980 nm-laser-driven photothermal agent for efficient ablation of cancer cells in vivo. Adv. Mater. 2013, 25, 2095–2100.

    Article  CAS  PubMed  Google Scholar 

  63. Fang, Z.; Jiao, S.; Wang, B.; Yin, W.; Liu, S.; Gao, R.; Liu, Z.; Pang, G.; Feng, S. Synthesis of reduced cubic phase WO3-x nanosheet by direct reduction of H2WO4·H2O. Materials Today Energy 2017, 6, 146–153.

    Article  Google Scholar 

  64. Wang, F.; Song, C.; Guo, W.; Ding, D.; Zhang, Q.; Gao, Y.; Yan, M.; Guo, C.; Liu, S. Urchin-like tungsten suboxide for photoacoustic imaging-guided photothermal and photodynamic cancer combination therapy. New J. Chem. 2017, 41, 14179–14187.

    Article  CAS  Google Scholar 

  65. Song, G.; Shen, J.; Jiang, F.; Hu, R.; Li, W.; An, L.; Zou, R.; Chen, Z.; Qin, Z.; Hu, J. Hydrophilic molybdenum oxide nanomaterials with controlled morphology and strong plasmonic absorption for photothermal ablation of cancer cells. ACS Appl. Mater. Interfaces 2014, 6, 3915–3922.

    Article  CAS  PubMed  Google Scholar 

  66. Fan, W.; Bu, W.; Shi, J. On the latest three-stage development of nanomedicines based on upconversion nanoparticles. Adv. Mater. 2016, 28, 3987–4011.

    Article  CAS  PubMed  Google Scholar 

  67. Cheng, L.; Yang, K.; Li, Y.; Chen, J.; Wang, C.; Shao, M.; Lee, S. T.; Liu, Z. Facile preparation of multifunctional upconversion nanoprobes for multimodal imaging and dual-targeted photothermal therapy. Angew. Chem. Int. Ed. 2011, 50, 7385–7390.

    Article  CAS  Google Scholar 

  68. Sun, T.; Ai, F.; Zhu, G.; Wang, F. Upconversion in nanostructured materials: From optical tuning to biomedical applications. Chem. Asian J. 2018, 13, 373–385.

    Article  CAS  PubMed  Google Scholar 

  69. Huang, X.; Tang, S.; Yang, J.; Tan, Y.; Zheng, N. Etching growth under surface confinement: An effective strategy to prepare mesocrystalline Pd nanocorolla. J. Am. Chem. Soc. 2011, 133, 15946–15949.

    Article  CAS  PubMed  Google Scholar 

  70. Qin, Z.; Li, Y.; Gu, N. Progress in applications of Prussian blue nanoparticles in biomedicine. Adv. Healthcare Mater. 2018, 1800347.

    Google Scholar 

  71. Fu, G.; Liu, W.; Feng, S.; Yue, X. Prussian blue nanoparticles operate as a new generation of photothermal ablation agents for cancer therapy. Chem. Commun. 2012, 48, 11567–11569.

    Article  CAS  Google Scholar 

  72. Dacarro, G.; Taglietti, A.; Pallavicini, P. Prussian blue nanoparticles as a versatile photothermal tool. Molecules 2018, 23, 1414.

    Article  CAS  PubMed Central  Google Scholar 

  73. Nel, A.; Xia, T.; Mädler, L.; Li, N. Toxic potential of materials at the nanolevel. Science 2006, 311, 622–627.

    Article  CAS  PubMed  Google Scholar 

  74. Sharifi, S.; Behzadi, S.; Laurent, S.; Forrest, M. L.; Stroeve, P.; Mahmoudi, M. Toxicity of nanomaterials. Chem. Soc. Rev. 2012, 41, 2323–2343.

    Article  CAS  PubMed  Google Scholar 

  75. Zhang, Z.; Wang, J.; Nie, X.; Wen, T.; Ji, Y.; Wu, X.; Zhao, Y.; Chen, C. Near infrared laser-induced targeted cancer therapy using thermoresponsive polymer encapsulated gold nanorods. J. Am. Chem. Soc. 2014, 136, 7317–7326.

    Article  CAS  PubMed  Google Scholar 

  76. Xu, B.; Ju, Y.; Cui, Y.; Song, G.; Iwase, Y.; Hosoi, A.; Morita, Y. tLyP-1-conjugated Au-nanorod@SiO2core-shell nanoparticles for tumor-targeted drug delivery and photothermal therapy. Langmuir 2014, 30, 7789–7797.

    Article  CAS  PubMed  Google Scholar 

  77. Shi, Y.; Liu, M.; Deng, F.; Zeng, G.; Wan, Q.; Zhang, X.; Wei, Y. Recent progress and development on polymeric nanomaterials for photothermal therapy: A brief overview. J. Mater. Chem. B 2017, 5, 194–206.

    Article  CAS  PubMed  Google Scholar 

  78. Jin, Y.; Yang, X.; Tian, J. Targeted polypyrrole nanoparticles for the identification and treatment of hepatocellular carcinoma. Nanoscale 2018, 10, 9594–9601.

    Article  CAS  PubMed  Google Scholar 

  79. Wang, Y.; Xiao, Y.; Tang, R. Spindle-like polypyrrole hollow nanocapsules as multifunctional platforms for highly effective chemo-photothermal combination therapy of cancer cells in vivo. Chem. Eur. J. 2014, 20, 11826–11834.

    Article  CAS  PubMed  Google Scholar 

  80. Wang, M. Emerging multifunctional NIR photothermal therapy systems based on polypyrrole nanoparticles. Polymers 2016, 8, 373.

    Article  CAS  PubMed Central  Google Scholar 

  81. Zha, Z.; Yue, X.; Ren, Q.; Dai, Z. Uniform polypyrrole nanoparticles with high photothermal conversion efficiency for photothermal ablation of cancer cells. Adv. Mater. 2013, 25, 777–782.

    Article  CAS  PubMed  Google Scholar 

  82. Chen, M.; Fang, X.; Tang, S.; Zheng, N. Polypyrrole nanoparticles for high-performance in vivo near-infrared photothermal cancer therapy. Chem. Commun. 2012, 48, 8934–8936.

    Article  CAS  Google Scholar 

  83. Yang, J.; Choi, J.; Bang, D.; Kim, E.; Lim, E. K.; Park, H.; Suh, J. S.; Lee, K.; Yoo, K. H.; Kim, E. K.; Huh, Y. M.; Haam, S. Convertible organic nanoparticles for near-infrared photothermal ablation of cancer cells. Angew. Chem. Int. Ed. 2011, 50, 441–444.

    Article  CAS  Google Scholar 

  84. Mrówczynski, R. Polydopamine-based multifunctional (nano)materials for cancer therapy. ACS Appl. Mater. Interfaces 2018, 10, 7541–7561.

    Article  CAS  PubMed  Google Scholar 

  85. Liu, M.; Zeng, G.; Wang, K.; Wan, Q.; Tao, L.; Zhang, X.; Wei, Y. Recent developments in polydopamine: An emerging soft matter for surface modification and biomedical applications. Nanoscale 2016, 8, 16819–16840.

    Article  CAS  PubMed  Google Scholar 

  86. Yang, K.; Xu, H.; Cheng, L.; Sun, C.; Wang, J.; Liu, Z. In vitro and in vivo near-infrared photothermal therapy of cancer using polypyrrole organic nanoparticles. Adv. Mater. 2012, 24, 5586–5592.

    Article  CAS  PubMed  Google Scholar 

  87. Zhou, J.; Lu, Z.; Zhu, X.; Wang, X.; Liao, Y.; Ma, Z.; Li, F. NIR photothermal therapy using polyaniline nanoparticles. Biomaterials 2013, 34, 9584–9592.

    Article  CAS  PubMed  Google Scholar 

  88. Lin, M.; Wang, D.; Li, S.; Tang, Q.; Liu, S.; Ge, R.; Liu, Y.; Zhang, D.; Sun, H.; Zhang, H.; Yang, B. Cu(II) doped polyaniline nanoshuttles for multimodal tumor diagnosis and therapy. Biomaterials 2016, 104, 213–222.

    Article  CAS  PubMed  Google Scholar 

  89. Zhong, X.; Yang, K.; Dong, Z.; Yi, X.; Wang, Y.; Ge, C.; Zhao, Y.; Liu, Z. Polydopamine as a biocompatible multifunctional nanocarrier for combined radioisotope therapy and chemotherapy of cancer. Adv. Funct. Mater. 2015, 25, 7327–7336.

    Article  CAS  Google Scholar 

  90. Dong, Z.; Gong, H.; Gao, M.; Zhu, W.; Sun, X.; Feng, L.; Fu, T.; Li, Y.; Liu, Z. Polydopamine nanoparticles as a versatile molecular loading platform to enable imaging-guided cancer combination therapy. Theranostics 2016, 6, 1031–1042.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Ge, R.; Lin, M.; Li, X.; Liu, S.; Wang, W.; Li, S.; Zhang, X.; Liu, Y.; Liu, L.; Shi, F.; Sun, H.; Zhang, H.; Yang, B. Cu2+-loaded polydopamine nanoparticles for magnetic resonance imaging-guided pH-and near-infrared-light-stimulated thermochemotherapy. ACS Appl. Mater. Interfaces 2017, 9, 19706–19716.

    Article  CAS  PubMed  Google Scholar 

  92. Huang, X.; El-Sayed, I. H.; Qian, W.; El-Sayed, M. A. Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods. J. Am. Chem. Soc. 2006, 128, 2115–2120.

    Article  CAS  PubMed  Google Scholar 

  93. Tong, L.; Zhao, Y.; Huff, T. B.; Hansen, M. N.; Wei, A.; Cheng, J. X. Gold nanorods mediate tumor cell death by compromising membrane integrity. Adv. Mater. 2007, 19, 3136–3141.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Huang, X.; Peng, X.; Wang, Y.; Wang, Y.; Shin, D. M.; El-Sayed, M. A.; Nie, S. A reexamination of active and passive tumor targeting by using rod-shaped gold nanocrystals and covalently conjugated peptide ligands. ACS Nano 2010, 4, 5887–5896.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Wang, J.; Zhu, C.; Han, J.; Han, N.; Xi, J.; Fan, L.; Guo, R. Controllable synthesis of gold nanorod/conducting polymer core/shell hybrids toward in vitro and in vivo near-infrared photothermal therapy. ACS Appl. Mater. Interfaces 2018, 10, 12323–12330.

    Article  CAS  PubMed  Google Scholar 

  96. Liu, Z.; Ye, B.; Jin, M.; Chen, H.; Zhong, H.; Wang, X.; Guo, Z. Dye-free near-infrared surface-enhanced Raman scattering nanoprobes for bioimaging and high-performance photothermal cancer therapy. Nanoscale 2015, 7, 6754–6761.

    Article  CAS  PubMed  Google Scholar 

  97. Du, C.; Wang, A.; Fei, J.; Zhao, J.; Li, J. Polypyrrole-stabilized gold nanorods with enhanced photothermal effect towards two-photon photothermal therapy. J. Mater. Chem. B 2015, 3, 4539–4545.

    Article  CAS  PubMed  Google Scholar 

  98. Jiang, N.; Shao, L.; Wang, J. (Gold nanorod core)/(polyaniline shell) plasmonic switches with large plasmon shifts and modulation depths. Adv. Mater. 2014, 26, 3282–3289.

    Article  CAS  PubMed  Google Scholar 

  99. Hou, H.; Chen, L.; He, H.; Chen, L.; Zhao, Z.; Jin, Y. Finetuning the LSPR response of gold nanorod-polyaniline coreshell nanoparticles with high photothermal efficiency for cancer cell ablation. J. Mater. Chem. B 2015, 3, 5189–5196.

    Article  CAS  PubMed  Google Scholar 

  100. Liu, S.; Wang, L.; Lin, M.; Wang, D.; Song, Z.; Li, S.; Ge, R.; Zhang, X.; Liu, Y.; Li, Z.; Sun, H.; Yang, B.; Zhang, H. Cu(II)-doped polydopamine-coated gold nanorods for tumor theranostics. ACS Appl. Mater. Interfaces 2017, 9, 44293–44306.

    Article  CAS  PubMed  Google Scholar 

  101. Zhang, L.; Su, H.; Cai, J.; Cheng, D.; Ma, Y.; Zhang, J.; Zhou, C.; Liu, S.; Shi, H.; Zhang, Y.; Zhang, C. A multifunctional platform for tumor angiogenesis-targeted chemo-thermal therapy using polydopamine-coated gold nanorods. ACS Nano 2016, 10, 10404–10417.

    Article  CAS  PubMed  Google Scholar 

  102. Wang, S.; Zhao, X.; Wang, S.; Qian, J.; He, S. Biologically inspired polydopamine capped gold nanorods for drug delivery and light-mediated cancer therapy. ACS Appl. Mater. Interfaces 2016, 8, 24368–24384.

    Article  CAS  PubMed  Google Scholar 

  103. Lu, W.; Singh, A. K.; Khan, S. A.; Senapati, D.; Yu, H.; Ray, P. C. Gold nano-popcorn-based targeted diagaosis, nanotherapy treatment, and in situ monitoring of photothermal therapy response of prostate cancer cells using surface-enhanced Raman spectroscopy. J. Am. Chem. Soc. 2010, 132, 18103–18114.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Wang, L.; Meng, D.; Hao, Y.; Hu, Y.; Niu, M.; Zheng, C.; Yin, Y. Y.; Li, D.; Zhang, P.; Chang, J.; Zhang, Z.; Zhang, Y. A gold nanostar based multi-functional tumor-targeting nanoplatform for tumor theranostic applications. J. Mater. Chem. B 2016, 4, 5895–5906.

    Article  CAS  PubMed  Google Scholar 

  105. Yuan, H.; Fales, A. M.; Vo-Dinh, T. TAT peptide-functionalized gold nanostars: Enhanced intracellular delivery and efficient NIR photothermal therapy using ultralow irradiance. J. Am. Chem. Soc. 2012, 134, 11358–11361.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Li, J.; Han, J.; Xu, T.; Guo, C.; Bu, X.; Zhang, H.; Wang, L.; Sun, H.; Yang, B. Coating urchinlike gold nanoparticles with polypyrrole thin shells to produce photothermal agents with high stability and photothermal transduction efficiency. Langmuir 2013, 29, 7102–7110.

    Article  CAS  PubMed  Google Scholar 

  107. Li, J.; Wang, W.; Zhao, L.; Rong, L.; Lan, S.; Sun, H.; Zhang, H.; Yang, B. Hydroquinone-assisted synthesis of branched Au-Ag nanoparticles with polydopamine coating as highly efficient photothermal agents. ACS Appl. Mater. Interfaces 2015, 7, 11613–11623.

    Article  CAS  PubMed  Google Scholar 

  108. Skralak, S. E.; Chen, J.; Sun, Y.; Lu, X.; Au, L.; Cobley, C. M.; Xia, Y. Gold nanocages: Synthesis, properties, and applications. Acc. Chem. Res. 2008, 41, 1587–1595.

    Article  CAS  Google Scholar 

  109. Au, L.; Zheng, D.; Zhou, F.; Li, Z. Y.; Li, X.; Xia, Y. A quantitative study on the photothermal effect of immuno gold nanocages targeted to breast cancer cells. ACS Nano 2008, 2, 1645–1652.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Chen, J.; Wang, D.; Xi, J.; Au, L.; Siekkinen, A.; Warsen, A.; Li, Z. Y.; Zhang, H.; Xia, Y.; Li, X. Immuno gold nanocages with tailored optical properties for targeted photothermal destruction of cancer cells. Nano Lett. 2007, 7, 1318–1322.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Chen, J.; Glaus, C.; Laforest, R.; Zhang, Q.; Yang, M.; Gidding, M.; Welch, M. J.; Xia, Y. Gold nanocages as photothermal transducers for cancer treatment. Small 2010, 6, 811–817.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Jenkins, S. V.; Nedosekin, D. A.; Miller, E. K.; Zharov, V. P.; Dings, R. P. M.; Chen, J.; Griffin, R. J. Galectin-1-based tumour-targeting for gold nanostructure-mediated photothermal therapy. Int. J. Hyperthermia. 2018, 34, 19–29.

    Article  CAS  PubMed  Google Scholar 

  113. Jeon, J. W.; Ledin, P. A.; Geldmeier, J. A.; Ponder, J. F. Jr.; Mahmoud, M. A.; El-Sayed, M.; Reynolds, J. R.; Tsukruk, V. V. Electrically controlled plasmonic behavior of gold nanocube@polyaniline nanostructures: Transparent plasmonic aggregates. Chem. Mater. 2016, 28, 2868–2881.

    Article  CAS  Google Scholar 

  114. Zha, Z.; Wang, S.; Zhang, S.; Qu, E.; Ke, H.; Wang, J.; Dai, Z. Targeted delivery of CuS nanoparticles through ultrasound image-guided microbubble destruction for efficient photothermal therapy. Nanoscale 2013, 5, 3216–3219.

    Article  CAS  PubMed  Google Scholar 

  115. Li, Y.; Lu, W.; Huang, Q.; Li, C.; Chen, W. Copper sulfide nanoparticles for photothermal ablation of tumor cells. Nanomedicine 2010, 5, 1161–1171.

    Article  CAS  PubMed  Google Scholar 

  116. Ku, G.; Zhou, M.; Song, S.; Huang, Q.; Hazle, J.; Li, C. Copper sulfide nanoparticles as a new class of photoacoustic contrast agent for deep tissue imaging at 1064 nm. ACS Nano 2012, 6, 7489–7496.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Zhou, M.; Zhang, R.; Huang, M.; Lu, W.; Song, S.; Melancon, M. P.; Tian, M.; Liang, D.; Li, C. A chelator-free multifunctional [64Cu]CuS nanoparticle platform for simultaneous micro-PET/CT imaging and photothermal ablation therapy. J. Am. Chem. Soc. 2010, 132, 15351–15358.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Peng, H.; Ma, G.; Sun, K.; Mu, J.; Wang, H.; Lei, Z. Highperformance supercapacitor based on multi-structural 118 CuS@polypyrrole composites prepared by in situ oxidative polymerization. J. Mater. Chem. A 2014, 2, 3303–3307.

    Article  CAS  Google Scholar 

  119. Zhao, R.; Sun, X.; Sun, J.; Wang, L.; Han, J. Polypyrrolemodified CuS nanoprisms for efficient near-infrared photothermal therapy. RSC Adv. 2017, 7, 10143–10149.

    Article  CAS  Google Scholar 

  120. Li, Z.; Hu, Y.; Howard, K. A.; Jiang, T.; Fan, X.; Miao, Z.; Sun, Y.; Besenbacher, F.; Yu, M. Multifunctional bismuth selenide nanocomposites for antitumor thermo-chemotherapy and imaging. ACS Nano 2016, 10, 984–997.

    Article  CAS  PubMed  Google Scholar 

  121. Wang, C.; Bai, J.; Liu, Y.; Jia, X.; Jiang, X. Polydopamine coated selenide molybdenum: A new photothermal nanocarrier for highly effective chemo-photothermal synergistic therapy. ACS Biomater. Sci. Eng. 2016, 2, 2011–2017.

    Article  CAS  PubMed  Google Scholar 

  122. Zheng, R.; Wang, S.; Tian, Y.; Jiang, X.; Fu, D.; Shen, S.; Yang, W. Polydopamine-coated magnetic composite particles with an enhanced photothermal effect. ACS Appl. Mater. Interfaces 2015, 7, 15876–15884.

    Article  CAS  PubMed  Google Scholar 

  123. Saeed, M.; Iqbal, M. Z.; Ren, W.; Xia, Y.; Liu, C.; Khanac, W. S.; Wu, A. Controllable synthesis of Fe3O4 nanoflowers: Enhanced imaging guided cancer therapy and comparison of photothermal efficiency with black-TiO2. J. Mater. Chem. B 2018, 6, 3800–3810.

    Article  CAS  PubMed  Google Scholar 

  124. Espinosa, A.; Corato, R. D.; Kolosnjaj-Tabi, J.; Flaud, P.; Pellegrino, T.; Wilhelm, C. Duality of iron oxide nanoparticles in cancer therapy: Amplification of heating efficiency by magnetic hyperthermia and photothermal bimodal treatment. ACS Nano 2016, 10, 2436–2446.

    Article  CAS  PubMed  Google Scholar 

  125. Ge, R.; Li, X.; Lin, M.; Wang, D.; Li, S.; Liu, S.; Tang, Q.; Liu, Y.; Jiang, J.; Liu, L.; Sun, H.; Zhang, H.; Yang, B. Fe3O4@polydopamine composite theranostic superparticles employing preassembled Fe3O4 nanoparticles as the core. ACS Appl. Mater. Interfaces 2016, 8, 22942–22952.

    Article  CAS  PubMed  Google Scholar 

  126. Zhang, X.; Xu, X.; Li, T.; Lin, M.; Lin, X.; Zhang, H.; Sun, H.; Yang, B. Composite photothermal platform of polypyrrole-enveloped Fe3O4 nanoparticle self-assembled superstructures. ACS Appl. Mater. Interfaces 2014, 6, 14552–14561.

    Article  CAS  PubMed  Google Scholar 

  127. Lin, L. S.; Cong, Z. X.; Cao, J. B.; Ke, K. M.; Peng, Q. L.; Gao, J.; Yang, H. H.; Liu, G.; Chen, X. Multifunctional Fe3O4@polydopamine coreshell nanocomposites for intracellular mRNA detection and imaging-guided photothermal therapy. ACS Nano 2014, 8, 3876–3883.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Guo, H.; Sun, H.; Zhu, H.; Guo, H.; Sun, H. Synthesis of Gdfunctionalized Fe3O4@polydopamine nanocomposites for T1/T2 dual-modal magnetic resonance imaging-guided photothermal therapy. New J. Chem. 2018, 42, 7119–7124.

    Article  CAS  Google Scholar 

  129. Zhou, J.; Li, J.; Ding, X.; Liu, J.; Luo, Z.; Liu, Y.; Ran, Q.; Cai, K. Multifunctional Fe2O3@PPy-PEG nanocomposite for combination cancer therapy with MR imaging. Nanotechnology 2015, 26, 425101.

    Article  CAS  PubMed  Google Scholar 

  130. Guo, W.; Wang, F.; Ding, D.; Song, C.; Guo, C.; Liu, S. TiO2–x based nanoplatform for bimodal cancer imaging and NIR-triggered chem/photodynamic/photothermal combination therapy. Chem. Mater. 2017, 29, 9262–9274.

    Article  CAS  Google Scholar 

  131. Jin, Y.; Li, Y.; Ma, X.; Zha, Z.; Shi, L.; Tian, J.; Dai, Z. Encapsulating tantalum oxide into polypyrrole nanoparticles for X-ray CT/photoacoustic bimodal imaging-guided photothermal ablation of cancer. Biomaterials 2014, 35, 5795–5804.

    Article  CAS  PubMed  Google Scholar 

  132. Xiao, Z.; Peng, C.; Jiang, X.; Peng, Y.; Huang, X.; Guan, G.; Zhang, W.; Liu, X.; Qin, Z.; Hu, J. Polypyrrole-encapsulated iron tungstate nanocomposites: A versatile platform for multimodal tumor imaging and photothermal therapy. Nanoscale 2016, 8, 12917–12928.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (Nos. 21374042 and 51425303), JLU Science and Technology Innovative Research Team 2017TD-06, and the Special Project from MOST of China.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Le-Ning Zhang or Hao Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, SW., Wang, L., Lin, M. et al. Tumor Photothermal Therapy Employing Photothermal Inorganic Nanoparticles/Polymers Nanocomposites. Chin J Polym Sci 37, 115–128 (2019). https://doi.org/10.1007/s10118-019-2193-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10118-019-2193-4

Keywords

Navigation