Skip to main content
Log in

Reprocessible Epoxy Networks with Tunable Physical Properties: Synthesis, Stress Relaxation and Recyclability

  • Article
  • Published:
Chinese Journal of Polymer Science Aims and scope Submit manuscript

Abstract

In order to extend the application of epoxy vitrimer, 1,4-cyclohexanedicarboxylic acid (CHDA) was used as a co-curing agent and structure modifier for sebacic acid (SA) cured diglycidyl ether of bisphenol A (DGEBA) epoxy vitrimer to tailor the mechanical properties of epoxy vitrimers with 1,5,7-triazabicylo[4.4.0]dec-5-ene (TBD) as a transesterification catalyst. The glass transition temperature (Tg) of vitrimer increased gradually with the increase in CHDA content. Vitrimers behaved from elastomer to tough and hard plastics were successfully achieved by varying the feed ratio of CHDA to SA. Both the Young’s modulus and storage modulus increased apparently with the increase in CHDA content. Stress relaxation measurement indicated that more prominent stress relaxation occurred at elevated temperatures and the stress relaxation decreased with the increase of CHDA content due to the reduced mobility of the vitrimer backbone. The vitrimers showed excellent recyclability as evidenced by the unchanged gel fraction and mechanical properties after compression molded for several times. With tunable mechanical properties, the epoxy vitrimers may find extensive potential applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Montarnal, D.; Capelot, M.; Tournilhac, F.; Leibler, L. Silica-like malleable materials from permanent organic networks. Science 2011, 334(6058), 965–968.

    Article  CAS  Google Scholar 

  2. Brutman, J. P.; Delgado, P. A.; Hillmyer, M. A. Polylactide vitrimers. ACS Macro Lett. 2014, 3(7), 607–610.

    Article  CAS  Google Scholar 

  3. Maeda, T.; Otsuka, H.; Takahara, A. Dynamic covalent polymers: reorganizable polymers with dynamic covalent bonds. Prog. Polym. Sci. 2009, 34(7), 581–604.

    Article  CAS  Google Scholar 

  4. Wojtecki, R. J.; Meador, M. A.; Rowan, S. J. Using the dynamic bond to access macroscopicallyresponsive structurally dynamic polymers. Nat. Mater. 2011, 10(1), 14–27.

    Article  CAS  Google Scholar 

  5. Azcune, I.; Odriozola, I. Aromatic disulfide crosslinks in polymer systems: self-healing, reprocessability, recyclability and more. Eur. Polym. J. 2016, 84, 147–160.

    Article  CAS  Google Scholar 

  6. Kloxin, C. J.; Scott, T. F.; Adzima, B. J.; Bowman, C. N. Covalent adaptable networks (CANs): aunique paradigm in cross-linked polymers. Macromolecules 2010, 43(6), 2643–2653.

    Article  CAS  Google Scholar 

  7. Kloxin, C. J.; Bowman, C. N. Covalent adaptable networks: smart, reconfigurable and responsive network systems. Chem. Soc. Rev. 2013, 42(17), 7161–7173.

    Article  CAS  Google Scholar 

  8. Adzima, B. J.; Aguirre, H. A.; Kloxin, C. J.; Scott, T. F.; Bowman, C. N. Rheological and chemical analysis of reverse gelation in a covalently cross-linked Diels-Alder polymer network. Macromolecules 2008, 41(23), 9112–9117.

    Article  CAS  Google Scholar 

  9. Chen, X.; Dam, M. A.; Ono, K.; Mal, A.; Shen, H.; Nutt, S. R.; Sheran, K.; Wudl, F. A thermally re-mendable cross-linked polymeric material. Science 2002, 295(5560), 1698–1702.

    Article  CAS  Google Scholar 

  10. Zhang, J.; Niu, Y.; Huang, C.; Xiao, L.; Chen, Z.; Yang, K.; Wang, Y. Self-healable and recyclable triple-shape PPDO-PTMEG co-network constructed through thermoreversible Diels-Alder reaction. Polym. Chem. 2012, 3(6), 1390–1393.

    Article  CAS  Google Scholar 

  11. Tasdelen, M. A. Diels-Alder “click” reactions: recent applications in polymer and material science. Polym. Chem. 2011, 2(10), 2133–2145.

    Article  CAS  Google Scholar 

  12. Johnson, L. M.; Ledet, E.; Huffman, N. D.; Swarner, S. L.; Shepherd, S. D.; Durham, P. G.; Rothrock, G. D. Controlled degradation of disulfide-based epoxy thermosets for extreme environments. Polymer 2015, 64, 84–92.

    Article  CAS  Google Scholar 

  13. Ruiz de Luzuriaga, A.; Martin, R.; Markaide, N.; Rekondo, A.; Cabanero, G.; Rodriguez, J.; Odriozola, I. Epoxy resin with exchangeable disulfide crosslinks to obtain reprocessable, repairable and recyclable fiber-reinforced thermoset composites. Mater. Horiz. 2016, 3(3), 241–247.

    Article  CAS  Google Scholar 

  14. Ruiz de Luzuriaga, A.; Matxain, J. M.; Ruiperez, F.; Martin, R.; Asua, J. M.; Cabanero, G.; Odriozola, I. Transient mechanochromism in epoxy vitrimer composites containing aromatic disulfide crosslinks. J. Mater. Chem. C 2016, 4(26), 6220–6223.

    Article  CAS  Google Scholar 

  15. Xu, C. H.; Cao, L. M.; Lin, B. F.; Liang, X. Q.; Chen, Y. K. Design of self-healing supramolecular rubbers by introducing ionic cross-links into natural rubber via a controlled vulcanization. ACS Appl. Mater. Interfaces 2016, 8(27), 17728–17737.

    Article  CAS  Google Scholar 

  16. Capelot, M.; Montarnal, D.; Tournilhac, F.; Leibler, L. Metal-catalyzed transesterification for healing and assembling of thermosets. J. Am. Chem. Soc. 2012, 134(18), 7664–7667.

    Article  CAS  Google Scholar 

  17. Fortman, D. J.; Brutman, J. P.; Cramer, C. J.; Hillmyer, M. A.; Dichtel, W. R. Mechanically activated, catalyst-free polyhydroxyurethane vitrimers. J. Am. Chem. Soc. 2015, 137(44), 14019–14022.

    Article  CAS  Google Scholar 

  18. Taynton, P.; Yu, K.; Shoemaker, R. K.; Jin, Y.; Qi, H. J.; Zhang, W. Heat- or water-driven malleability in a highly recyclable covalent network polymer. Adv. Mater. 2014, 26(23), 3938–3942.

    Article  CAS  Google Scholar 

  19. Denissen, W.; Winne, J. M.; Du Prez, F. E. Vitrimers: permanent organic networks with glass-like fluidity. Chem. Sci. 2016, 7(1), 30–38.

    Article  CAS  Google Scholar 

  20. Gu, H.; Ma, C.; Gu, J.; Guo, J.; Yan, X.; Huang, J.; Zhang, Q.; Guo, Z. An overview of multifunctional epoxy nanocomposites. J. Mater. Chem. C 2016, 4(25), 5890–5906.

    Article  CAS  Google Scholar 

  21. Auvergne, R.; Caillol, S.; David, G.; Boutevin, B.; Pascault, J. P. Biobased thermosetting epoxy: present and future. Chem. Rev. 2014, 114(2), 1082–1115.

    Article  CAS  Google Scholar 

  22. Wan, J.; Zhao, J.; Gan, B.; Li, C.; Molina-Aldareguia, J.; Zhao, Y.; Pan, Y. T.; Wang, D. Y. Ultrastiff biobased epoxy resin with high T g and low permittivity: from synthesis to properties. ACS Sustain. Chem. Eng. 2016, 4(5), 2869–2880.

    Article  CAS  Google Scholar 

  23. Yang, S.; Chen, J. S.; Körner, H.; Breiner, T.; Ober, C. K.; Poliks, M. D. Reworkable epoxies: thermosets with thermally cleavable groups for controlled network breakdown. Chem. Mater. 1998, 10(6), 1475–1482.

    Article  CAS  Google Scholar 

  24. Pei, Z.; Yang, Y.; Chen, Q.; Terentjev, E. M.; Wei, Y.; Ji, Y. Mouldable liquid-crystalline elastomer actuators with exchangeable covalent bonds. Nat. Mater. 2014, 13(1), 36–41.

    Article  CAS  Google Scholar 

  25. Yang, Y.; Pei, Z.; Zhang, X.; Tao, L.; Wei, Y.; Ji, Y. Carbon nanotube-vitrimer composite for facile and efficient photo-welding of epoxy. Chem. Sci. 2014, 5(9), 3486–3492.

    Article  CAS  Google Scholar 

  26. Chabert, E.; Vial, J.; Cauchois, J. P.; Mihaluta, M.; Tournilhac, F. Multiple welding of long fiber epoxy vitrimer composites. Soft Matter 2016, 12(21), 4838–4845.

    Article  CAS  Google Scholar 

  27. Demongeot, A.; Mougnier, S. J.; Okada, S.; Soulie-Ziakovic, C.; Tournilhac, F. Coordination and catalysis of Zn2+ in epoxy-based vitrimers. Polym. Chem. 2016, 7(27), 4486–4493.

    Article  CAS  Google Scholar 

  28. Imbernon, L.; Norvez, S.; Leibler, L. Stress relaxation and self-adhesion of rubbers with exchangeable links. Macromolecules 2016, 49(6), 2172–2178.

    Article  CAS  Google Scholar 

  29. Legrand, A.; Soulie-Ziakovic, C. Silica-epoxy vitrimer nanocomposites. Macromolecules 2016, 49(16), 5893–5902.

    Article  CAS  Google Scholar 

  30. Pei, Z.; Yang, Y.; Chen, Q.; Wei, Y.; Ji, Y. Regional shape control of strategically assembled multishape memory vitrimers. Adv. Mater. 2016, 28(1), 156–160.

    Article  CAS  Google Scholar 

  31. Yang, Y.; Pei, Z.; Li, Z.; Wei, Y.; Ji, Y. Making and remaking dynamic 3D structures by shining light on flat liquid crystalline vitrimer films without a mold. J. Am. Chem. Soc. 2016, 138(7), 2118–2121.

    Article  CAS  Google Scholar 

  32. Yang, Z.; Wang, Q.; Wang, T. Dual-triggered and thermally reconfigurable shape memory graphene-vitrimer composites. ACS Appl. Mater. Interfaces 2016, 8(33), 21691–21699.

    Article  CAS  Google Scholar 

  33. Altuna, F. I.; Hoppe, C. E.; Williams, R. J. J. Shape memory epoxy vitrimers based on DGEBA crosslinked with dicarboxylic acids and their blends with citric acid. RSC Adv. 2016, 6(91), 88647–88655.

    Article  CAS  Google Scholar 

  34. Zeng, J. B.; Li, Y. D.; Zhu, Q. Y.; Yang, K. K.; Wang, X. L.; Wang, Y. Z. A novel biodegradable multiblock poly(ester urethane) containing poly(L-lactic acid) and poly(butylene succinate) blocks. Polymer 2009, 50(5), 1178–1186.

    Article  CAS  Google Scholar 

  35. Vinogradov, G. V.; Isayev, A. I.; Katsyutsevich, E. V. Critical regimes of oscillatory deformation of polymeric systems above glass transition and melting temperatures. J.p Apl. Polym. Sci. 1978, 22(3), 727–749.

    Article  CAS  Google Scholar 

  36. Denissen, W.; Rivero, G.; Nicolay, R.; Leibler, L.; Winne, J. M.; Du Prez, F. E. Vinylogous urethane vitrimers. Adv. Funct. Mater. 2015, 25(16), 2451–2457.

    Article  CAS  Google Scholar 

  37. Capelot, M.; Unterlass, M. M.; Tournilhac, F.; Leibler, L. Catalytic control of the vitrimer glass transition. ACS Macro Lett. 2012, 1(7), 789–792.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (No. 51703188) and Fundamental Research Funds for the Central Universities (Nos. XDJK2017A016 and XDJK2017C022).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yi-Dong Li or Jian-Bing Zeng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, JH., An, XP., Li, YD. et al. Reprocessible Epoxy Networks with Tunable Physical Properties: Synthesis, Stress Relaxation and Recyclability. Chin J Polym Sci 36, 641–648 (2018). https://doi.org/10.1007/s10118-018-2027-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10118-018-2027-9

Keywords

Navigation