Skip to main content
Log in

Bioinspired Adaptive Gel Materials with Synergistic Heterostructures

  • Feature Article
  • Published:
Chinese Journal of Polymer Science Aims and scope Submit manuscript

Abstract

In nature, many biological soft tissues with synergistic heterostructures, such as sea cucumbers, skeletal muscles and cartilages, exhibit high functionality to adapt to complex environments. In artificial soft materials, hydrogels are similar to biological soft tissues due to the unique integration of “soft and wet” properties and elastic characteristics. However, currently hydrogel materials lack their necessary adaptability, including narrow working temperature windows and uncontrollable mechanics, thus restrict their engineering application in complex environments. Inspired by abovementioned biological soft tissues, researchers have increasingly developed heterostructural gel materials as functional soft materials with high adaptability to various mechanical and environmental conditions. This article summarizes our recent work on high-performance adaptive gel materials with synergistic heterostructures, including the critical design criteria and the state-of-the-art fabrication strategies of our gel materials. The functional adaptation properties of these heterostructural gel materials are also presented in details, including temperature, wettability, mechanical and shape adaption.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zhao, Z.; Fang, R.; Rong, Q.; Liu, M. Bioinspired nanocomposite hydrogels with highly ordered structures. Adv. Mater. 2017, 29(45), DOI: 10.1002/adma.201703045

    Google Scholar 

  2. Slaughter, B. V.; Khurshid, S. S.; Fisher, O. Z.; Khademhosseini, A.; Peppas, N. A. Hydrogels in regenerative medicine. Adv. Mater. 2009, 21(32), 3307–3329.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Liu, M.; Wang, S.; Jiang, L. Nature-inspired superwettability systems. Nat. Rev. Mater. 2017, 2, 17036.

    Article  CAS  Google Scholar 

  4. Chen, L.; Yin, Y.; Liu, Y.; Lin, L.; Liu, M. Design and fabrication of functional hydrogels through interfacial engineering. Chinese J. Polym. Sci. 2017, 35(10), 1181–1193.

    Article  CAS  Google Scholar 

  5. Lee, K. Y.; Mooney, D. J. Hydrogels for tissue engineering. Chem. Rev. 2001, 101(7), 1869–1880.

    Article  CAS  PubMed  Google Scholar 

  6. Taylor, D. L.; Panhuis, M. Self-healing hydrogels. Adv. Mater. 2016, 28(41), 9060–9093.

    Article  CAS  PubMed  Google Scholar 

  7. Yuk, H.; Lin, S.; Ma, C.; Takaffoli, M.; Fang, N. X.; Zhao, X. Hydraulic hydrogel actuators and robots optically and sonically camouflaged in water. Nat. Commun. 2017, 8, DOI: 10.1038/ncomms14230

    Google Scholar 

  8. Lee, B. P.; Konst, S. Novel hydrogel actuator inspired by reversible mussel adhesive protein chemistry. Adv. Mater. 2014, 26(21), 3415–3419.

    Article  CAS  PubMed  Google Scholar 

  9. Shin, M. K.; Spinks, G. M.; Shin, S. R.; Kim, S. I.; Kim, S. J. Nanocomposite hydrogel with high toughness for bioactuators. Adv. Mater. 2009, 21(17), 1712–1715.

    Article  CAS  Google Scholar 

  10. Shin, S. R.; Jung, S. M.; Zalabany, M.; Kim, K.; Zorlutuna, P.; Kim, S. B.; Nikkhah, M.; Khabiry, M.; Azize, M.; Kong, J.; Wan, K. T.; Palacios, T.; Dokmeci, M. R.; Bae, H.; Tang, X.; Khademhosseini, A. Carbon-nanotube-embedded hydrogel sheets for engineering cardiac constructs and bioactuators. ACS Nano 2013, 7(3), 2369–2380.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Culver, H. R.; Clegg, J. R.; Peppas, N. A. Analyte-responsive hydrogels: intelligent materials for biosensing and drug delivery. Acc. Chem. Res. 2017, 50(2), 170–178.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Xing, J. F.; Zheng, M. L.; Duan, X. M. Two-photon polymerization microfabrication of hydrogels: an advanced 3D printing technology for tissue engineering and drug delivery. Chem. Soc. Rev. 2015, 44, 5031–5039.

    Article  CAS  PubMed  Google Scholar 

  13. Wang, P.; Sun, J.; Lou, Z.; Fan, F.; Hu, K.; Sun, Y.; Gu, N. Assembly-induced thermogenesis of gold nanoparticles in the presence of alternating magnetic field for controllable drug release of hydrogel. Adv. Mater. 2016, 28(48), 10801–10808.

    Article  CAS  PubMed  Google Scholar 

  14. Liu, J.; Tan, C. S.; Yu, Z.; Lan, Y.; Abell, C.; Scherman, O. A. Biomimetic supramolecular polymer networks exhibiting both toughness and self-recovery. Adv. Mater. 2017, 29(10), DOI: 10.1002/adma.201604951

    Google Scholar 

  15. Liu, Z.; Calvert, P. Multilayer hydrogels as muscle-like actuators. Adv. Mater. 2000, 12(4), 288–291.

    Article  CAS  Google Scholar 

  16. VanBemmelen, J. M. Der hydrogel und das kristallinische hydrat des kupferoxydes. Z. Anorg. Chem. 1894, 5, 466–483.

    Article  Google Scholar 

  17. Wichterle, O.; Lím, D. Hydrophilic gels for biological use. Nature 1960, 185, 117–118.

    Article  Google Scholar 

  18. Jokl, J.; Kopecek, J.; Lím, D. Mechanism of three-dimensional polymerization of the system methyl methacrylate-glycol dimethacrylate. I. Determination of the structure of the threedimensional product. J. Polym. Sci. A1 Polym. Chem. 1968, 6(11), 3041–3048.

    Article  CAS  Google Scholar 

  19. Refojo, M. F.; Yasuda, H. Hydrogels from 2-hydroxyethyl methacrylate and propylene glycol monoacrylate. J. Appl. Polym. Sci. 1965, 9(7), 2425–2435.

    Article  CAS  Google Scholar 

  20. Hicks, G. P.; Updike, S. J. The preparation and characterization of lyophilized polyacrylamide enzyme gels for chemical analysis. Anal. Chem. 1966, 38(6), 726–730.

    Article  CAS  PubMed  Google Scholar 

  21. Freeman, A.; Aharonowitz, Y. Immobilization of microbial cells in crosslinked, prepolymerized, linear polyacrylamide gels: antibiotic production by immobilized Streptomyces clavuligerus cells. Biotechnol. Bioeng. 1981, 23(12), 2747–2759.

    Article  CAS  Google Scholar 

  22. Otake, K.; Inomata, H.; Konno, M.; Saito, S. Thermal analysis of the volume phase transition with N-isopropylacrylamide gels. Macromolecules 1990, 23(1), 283–289.

    Article  CAS  Google Scholar 

  23. Inomata, H.; Goto, S.; Saito, S. Phase transition of N-substituted acrylamide gels. Macromolecules 1990, 23(22), 4887–4888.

    Article  CAS  Google Scholar 

  24. Dong, L. C.; Qi, Y.; Hoffman, A. S. Controlled release of amylase from a thermal and pH-sensitive, macroporous hydrogel. J. Control. Release 1992, 19(1), 171–177.

    CAS  Google Scholar 

  25. Zhao, X. Multi-scale multi-mechanism design of tough hydrogels: building dissipation into stretchy networks. Soft Matter 2014, 10, 672–687.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Haraguchi, K.; Takehisa, T; Ebato, M. Control of cell cultivation and cell sheet detachment on the surface of polymer/clay nanocomposite hydrogels. Biomacromolecules 2006, 7(11), 3267–3275.

    Article  CAS  PubMed  Google Scholar 

  27. Haraguchi, K.; Li, H. J. Control of the coil-to-globule transition and ultrahigh mechanical properties of PNIPA in nanocomposite hydrogels. Angew. Chem. Int. Ed. 2005, 44(40), 6500–6504.

    Article  CAS  Google Scholar 

  28. Gong, J. P.; Katsuyama, Y.; Kurokawa, T.; Osada, Y. Double-network hydrogels with extremely high mechanical strength. Adv. Mater. 2003, 15(14), 1155–1158.

    Article  CAS  Google Scholar 

  29. Sun, J. Y.; Zhao, X.; Illeperuma, W. R.; Chaudhuri, O.; Oh, K. H.; Mooney, D. J.; Vlassak, J. J.; Suo, Z. Highly stretchable and tough hydrogels. Nature 2012, 489, 133–136.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Rauner, N.; Meuris, M.; Zoric, M.; Tiller, J. C. Enzymatic mineralization generates ultrastiff and tough hydrogels with tunable mechanics. Nature 2017, 543, 407–410.

    Article  CAS  PubMed  Google Scholar 

  31. Wang, Q.; Mynar, J. L.; Yoshida, M.; Lee, E.; Lee, M.; Okuro, K.; Kinbara, K.; Aida, T. High-water-content mouldable hydrogels by mixing clay and a dendritic molecular binder. Nature 2010, 463, 339–343.

    Article  CAS  PubMed  Google Scholar 

  32. Kamata, H.; Akagi, Y.; Kayasuga-Kariya, Y.; Chung, U. I.; Sakai, T. “Nonswellable” hydrogel without mechanical hysteresis. Science 2014, 343(6173), 873–875.

    Article  CAS  PubMed  Google Scholar 

  33. Liu, M.; Ishida, Y.; Ebina, Y.; Sasaki, T.; Hikima, T.; Takata, M.; Aida, T. An anisotropic hydrogel with electrostatic repulsion between cofacially aligned nanosheets. Nature 2015, 517, 68–72.

    Article  CAS  PubMed  Google Scholar 

  34. Kim, H. N.; Jiao, A.; Hwang, N. S.; Kim, M. S.; Kang, D. H.; Kim, D. H.; Suh, K. Y. Nanotopography-guided tissue engineering and regenerative medicine. Adv. Drug. Delivery Rev. 2013, 65(4), 536–558.

    Article  CAS  Google Scholar 

  35. Liu, M.; Jiang, L. Dialectics of nature in materials science: binary cooperative complementary materials. Sci. China Mater. 2016, 59(4), 239–246.

    Article  CAS  Google Scholar 

  36. Oliva, N.; Conde, J.; Wang, K.; Artzi, N. Designing hydrogels for on-demand therapy. Acc. Chem. Res. 2017, 50(4), 669–679.

    Article  CAS  PubMed  Google Scholar 

  37. Dou, X. Q.; Feng, C. L. Amino acids and peptide-based supramolecular hydrogels for three-dimensional cell culture. Adv. Mater. 2017, 29(16), 1604062.

    Article  CAS  Google Scholar 

  38. Wegst, U. G.; Bai, H.; Saiz, E.; Tomsia, A. P.; Ritchie, R. O. Bioinspired structural materials. Nat. Mater. 2015, 14, 23–36.

    Article  CAS  PubMed  Google Scholar 

  39. Motokawa, T. Effects of ionic environment on viscosity of Triton-extracted catch connective tissue of a sea cucumber body wall. Comp. Biochem. Physiol. Part B 1994, 109(4), 613–622.

    Article  Google Scholar 

  40. Thurmond, F. A.; Trotter, J. A. Morphology and biomechanics of the microfibrillar network of sea cucumber dermis. J. Exp. Biol. 1996, 199, 1817–1828.

    CAS  PubMed  Google Scholar 

  41. Szulgit, G. K.; Shadwick, R. E. Dynamic mechanical characterization of a mutable collagenous tissue: response of sea cucumber dermis to cell lysis and dermal extracts. J. Exp. Biol. 2000, 203(10), 1539–1550.

    CAS  PubMed  Google Scholar 

  42. Capadona, J. R.; Shanmuganathan, K.; Tyler, D. J.; Rowan, S. J.; Weder, C. Stimuli-responsive polymer nanocomposites inspired by the sea cucumber dermis. Science 2008, 319(5868), 1370–1374.

    Article  CAS  PubMed  Google Scholar 

  43. Mo, J.; Prévost, S. F.; Blowes, L. M.; Egertová, M.; Terrill, N. J.; Wang, W.; Elphick, M. R.; Gupta, H. S. Interfibrillar stiffening of echinoderm mutable collagenous tissue demonstrated at the nanoscale. P. Natl. Acad. Sci. USA 2016, 113(42), e6362−E6371.

    Article  CAS  Google Scholar 

  44. Johnson, M. A.; Polgar, J.; Weightman, D.; Appleton, D. Data on the distribution of fibre types in thirty-six human muscles: an autopsy study. J. Neurol. Sci. 1973, 18(1), 111–129.

    Article  CAS  PubMed  Google Scholar 

  45. Tiidus, P. M., “Skeletal muscle damage and repair”, Human Kinetics Press, Champaign, IL USA, 2008, p. 37

    Google Scholar 

  46. Wakelam, M. J. The fusion of myoblasts. Biochem. J. 1985, 228, 1–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Wigmore, P. M.; Dunglison, G. F. The generation of fiber diversity during myogenesis. Int. J. Dev. Biol. 1998, 42(2), 117–125.

    CAS  PubMed  Google Scholar 

  48. Jana, S.; Levengood, S. K.; Zhang, M. Anisotropic materials for skeletal-muscle-tissue engineering. Adv. Mater. 2016, 28(48), 10588–10612.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Kerin, A. J.; Wisnom, M. R.; Adams, M. A. The compressive strength of articular cartilage. Proc. Inst. Mech. Eng. Part H 1998, 212(4), 273–280.

    Article  CAS  Google Scholar 

  50. Tepic, S.; Macirowski, T.; Mann, R. W. Mechanical properties of articular cartilage elucidated by osmotic loading and ultrasound. Proc. Natl. Acad. Sci. USA 1983, 80(11), 3331–3333.

    Article  CAS  PubMed  Google Scholar 

  51. Fratzl, P.; Weinkamer, R. Nature’s hierarchical materials. Prog. Mater. Sci. 2007, 52(8), 1263–1334.

    Article  CAS  Google Scholar 

  52. Simha, N. K.; Carlson, C. S.; Lewis, J. L. Evaluation of fracture toughness of cartilage by micropenetration. J. Mater. Sci. Mater. Med. 2004, 15(5), 631–639.

    Article  CAS  PubMed  Google Scholar 

  53. Ker, R. F. The design of soft collagenous load-bearing tissues. J. Exp. Biol. 1999, 202(23), 3315–3324.

    CAS  PubMed  Google Scholar 

  54. Bellucci, G.; Seedhom, B. B. Mechanical behaviour of articular cartilage under tensile cyclic load. Rheumatology 2001, 40(12), 1337–1345.

    Article  CAS  PubMed  Google Scholar 

  55. Salt, R. W. Survival of frozen fat body cells in an insect. Nature 1959, 184, 1426–1426.

    Article  Google Scholar 

  56. Thomashow, M. F. Plant cold acclimation: freezing tolerance genes and regulatory mechanisms. Annu. Rev. Plant Physiol. Plant Mol. Biol. 1999, 50, 571–599.

    Article  CAS  PubMed  Google Scholar 

  57. Moellering, E. R. Muthan, B.; Benning, C. Freezing tolerance in plants requires lipid remodeling at the outer chloroplast membrane. Science 2010, 330(6001), 226–228.

    Article  CAS  PubMed  Google Scholar 

  58. Takahashi, D.; Imai, H.; Kawamura, Y.; Uemura, M. Lipid profiles of detergent resistant fractions of the plasma membrane in oat and rye in association with cold acclimation and freezing tolerance. Cryobiology 2016, 72(2), 123–134.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Martz, F.; Sutinen, M. L.; Kiviniemi, S.; Palta, J. P. Changes in freezing tolerance, plasma membrane H+-ATPase activity and fatty acid composition in Pinus resinosa needles during cold acclimation and de-acclimatio. Tree Physiol. 2006, 26(6), 783–790.

    Article  CAS  PubMed  Google Scholar 

  60. Gao, H.; Zhao, Z.; Cai, Y.; Zhou, J.; Hua, W.; Chen, L.; Wang, L.; Zhang, J.; Han, D.; Liu, M.; Jiang, L. Adaptive and freezetolerant heteronetwork organohydrogels with enhanced mechanical stability over a wide temperature range. Nat. Commun. 2017, 8, DOI: 10.1038/ncomms15911

    Google Scholar 

  61. Rong, Q.; Lei, W.; Chen, L.; Yin, Y.; Zhou, J.; Liu, M. Antifreezing, conductive self-healing organohydrogels with stable strain-sensitivity at subzero temperatures. Angew. Chem. Int. Ed. 2017, 129(45), 14347–14351.

    Article  Google Scholar 

  62. Shi, S.; Peng, X.; Liu, T.; Chen, Y. N.; He, C.; Wang, H. Facile preparation of hydrogen-bonded supramolecular polyvinyl alcohol-glycerol gels with excellent thermoplasticity and mechanical properties. Polymer 2017, 111(24), 168–176.

    Article  CAS  Google Scholar 

  63. Shin, J.; Lee, J. S.; Lee, C.; Park, H. J.; Yang, K.; Jin, Y.; Ryu, J. H.; Hong, K. S.; Moon, S. H.; Chung, H. M.; Yang, H. S.; Um, S. H.; Oh, J. W.; Kim, D. I.; Lee, H.; Cho, S. W. Tissue adhesive catechol-modified hyaluronic acid hydrogel for effective, minimally invasive cell therapy. Adv. Funct. Mater. 2015, 25(25), 3814–3824.

    Article  CAS  Google Scholar 

  64. Liu, Y.; Meng, H.; Konst, S.; Sarmiento, R.; Rajachar, R.; Lee, B. P. Injectable dopamine-modified poly(ethylene glycol) nanocomposite hydrogel with enhanced adhesive property and bioactivity. ACS Appl. Mater. Interfaces 2014, 6(19), 16982–16992.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Lee, Y. B.; Shin, Y. M.; Kim, E. M.; Lim, J.; Lee, J. Y.; Shin, H. Facile cell sheet harvest and translocation mediated by a thermally expandable hydrogel with controlled cell adhesion. Adv. Healthc. Mater. 2016, 5(18), 2320–2324.

    Article  CAS  PubMed  Google Scholar 

  66. Thornton, D. J.; Sheehan, J. K. From mucins to mucus: toward a more coherent understanding of this essential barrier. Proc. Am. Thorac. Soc. 2004, 1(1), 54–61.

    Article  CAS  PubMed  Google Scholar 

  67. Weis, K. The nuclear pore complex: oily spaghetti or gummy bear? Cell 2007, 130(3), 405–407.

    Article  CAS  PubMed  Google Scholar 

  68. Yao, X.; Chen, L.; Ju, J.; Li, C.; Tian, Y.; Jiang, L.; Liu, M. Superhydrophobic diffusion barriers for hydrogels via confined interfacial modification. Adv. Mater. 2016, 28(34), 7383–7389.

    Article  CAS  PubMed  Google Scholar 

  69. Chen, L.; Yao, X.; Gu, Z.; Zheng, K.; Zhao, C.; Lei, W.; Rong, Q.; Lin, L.; Wang, J.; Jiang, L.; Liu, M. Covalent tethering of photo-responsive superficial layers on hydrogel surfaces for photo-controlled release. Chem. Sci. 2017, 8, 2010–2016.

    Article  CAS  PubMed  Google Scholar 

  70. Chen, H.; Yang, F. Y.; Chen, Q.; Zheng, J. A novel design of multi-mechanoresponsive and mechanically strong hydrogels. Adv. Mater. 2017, 29(21), DOI: 10.1002/adma.201606900

    Google Scholar 

  71. Bilici, C.; Can, V.; Nçchel, U.; Behl, M.; Lendlein, A.; Okay, O. Melt-processable shape-memory hydrogels with self-healing ability of high mechanical strength. Macromolecules 2016, 49(19), 7442–7449.

    Article  CAS  Google Scholar 

  72. Luo, R. C.; Wu, J.; Dinh, N. D.; Chen, C. H. Gradient porous elastic hydrogels with shape-memory property and anisotropic responses for programmable locomotion. Adv. Funct. Mater. 2015, 25(47), 7272–7279.

    Article  CAS  Google Scholar 

  73. Wang, W.; Zhang, Y. Y.; Liu, W. G. Bioinspired fabrication of high strength hydrogels from non-covalent interactions. Prog. Polym. Sci. 2017, 71, 1–25.

    Article  CAS  Google Scholar 

  74. Dai, X. Y.; Zhang, Y. Y.; Gao, L. N.; Bai, T.; Wang, W.; Cui, Y. L.; Liu, W. G. A mechanically strong, highly stable, thermoplastic, and self-healable supramolecular polymer hydrogel. Adv. Mater. 2015, 27(23), 3566–3571.

    Article  CAS  PubMed  Google Scholar 

  75. Lu, C. H.; Guo, W.; Hu, Y.; Qi, X. J.; Willner, I. Multitriggered shape-memory acrylamide-DNA hydrogels. J. Am. Chem. Soc. 2015, 137(50), 15723–15731.

    Article  CAS  PubMed  Google Scholar 

  76. Zhao, Z.; Zhang, K.; Liu, Y.; Zhou, J.; Liu, M. Highly stretchable, shape memory organohydrogels using phasetransition microinclusions. Adv. Mater. 2017, 29(33), 1701695.

    Article  CAS  Google Scholar 

  77. Zhao, Z.; Liu, Y.; Zhang, K.; Zhuo, S.; Fang, R.; Zhang, J.; Jiang, L.; Liu, M. Biphasic synergistic gel materials with switchable mechanics and self-healing capacity. Angew. Chem. Int. Ed. 2017, 129(43), 13649–13654.

    Article  Google Scholar 

  78. Kim, Y. S.; Liu, M.; Ishida, Y.; Ebina, Y.; Osada, M.; Sasaki, T.; Hikima, T.; Takata, M.; Aida, T. Thermoresponsive actuation enabled by permittivity switching in an electrostatically anisotropic hydrogel. Nat. Mater. 2015, 14, 1002–1007.

    Article  CAS  PubMed  Google Scholar 

  79. Liu, M.; Ishida, Y.; Ebina, Y.; Sasaki, T.; Aida, T. Photolatently modulable hydrogels using unilamellar titania nanosheets as photocatalytic crosslinkers. Nat. Commun. 2013, 4, DOI: 10.1038/ncomms3029

    Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (No. 21574004), the National Natural Science Funds for Distinguished Young Scholar (No. 21725401), the National Key R&D Program of China (No. 2017YFA0207800), the 111 project (No. B14009), the Fundamental Research Funds for the Central Universities, and the National ‘Young Thousand Talents Program’.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ming-Jie Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, ZG., Xu, YC., Fang, RC. et al. Bioinspired Adaptive Gel Materials with Synergistic Heterostructures. Chin J Polym Sci 36, 683–696 (2018). https://doi.org/10.1007/s10118-018-2105-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10118-018-2105-z

Keywords

Navigation