Skip to main content
Log in

Tough poly(L-DOPA)-containing Double Network Hydrogel Beads with High Capacity of Dye Adsorption

  • Article
  • Published:
Chinese Journal of Polymer Science Aims and scope Submit manuscript

Abstract

Developing a low-cost and well-recyclable adsorbent with high adsorption capacity is greatly desirable in dye wastewater treatment. Here, we demonstrate a kind of novel tough and reusable hydrogel beads with quite high capacity of dye adsorption via incorporating mussel-bioinspired poly(L-DOPA) (PDOPA) into alginate/poly(acrylamide) double network (DN) hydrogels. The synthesized PDOPA nanoaggregates were introduced into the DN hydrogels by simple one-pot mixing with the monomers prior to polymerization. The fabricated hydrogel beads exhibited high mechanical strength and good elastic recovery due to the interpenetrating Ca2+-alginate and poly(acrylamide) networks. It was shown that the beads exhibited relatively high dye adsorption capacity compared to other adsorbents reported in literature, and the introduction of PDOPA with an appropriate amount raised the adsorption capacity. It is believed that the addition of PDOPA and the matrix of double network architecture contributed synergistically to the high adsorption capacity of hydrogel beads. Moreover, the desorption of dyes could be easily realized via rinsing in acidic water and ethanol solution. The hydrogel beads remained the high adsorption capacity even after 5 times of adsorption and desorption cycles. This tough and stable hydrogel with high adsorption capacity may have potential in treatment of dye wastewater released by textile dyeing industry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Boyd, C. E., "Water quality: an introduction", Springer, 2015.

    Book  Google Scholar 

  2. Campos, C. J. A.; Avant, J.; Gustar, N.; Lowther, J.; Powell, A.; Stockley, L.; Lees, D. N. Fate of human noroviruses in shellfish and water impacted by frequent sewage pollution events. Environ. Sci. Tech. 2015, 49, 8377–8385.

    Article  CAS  Google Scholar 

  3. Wu, C.; Maurer, C.; Wang, Y.; Xue, S.; Davis, D. L. Water pollution and human health in China. Environ. Health Perspect. 1999, 107, 251–256.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Liu, T. Y.; Bian, L. X.; Yuan, H. G.; Pang, B.; Lin, Y. K.; Tong, Y.; Van der Bruggen, B.; Wang, X. L. Fabrication of a high-flux thin film composite hollow fiber nanofiltration membrane for wastewater treatment. J. Membr. Sci. 2015, 478, 25–36.

    Article  CAS  Google Scholar 

  5. Liu, C.; Cheng, L.; Zhao, Y.; Zhu, L. Interfacially crosslinked composite porous membranes for ultrafast removal of anionic dyes from water through permeating adsorption. J. Hazard. Mater. 2017, 337, 217–225.

    Article  CAS  PubMed  Google Scholar 

  6. Fu, F.; Xie, L.; Tang, B.; Wang, Q.; Jiang, S. Application of a novel strategy-advanced Fenton-chemical precipitation to the treatment of strong stability chelated heavy metal containing wastewater. Chem. Eng. J. 2012, 189–190, 283–287.

    Google Scholar 

  7. Ali, I. New generation adsorbents for water treatment. Chem. Rev. 2012, 112, 5073–5091.

    Article  CAS  PubMed  Google Scholar 

  8. Wang, W.; Tade, M. O.; Shao, Z. Research progress of perovskite materials in photocatalysis- and photovoltaics-related energy conversion and environmental treatment. Chem. Soc. Rev. 2015, 44, 5371–5408.

    Article  CAS  PubMed  Google Scholar 

  9. Bansal, R. C.; Goyal, M., "Activated carbon adsorption", CRC press, 2005.

    Book  Google Scholar 

  10. Alver, E.; Metin, A. Ü. Anionic dye removal from aqueous solutions using modified zeolite: Adsorption kinetics and isotherm studies. Chem. Eng. J. 2012, 200, 59–67.

    Article  CAS  Google Scholar 

  11. Hua, M.; Zhang, S.; Pan, B.; Zhang, W.; Lv, L.; Zhang, Q. Heavy metal removal from water/wastewater by nanosized metal oxides: a review. J. Hazard. Mater. 2012, 211–212, 317–331.

    Article  CAS  PubMed  Google Scholar 

  12. Morin-Crini, N.; Crini, G. Environmental applications of waterinsoluble β-cyclodextrin-epichlorohydrin polymers. Prog. Polym. Sci. 2013, 38, 344–368.

    Article  CAS  Google Scholar 

  13. Gong, J.; Lin, H.; Antonietti, M.; Yuan, J. Nitrogen-doped porous carbon nanosheets derived from poly(ionic liquid)s: hierarchical pore structures for efficient CO2 capture and dye removal. J. Mater. Chem. A 2016, 4, 7313–7321.

    Article  CAS  Google Scholar 

  14. Zhu, H.; Yang, X.; Cranston, E. D.; Zhu, S. Flexible and porous nanocellulose aerogels with high loadings of metal-organicframework particles for separations applications. Adv. Mater. 2016, 28, 7652–7657.

    Article  CAS  PubMed  Google Scholar 

  15. Ersan, G.; Kaya, Y.; Apul, O. G.; Karanfil, T. Adsorption of organic contaminants by graphene nanosheets, carbon nanotubes and granular activated carbons under natural organic matter preloading conditions. Sci. Total Environ. 2016, 565, 811–817.

    Article  CAS  PubMed  Google Scholar 

  16. Liang, H. W.; Cao, X.; Zhang, W. J.; Lin, H. T.; Zhou, F.; Chen, L. F.; Yu, S. H. Robust and highly efficient free-standing carbonaceous nanofiber membranes for water purification. Adv. Funct. Mater. 2011, 21, 3851–3858.

    Article  CAS  Google Scholar 

  17. Smith, S. C.; Rodrigues, D. F. Carbon-based nanomaterials for removal of chemical and biological contaminants from water: A review of mechanisms and applications. Carbon 2015, 91, 122–143.

    Article  CAS  Google Scholar 

  18. Jing, G.; Wang, L.; Yu, H.; Amer, W. A.; Zhang, L. Recent progress on study of hybrid hydrogels for water treatment. Colloids Surf., A 2013, 416, 86–94.

    Article  CAS  Google Scholar 

  19. Ju, K. Y.; Lee, Y.; Lee, S.; Park, S. B.; Lee, J. K. Bioinspired polymerization of dopamine to generate melanin-like nanoparticles having an excellent free-radical-scavenging property. Biomacromolecules 2011, 12, 625–632.

    Article  CAS  PubMed  Google Scholar 

  20. Pinnen, F.; Cacciatore, I.; Cornacchia, C.; Sozio, P.; Iannitelli, A.; Costa, M.; Pecci, L.; Nasuti, C.; Cantalamessa, F.; Di Stefano, A. Synthesis and study of l-DOPA-glutathione codrugs as new anti-parkinson agents with free radical scavenging properties. J. Med. Chem. 2007, 50, 2506–2515.

    Article  CAS  PubMed  Google Scholar 

  21. Han, L.; Lu, X.; Liu, K.; Wang, K.; Fang, L.; Weng, L.T.; Zhang, H.; Tang, Y.; Ren, F.; Zhao, C. Mussel-inspired adhesive and tough hydrogel based on nanoclay confined dopamine polymerization. ACS nano 2017, 11, 2561–2574.

    Article  CAS  PubMed  Google Scholar 

  22. Muya, F. N.; Sunday, C. E.; Baker, P.; Iwuoha, E. Environmental remediation of heavy metal ions from aqueous solution through hydrogel adsorption: a critical review. Water Sci. Tech. 2016, 73, 983–992.

    CAS  Google Scholar 

  23. Gong, J. P.; Katsuyama, Y.; Kurokawa, T.; Osada, Y. Doublenetwork hydrogels with extremely high mechanical strength. Adv. Mater. 2003, 15, 1155–1158.

    Article  CAS  Google Scholar 

  24. Tanaka, Y.; Gong, J. P.; Osada, Y. Novel hydrogels with excellent mechanical performance. Prog. Polym. Sci. 2005, 30, 1–9.

    Article  CAS  Google Scholar 

  25. Chen, Q.; Chen, H.; Zhu, L.; Zheng, J. Fundamentals of double network hydrogels. J. Mater. Chem. B 2015, 3, 3654–3676.

    Article  CAS  Google Scholar 

  26. Pourjavadi, A.; Nazari, M.; Kabiri, B.; Hosseini, S. H.; Bennett, C. Preparation of porous graphene oxide/hydrogel nanocomposites and their ability for efficient adsorption of methylene blue. RSC Adv. 2016, 6, 10430–10437.

    Article  CAS  Google Scholar 

  27. Zhuang, Y.; Yu, F.; Chen, J.; Ma, J. Batch and column adsorption of methylene blue by graphene/alginate nanocomposite: Comparison of single-network and doublenetwork hydrogels. J. Environ. Chem. Eng. 2016, 4, 147–156.

    Article  CAS  Google Scholar 

  28. Zhuang, Y.; Yu, F.; Chen, H.; Zheng, J.; Ma, J.; Chen, J. Alginate/graphene double-network nanocomposite hydrogel beads with low-swelling, enhanced mechanical properties, and enhanced adsorption capacity. J. Mater. Chem. A 2016, 4, 10885–10892.

    Article  CAS  Google Scholar 

  29. Fan, J.; Shi, Z.; Lian, M.; Li, H.; Yin, J. Mechanically strong graphene oxide/sodium alginate/polyacrylamide nanocomposite hydrogel with improved dye adsorption capacity. J. Mater. Chem. A 2013, 1, 7433.

    Article  CAS  Google Scholar 

  30. Deng, S.; Xu, H.; Jiang, X.; Yin, J. Poly(vinyl alcohol) (PVA)-enhanced hybrid hydrogels of hyperbranched poly(ether amine) (hPEA) for selective adsorption and separation of dyes. Macromolecules 2013, 46, 2399–2406.

    Article  CAS  Google Scholar 

  31. Xie, Y.; Yan, B.; Xu, H.; Chen, J.; Liu, Q.; Deng, Y.; Zeng, H. Highly regenerable mussel-inspired Fe3O4@polydopamine-Ag core-shell microspheres as catalyst and adsorbent for methylene blue removal. ACS Appl. Mater. Interfaces 2014, 6, 8845–8852.

    Article  CAS  PubMed  Google Scholar 

  32. Yu, L.; Liu, X.; Yuan, W.; Brown, L. J.; Wang, D. Confined flocculation of ionic pollutants by poly(L-DOPA)-based polyelectrolyte complexes in hydrogel beads for threedimensional, quantitative, efficient water decontamination. Langmuir 2015, 31, 6351–6366.

    Article  CAS  PubMed  Google Scholar 

  33. Sun, J. Y.; Zhao, X.; Illeperuma, W. R. K.; Chaudhuri, O.; Oh, K. H.; Mooney, D. J.; Vlassak, J. J.; Suo, Z. Highly stretchable and tough hydrogels. Nature 2012, 489, 133.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Zheng, S.; Wang, T.; Liu, D.; Liu, X.; Wang, C.; Tong, Z. Fast deswelling and highly extensible poly(N-isopropylacrylamide)-hectorite clay nanocomposite cryogels prepared by freezing polymerization. Polymer 2013, 54, 1846–1852.

    Article  CAS  Google Scholar 

  35. Jiang, J. H.; Zhu, L. P.; Zhang, H. T.; Zhu, B. K.; Xu, Y. Y. Improved hydrodynamic permeability and antifouling properties of poly (vinylidene fluoride) membranes using polydopamine nanoparticles as additives. J. Membr. Sci. 2014, 457, 73–81.

    Article  CAS  Google Scholar 

  36. Zhang, W.; Ying, Y.; Ma, J.; Guo, X.; Huang, H.; Liu, D.; Zhong, C. Mixed matrix membranes incorporated with polydopamine-coated metal-organic framework for dehydration of ethylene glycol by pervaporation. J. Membr. Sci. 2017, 527, 8–17.

    Article  CAS  Google Scholar 

  37. Wang, Z.; Wang, D.; Zhang, S.; Hu, L.; Jin, J. Interfacial design of mixed matrix membranes for improved gas separation performance. Adv. Mater 2016, 28, 3399–3405.

    Article  CAS  PubMed  Google Scholar 

  38. Cao, L.; Lv, F.; Liu, Y.; Wang, W.; Huo, Y.; Fu, X.; Sun, R.; Lu, Z. A high performance O2 selective membrane based on CAU-1-NH2@polydopamine and the PMMA polymer for Liair batteries. Chem. Commun. 2015, 51, 4364–4367.

    Article  CAS  Google Scholar 

  39. Dong, Z.; Wang, D.; Liu, X.; Pei, X.; Chen, L.; Jin, J. Bioinspired surface-functionalization of graphene oxide for the adsorption of organic dyes and heavy metal ions with a superhigh capacity. J. Mater. Chem. A 2014, 2, 5034–5040.

    Article  CAS  Google Scholar 

  40. Pinnen, F.; Cacciatore, I.; Cornacchia, C.; Sozio, P.; Iannitelli, A.; Costa, M.; Pecci, L.; Nasuti, C.; Cantalamessa, F.; Di Stefano, A. Synthesis and study of L-DOPA-glutathione codrugs as new anti-parkinson agents with free radical scavenging properties. J. Med. Chem. 2007, 50, 2506–2515.

    Article  CAS  PubMed  Google Scholar 

  41. Han, L.; Lu, X.; Liu, K.; Wang, K.; Fang, L.; Weng, L. T.; Zhang, H.; Tang, Y.; Ren, F.; Zhao, C.; Sun, G.; Liang, R.; Li, Z. Mussel-inspired adhesive and tough hydrogel based on nanoclay confined dopamine polymerization. ACS Nano 2017, 11, 2561–2574.

    Article  CAS  PubMed  Google Scholar 

  42. Zhao, F. Y.; Ji, Y. L.; Weng, X. D.; Mi, Y. F.; Ye, C. C.; An, Q. F.; Gao, C. J. High-flux positively charged nanocomposite nanofiltration membranes filled with poly(dopamine) modified multiwall carbon nanotubes. ACS Appl. Mater. Interfaces 2016, 8, 6693.

    Article  CAS  PubMed  Google Scholar 

  43. Wang, Z.; Wang, D.; Zhang, S.; Hu, L.; Jin, J. Interfacial design of mixed matrix membranes for improved gas separation performance. Adv. Mater. 2016, 28, 3399–3405.

    Article  CAS  PubMed  Google Scholar 

  44. Wang, W.; Zong, L.; Wang, A. A nanoporous hydrogel based on vinyl-functionalized alginate for efficient absorption and removal of Pb2+ ions. Int. J. Biol. Macromol. 2013, 62, 225–231.

    Article  CAS  PubMed  Google Scholar 

  45. Yang, C. H.; Wang, M. X.; Haider, H.; Yang, J. H.; Sun, J. Y.; Chen, Y. M.; Zhou, J.; Suo, Z. Strengthening alginate/ polyacrylamide hydrogels using various multivalent cations. ACS Appl. Mater. Interfaces 2013, 5, 10418–10422.

    Article  CAS  PubMed  Google Scholar 

  46. Gong, J. P. Why are double network hydrogels so tough? Soft Matter 2010, 6, 2583–2590.

    Article  CAS  Google Scholar 

  47. Ng, J. C. Y. Kinetics of pollutant sorption by biosorbents: review. Sep. Purif. Rev. 2000, 29, 189–232.

    Article  Google Scholar 

  48. Zhou, J.; Hao, B.; Wang, L.; Ma, J.; Cheng, W. Preparation and characterization of nano-TiO2/chitosan/poly(N-isopropylacrylamide) composite hydrogel and its application for removal of ionic dyes. Sep. Purif. Technol. 2017, 176, 193–199.

    Article  CAS  Google Scholar 

  49. Hassan, A. F.; Abdel-Mohsen, A. M.; Fouda, M. M. G. Comparative study of calcium alginate, activated carbon, and their composite beads on methylene blue adsorption. Carbohydr. Polym. 2014, 102, 192–198.

    Article  CAS  PubMed  Google Scholar 

  50. Ma, T.; Chang, P. R.; Zheng, P.; Zhao, F.; Ma, X. Fabrication of ultra-light graphene-based gels and their adsorption of methylene blue. Chem. Eng. J. 2014, 240, 595–600.

    Article  CAS  Google Scholar 

  51. Dragan, E. S.; Apopei Loghin, D. F. Enhanced sorption of methylene blue from aqueous solutions by semi-IPN composite cryogels with anionically modified potato starch entrapped in PAAm matrix. Chem. Eng. J. 2013, 234, 211–222.

    Article  CAS  Google Scholar 

  52. Saber-Samandari, S.; Saber-Samandari, S.; Nezafati, N.; Yahya, K. Efficient removal of lead (II) ions and methylene blue from aqueous solution using chitosan/Fe-hydroxyapatite nanocomposite beads. J. Environ. Manage. 2014, 146, 481–490.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was financialy supported by the National Natural Science Foundation of China (Nos. 51573159 and 51273176) and the Fundamental Research Funds for the Central Universities (No. 2016QNA4032).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li-Ping Zhu.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, PB., Tang, AQ., Wang, ZH. et al. Tough poly(L-DOPA)-containing Double Network Hydrogel Beads with High Capacity of Dye Adsorption. Chin J Polym Sci 36, 1251–1261 (2018). https://doi.org/10.1007/s10118-018-2163-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10118-018-2163-2

Keywords

Navigation