Skip to main content
Log in

A universal blown film apparatus for in situ X-ray measurements

  • Papers
  • Published:
Chinese Journal of Polymer Science Aims and scope Submit manuscript

Abstract

A setup of blown film machine combined with in situ synchrotron radiation X-ray diffraction measurements and infrared temperature testing is reported to study the structure evolution of polymers during film blowing. Two homemade auto-lifters are constructed and placed under the blown machine at each end of the beamline platform which move up and down with a speed of 0.05 mm/s bearing the 200 kg weight machine. Therefore, structure development and temperature changes as a function of position on the film bubble can be obtained. The blown film machine is customized to be conveniently installed with precise servo motors and can adjust the processing parameters in a wide range. Meanwhile, the air ring has been redesigned in order to track the structure information of the film bubble immediately after the melt being extruded out from the die exit. Polyethylene (PE) is selected as a model system to verify the feasibility of the apparatus and the in situ experimental techniques. Combining structure information provided by the WAXD and SAXS and the actual temperature obtained from the infrared probe, a full roadmap of structure development during film blowing is constructed and it is helpful to explore the molecular mechanism of structure evolution behind the film blowing processing, which is expected to lead to a better understanding of the physics in polymer processing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zhang, X., Elkoun, S., Ajji, A. and Huneault, M., Polymer, 2004, 45(1): 217

    Article  CAS  Google Scholar 

  2. Kanai, T. and Campbell, G.A., "Film processing", Carl Hanser Verlag GmbH Co KG, 2013, p. 3

    Google Scholar 

  3. Patel, R.M., Butler, T.I., Walton, K.L. and Knight, G., Polym. Eng. Sci., 1994, 34(19): 1506

    Article  CAS  Google Scholar 

  4. Lu, J., Sue, H.J. and Rieker, T.P., J. Mater. Sci., 2000, 35(20): 5169

    Article  CAS  Google Scholar 

  5. Field, G.J., Micic, P. and Bhattacharya, S.N., Polym. Int., 1999, 48(6): 461

    Article  CAS  Google Scholar 

  6. Münstedt, H., Steffl, T. and Malmberg, A., Rheol. Acta, 2005, 45(1): 14

    Article  Google Scholar 

  7. Kwack, T.H., Han, C.D. and Vickers, M., J. Appl. Polym. Sci., 1988, 35(2): 363

    Article  CAS  Google Scholar 

  8. Choi, K.J., Spruiell, J.E. and White, J.L., J. Polym. Sci., 1982, 20(1): 27

    CAS  Google Scholar 

  9. Li, L., Wang, Q. and Wang, R., J. Appl. Polym. Sci., 2005, 98(2): 774

    Article  CAS  Google Scholar 

  10. Lu, Y., Sun, Y.Y., Chen, R., Li, X.H. and Men, Y.F., Chinese J. Polym. Sci., 2014, 32(9): 1210

    Article  CAS  Google Scholar 

  11. Hu, S., Rieger, J., Yi, Z., Zhang, J., Chen, X., Roth, S.V., Gehrke, R. and Men, Y.F., Langmuir, 2010, 26(16): 13216

    Article  CAS  Google Scholar 

  12. Ajji, A., Zhang, X. and Elkoun, S., Polymer, 2005, 46(11): 3838

    Article  CAS  Google Scholar 

  13. Ghaneh-Fard, A., Carreau, P. and Lafleur, P., Int. Polym. Proc., 1997, 12(2): 136

    Article  CAS  Google Scholar 

  14. Gururajan, G. and Ogale, A.A., J. Raman Spectrosc., 2009, 40(2): 212

    Article  CAS  Google Scholar 

  15. Bullwinkel, M., Campbell, G., Rasmussen, D., Krexa, J. and Brancewitz, C., Int. Polym. Proc., 2001, 16(1): 39

    Article  CAS  Google Scholar 

  16. Aggarwal, S. and Tilley, G., J. Polym. Sci., 1955, 18(87): 17

    Article  CAS  Google Scholar 

  17. Jdzefowiczt, M. and Epstein, A., Macromolecules, 1991, 24(3): 779

    Article  Google Scholar 

  18. Heffelfinger, C. and Burton, R., J. Polym. Sci., 1960, 47(149): 289

    Article  CAS  Google Scholar 

  19. Nikitenko, S., Beale, A.M., van der Eerden, A.M., Jacques, S.D., Leynaud, O., O–Brien, M.G., Detollenaere, D., Kaptein, R., Weckhuysen, B.M. and Bras, W., J. Synchrotron Radiat., 2008, 15(6): 632

    Article  CAS  Google Scholar 

  20. Hughes, D., Mahendrasingam, A., Heeley, E., Oatway, W., Martin, C., Towns-Andrews, E. and Fuller, W., J. Synchrotron Radiat., 1996, 3(2): 84

    Article  CAS  Google Scholar 

  21. Wang, Z., Ma, Z. and Li, L.B, Macromolecules, 2016, 49(5): 1505

    Article  Google Scholar 

  22. Gururajan, G., Shan, H., Lickfield, G. and Ogale, A.A., Polym. Eng. Sci., 2008, 48(8): 1487

    Article  CAS  Google Scholar 

  23. Gururajan, G. and Ogale, A.A., Polym. Eng. Sci., 2012, 52(7): 1532

    Article  CAS  Google Scholar 

  24. van Drongelen, M., Cavallo, D., Balzano, L., Portale, G., Vittorias, I., Bras, W., Alfonso, G.C. and Peters, G.W., Macromol. Mater. Eng., 2014, 299(12): 1494

    Article  Google Scholar 

  25. Troisi, E., van Drongelen, M., Caelers, H., Portale, G. and Peters, G., Eur. Polym. J., 2016, 74: 190

    Article  CAS  Google Scholar 

  26. Meng, L.P., Lin, Y.F., Xu, J.L., Chen, X.W., Li, X.Y., Zhang, Q.L., Zhang, R., Tian, N. and Li, L.B., Chinese J. Polym. Sci., 2015, 33(5): 754

    Article  CAS  Google Scholar 

  27. Cui, K.P, Liu, Y.P, Meng, L.P, Li, X.Y, Wang, Z., Chen, X.W. and Li, L.B, Polym. Test., 2014, 33: 40

    Article  CAS  Google Scholar 

  28. Liu, Y.P, Zhou, W.M, Cui, K.P, Tian, N., Wang, X., Liu, L.B., Li, L.B. and Zhou, Y.G, Rev. Sci. Instrum., 2011, 82(4): 045104

    Article  Google Scholar 

  29. Meng, L.P, Li, J., Cui, K.P, Chen, X.W, Lin, Y.F, Xu, J.L. and Li, L.B, Rev. Sci. Instrum., 2013, 84(11): 115104

    Article  Google Scholar 

  30. Xu, H.J. and Zhao, Z.T, Nucl. Sci. Tech., 2008, 19(1): 1

    Article  Google Scholar 

  31. Zeng, J.R, Bian, F.G, Wang, J., Li, X.H, Wang, Y.Z, Tian, F. and Zhou, P., J. Synchrotron Radiat., 2017, 24(2): 509

    Article  CAS  Google Scholar 

  32. Butler, M.F. and Donald, A.M., J. Appl. Polym. Sci., 1998, 67(2): 321

    Article  CAS  Google Scholar 

  33. Kuijk, E., Tas, P. and Neuteboom, P., J. Plast. Film Sheet, 1998, 14(2): 121

    Article  Google Scholar 

  34. Chang, A., Tau, L., Hiltner, A. and Baer, E., Polymer, 2002, 43(18): 4923

    Article  CAS  Google Scholar 

  35. Cherukupalli, S.S. and Ogale, A.A., Polym. Eng. Sci., 2004, 44(8): 1484

    Article  CAS  Google Scholar 

  36. Stein, R.S. and Norris, F.H., J. Polym. Sci., 1956, 21(99): 381

    Article  CAS  Google Scholar 

  37. Schultz, J., Lin, J. and Hendricks, R., J. Appl. Crystallogr., 1978, 11(5): 551

    Article  CAS  Google Scholar 

  38. Hikosaka, M., Amano, K., Rastogi, S. and Keller, A., Macromolecules, 1997, 30(7): 2067

    Article  CAS  Google Scholar 

  39. Calleja, F.B., Bassett, D. and Keller, A., Polymer, 1963, 4: 269

    Article  Google Scholar 

  40. Charlier, P., 2012, U.S. Pat., 8,337,743

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to You-xin Ji  (纪又新) or Liang-bin Li  (李良彬).

Additional information

This work was financially supported by the National Key R&D Plan of China (2016YFB0302501).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, R., Ji, Yx., Zhang, Ql. et al. A universal blown film apparatus for in situ X-ray measurements. Chin J Polym Sci 35, 1508–1516 (2017). https://doi.org/10.1007/s10118-017-2000-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10118-017-2000-z

Keywords

Navigation