Skip to main content

Advertisement

Log in

4D Printing: History and Recent Progress

  • Review
  • Published:
Chinese Journal of Polymer Science Aims and scope Submit manuscript

Abstract

4D printing has attracted great interest since the concept was introduced in 2012. The past 5 years have witnessed rapid advances in both 4D printing processes and materials. Unlike 3D printing, 4D printing allows the printed part to change its shape and function with time in response to change in external conditions such as temperature, light, electricity, and water. In this review, we first overview the history of 4D printing and discuss its definition. We then summarize recent technological advances in 4D printing with focuses on methods, materials, and their intrinsic links. Finally, we discuss potential applications and offer perspectives for this exciting new field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hull, C. W., 1986, U.S. Pat., 5, 556, 590

    Google Scholar 

  2. Bower, C., Meitl, M., Gomez, D., Bonafede, S. and Kneeburg, D., 2016, U.S. Pat., 9358775

    Google Scholar 

  3. Tofail, S. A. M.; Koumoulos, E. P.; Bandyopadhyay, A.; Bose, S.; O’Donoghue, L.; Charitidis, C. Additive manufacturing: scientific and technological challenges, market uptake and opportunities. Materialstoday, in press.

  4. Shirazi, S. F. S.; Gharehkhani, S.; Mehrali, M.; Yarmand, H.; Metselaar, H. S. C.; Kadri, N. A.; Osman, N. A. A. A review on powder-based additive manufacturing for tissue engineering: selective laser sintering and inkjet 3D printing. Sci. Technol. Adv. Mat. 2015, 16(3), 033502

    Article  Google Scholar 

  5. Tumbleston, J. R.; Shirvanyants, D.; Ermoshkin, N.; Janusziewicz, R.; Johnson, A. R.; Kelly, D.; Chen, K.; Pinschmidt, R.; Rolland, J. P.; Ermoshkin, A. Additive manufacturing. Continuous liquid interface production of 3D objects. Science 2015, 347(6228), 1349–1352

    CAS  Google Scholar 

  6. Geier, B., Local Motors shows Strati, the world’s first 3D-printed car. http://fortune.com/2015/01/13/local-motors-shows-stratithe-worlds-first-3d-printed-car/.

  7. Simmons, D., Airbus had 1,000 parts 3D printed to meet deadline. http://www.bbc.com/news/technology-32597809

  8. Tibbits, S., The emergence of “4D printing”. http://www.ted.com/talks/skylar_tibbits_the_emergence_of_4d _printing.

  9. Campbell, T.; Tibbits, S.; Garrett, B. The next wave: 4D printing-programming the material world. Frame, 2014

    Google Scholar 

  10. Xie, T. Tunable polymer multi-shape memory effect. Nature 2010, 464(7286), 267–270

    Article  CAS  Google Scholar 

  11. Zhao, Q.; Qi, H. J.; Xie, T. Recent progress in shape memory polymer: New behavior, enabling materials, and mechanistic understanding. Prog. Polym. Sci. 2015, 49-50, 79−120

    Article  Google Scholar 

  12. Zhao, Q.; Zou, W.; Luo, Y.; Xie, T. Shape memory polymer network with thermally distinct elasticity and plasticity. Sci. Adv. 2016, 2(1), DOI: 10.1126/sciadv.1501297

    Google Scholar 

  13. Zheng, N.; Fang, Z.; Zou, W.; Zhao, Q.; Xie, T. Thermoset shape-memory polyurethane with intrinsic plasticity enabled by transcarbamoylation. Angew. Chem. Int. Ed. 2016, 55(38), 11421–11425

    Article  CAS  Google Scholar 

  14. Hj, V. D. L.; Herber, S.; Olthuis, W.; Bergveld, P. Stimulus-sensitive hydrogels and their applications in chemical (micro)analysis. Analyst 2003, 128(4), 325–331

    Article  Google Scholar 

  15. Prabaharan, M.; Mano, J. F. Stimuli-responsive hydrogels based on polysaccharides incorporated with thermo-responsive polymers as novel biomaterials. Macromol. Biosci. 2006, 6(12), 991–1008

    Article  CAS  Google Scholar 

  16. Tokarev, I.; Minko, S. Stimuli-responsive hydrogel thin films. Soft matter 2009, 5(3), 511–524

    Article  CAS  Google Scholar 

  17. Qiu, Y.; Park, K. Environment-sensitive hydrogels for drug delivery. Adv. Drug. Deliv. Rev. 2012, 64(3), 49–60

    Article  Google Scholar 

  18. Shankar, R.; Ghosh, T. K.; Spontak, R. J. Dielectric elastomers as next-generation polymeric actuators. Soft matter 2007, 3(9), 1116–1129

    Article  CAS  Google Scholar 

  19. Yang, Z.; Herd, G. A.; Clarke, S. M.; Tajbakhsh, A. R.; Terentjev, E. M.; Huck, W. T. Thermal and UV shape shifting of surface topography. J. Am. Chem. Soc. 2006, 128(4), 1074–1075

    Article  CAS  Google Scholar 

  20. Naficy, S.; Gately, R.; Gorkin, R.; Xin, H.; Spinks, G. M. 4D printing of reversible shape morphing hydrogel structures. Macromol. Mater. Eng. 2017, 302(1), DOI: 10.1002/mame.201600212

    Google Scholar 

  21. Raviv, D.; Zhao, W.; McKnelly, C.; Papadopoulou, A.; Kadambi, A.; Shi, B.; Hirsch, S.; Dikovsky, D.; Zyracki, M.; Olguin, C.; Raskar, R.; Tibbits, S. Active printed materials for complex self-evolving deformations. Sci. Rep. 2014, 4, DOI: 10.1038/srep07422

  22. Tibbits, S.; McKnelly, C.; Olguin, C.; Dikovsky, D.; Hirsch, S. 4D printing and universal transformation. Proceedings of the 34th Annual Conference of the Association for Computer Aided Design in Architecture, 2014, 539−548

    Google Scholar 

  23. Zhao, Z.; Wu, J.; Mu, X.; Chen, H.; Qi, H. J.; Fang, D. Desolvation induced origami of photocurable polymers by digit light processing. Macromol. Rapid. Commun. 2017, 38(13), DOI: 10.1002/marc.201600625

    Google Scholar 

  24. 3D SYSTEMS, https://cn.3dsystems.com/3d-printers/projet -mjp-3600-dental.

  25. Stratasy, http://www.stratasys.com/3d-printers/technologies/ polyjet-technology.

  26. Lewis, J. A.; Smay, J. E.; Stuecker, J.; Cesarano, J. Direct ink writing of three-dimensional ceramic structures. J. Am. Ceram. Soc. 2010, 89(12), 3599–3609

    Article  Google Scholar 

  27. Ionov, L. 3D microfabrication using stimuli-responsive self-folding polymer films. Polym. Rev. 2013, 53(1), 92–107

    Article  CAS  Google Scholar 

  28. Ma, C.; Li, T.; Zhao, Q.; Yang, X.; Wu, J.; Luo, Y.; Xie, T. Supramolecular lego assembly towards three-dimensional multiresponsive hydrogels. Adv. Mater. 2014, 26(32), 5665–5669

    Article  CAS  Google Scholar 

  29. Zhao, Q.; Sun, J.; Ling, Q.; Zhou, Q. Synthesis of macroporous thermosensitive hydrogels: A novel method of controlling pore size. Langmuir 2009, 25(5), 3249–3254

    Article  CAS  Google Scholar 

  30. Gong, J. P.; Katsuyama, Y.; Kurokawa, T.; Osada, Y. Double-Network hydrogels with extremely high mechanical strength. Adv. Mater. 2003, 15(14), 1155-1158

    Article  CAS  Google Scholar 

  31. Ge, Q.; Qi, H. J.; Dunn, M. L. Active materials by four-dimension printing. Appl. Phys. Lett. 2013, 103(13), DOI: 10.1063/1.4819837

    Google Scholar 

  32. Ge, Q.; Dunn, C. K.; Qi, H. J.; Dunn, M. L. Active origami by 4D printing. Smart Mater. Struct. 2014, 23(9), DOI: 10.1088/0964-1726/23/9/094007

    Google Scholar 

  33. Genzer, J.; Liu, Y.; Shaw, B.; Dickey, M. In Light-induced sequential self-folding of pre-strained polymer sheets, APS Meeting 2014

    Google Scholar 

  34. Ying, L.; Shaw, B.; Dickey, M. D.; Genzer, J. Sequential self-folding of polymer sheets. Sci. Adv. 2017, 3(3), DOI: 10.1126/sciadv.1602417

    Google Scholar 

  35. Mao, Y.; Yu, K.; Isakov, M. S.; Wu, J.; Dunn, M. L.; Qi, H. J. Sequential self-folding structures by 3D printed digital shape memory polymers. Sci. Rep. 2015, 5, DOI: 10.1038/srep13616

  36. Ding, Z.; Yuan, C.; Peng, X.; Wang, T.; Qi, H. J.; Dunn, M. L. Direct 4D printing via active composite materials. Sci. Adv. 2017, 3(4), DOI: 10.1126/sciadv.1602890

    Google Scholar 

  37. Mao, Y.; Ding, Z.; Yuan, C.; Ai, S.; Isakov, M.; Wu, J.; Wang, T.; Dunn, M. L.; Qi, H. J. 3D printed reversible shape changing components with stimuli responsive materials. Sci. Rep. 2016, 6, DOI: 10.1038/srep24761

  38. Zarek, M.; Layani, M.; Cooperstein, I.; Sachyani, E.; Cohn, D.; Magdassi, S. 3D printing of shape memory polymers for flexible electronic devices. Adv. Mater. 2016, 28(22), 4449–4454

    Article  CAS  Google Scholar 

  39. Zarek, M.; Mansour, N.; Shapira, S.; Cohn, D. 4D printing of shape memory-based personalized endoluminal medical devices. Macromol. Rapid Commun. 2017, 38(2), DOI: 10.1002/marc.201600628

    Google Scholar 

  40. Zarek, M.; Layani, M.; Eliazar, S.; Mansour, N.; Cooperstein, I.; Shukrun, E.; Szlar, A.; Cohn, D.; Magdassi, S. 4D printing shape memory polymers for dynamic jewellery and fashionwear. Virtual. Phys. Prototyp. 2016, 11(4), 263–270

    Article  Google Scholar 

  41. Miao, S.; Zhu, W.; Castro, N. J.; Nowicki, M.; Zhou, X.; Cui, H.; Fisher, J. P.; Zhang, L. G. 4D printing smart biomedical scaffolds with novel soybean oil epoxidized acrylate. Sci. Rep. 2016, 6, DOI: 10.1038/srep27226

  42. Yu, K.; Dunn, M. L.; Qi, H. J. Digital manufacture of shape changing components. Extreme. Mech. Lett. 2015, 4, 9–17

    Article  Google Scholar 

  43. Huang, L. M.; Jiang, R. Q.; Wu, J. J.; Song, J. Z.; Bai, H.; Li, B. G.; Zhao, Q.; Xie, T. Ultrafast digital printing toward 4D shape changing materials. Adv. Mater. 2017, 29(7), DOI: 10.1002/adma.201605390

    Google Scholar 

  44. Yang, H.; Leow, W. R.; Wang, T.; Wang, J.; Yu, J.; He, K.; Qi, D.; Wan, C.; Chen, X. 3D printed photoresponsive devices based on shape memory composites. Adv. Mater. 2017, DOI: 10.1002/adma.201701627

    Google Scholar 

  45. Yang, K.; Grant, J. C.; Lamey, P.; Joshi-Imre, A.; Lund, B. R.; Smaldone, R. A.; Voit, W. Diels-alder reversible thermoset 3D printing: isotropic thermoset polymers via fused filament fabrication. Adv. Funct. Mater. 2017, DOI: 10.1002/adfm.201700318

    Google Scholar 

  46. Wei, H.; Zhang, Q.; Yao, Y.; Liu, L.; Liu, Y.; Leng, J. Direct-write fabrication of 4D active shape-changing structures based on a shape memory polymer and its nanocomposite. ACS Appl. Mater. Interfaces 2017, 9(1), 876–883

    Article  CAS  Google Scholar 

  47. Gladman, A. S.; Matsumoto, E. A.; Nuzzo, R. G.; Mahadevan, L.; Lewis, J. A. Biomimetic 4D printing. Nat. Mater. 2016, 15(4), 413–418

    Article  Google Scholar 

  48. Zhang, Q.; Yan, D.; Zhang, K.; Hu, G. Pattern transformation of heat-shrinkable polymer by three-dimensional (3D) printing technique. Sci. Rep. 2015, 5, DOI: 10.1038/srep08936

  49. Zhang, Q.; Zhang, K.; Hu, G. Smart three-dimensional lightweight structure triggered from a thin composite sheet via 3D printing technique. Sci. Rep. 2016, 6, DOI: 10.1038/srep22431

  50. Zhao, Z.; Wu, J.; Mu, X.; Chen, H.; Qi, H. J.; Fang, D. Origami by frontal photopolymerization. Sci. Adv. 2017, 3(4), DOI: 10.1126/sciadv.1602326

    Google Scholar 

  51. Sokol, Z., The U.S. Army is investing in 4D printing, expect craziness like self-altering camo. https://creators.vice.com/ en_us/article/yp5m8x/the-us-army-is-investing-in-4d-printing-e xpect-crazy-results.

  52. Kuribayashi, K.; Tsuchiya, K.; You, Z.; Tomus, D.; Umemoto, M.; Ito, T.; Sasaki, M. Self-deployable origami stent grafts as a biomedical application of Ni-rich TiNi shape memory alloy foil. Sci. Eng. A Struct. Mater. 2006, 419(1-2), 131–137

    Article  Google Scholar 

  53. Wache, H. M.; Tartakowska, D. J.; Hentrich, A.; Wagner, M. H. Development of a polymer stent with shape memory effect as a drug delivery system. J. Mater. Sci. Mater. Med. 2003, 14(2), 109–112

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Natural Science Founds for Distinguished Young Scholar (No. 21625402) and the National Natural Science Founds for Youths (No. 21604070).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tao Xie.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, JJ., Huang, LM., Zhao, Q. et al. 4D Printing: History and Recent Progress. Chin J Polym Sci 36, 563–575 (2018). https://doi.org/10.1007/s10118-018-2089-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10118-018-2089-8

Keywords

Navigation