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Abstract

As the volume, accuracy and precision of digital geographic information have increased, concerns 

regarding individual privacy and confidentiality have come to the forefront. Not only do these 

challenge a basic tenet underlying the advancement of science by posing substantial obstacles to 

the sharing of data to validate research results, but they are obstacles to conducting certain 

research projects in the first place. Geospatial cryptography involves the specification, design, 

implementation and application of cryptographic techniques to address privacy, confidentiality and 

security concerns for geographically referenced data. This article defines geospatial cryptography 

and demonstrates its application in cancer control and surveillance. Four use cases are considered: 

(1) national-level de-duplication among state or province-based cancer registries; (2) sharing of 

confidential data across cancer registries to support case aggregation across administrative 

geographies; (3) secure data linkage; and (4) cancer cluster investigation and surveillance. A 

secure multi-party system for geospatial cryptography is developed. Solutions under geospatial 

cryptography are presented and computation time is calculated. As services provided by cancer 
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registries to the research community, de-duplication, case aggregation across administrative 

geographies and secure data linkage are often time-consuming and in some instances precluded by 

confidentiality and security concerns. Geospatial cryptography provides secure solutions that hold 

significant promise for addressing these concerns and for accelerating the pace of research with 

human subjects data residing in our nation’s cancer registries. Pursuit of the research directions 

posed herein conceivably would lead to a geospatially encrypted geographic information system 

(GEGIS) designed specifically to promote the sharing and spatial analysis of confidential data. 

Geospatial cryptography holds substantial promise for accelerating the pace of research with 

spatially referenced human subjects data.

Keywords

Geospatial cryptography; Geographic information science; Spatial methods; Human subjects 
research; Privacy

1 Introduction

Access to spatially referenced health data is vital for numerous reasons, including being able 

to share and combine information; identify patterns in the search for etiology; and logistical 

support and planning. Quite understandably, this access continues to cause concerns among 

data guardians due to the consequences of privacy breaches or the careless release of 

sensitive information. This concern has increased as the precision and availability of other 

geographic data make recreating the identity of individuals from even partial information a 

possibility. Researchers in mathematical cryptography have completed a substantial body of 

confidentiality-related work to identify possible solutions and to quantify re-identification 

risk (Aslett et al. 2015; Kim et al. 2013). But to date, no universally accepted best practices 

guide has been adopted, and mathematically proven cryptographic techniques for solving 

confidentiality and security concerns when handling individual-level data from our nation’s 

cancer registries have not been implemented, even though the potential benefits are high. It 

has been suggested that a factor explaining this gap has been the search for a generally 

applicable mathematical solution. However, it may be more productive to consider niche-

specific solutions rather than universal methods or guidelines that are supposed to cover all 

eventualities. This article therefore focuses on the eventual development of location-specific 

best practices for application in cancer registries. We begin this effort by considering four 

types of situations (use cases) in which the precise location of an individual is required to be 

known to correctly complete a research model in epidemiological research in cancer 

research.

The recent literature on spatial confidentiality involves geographic masking and related 

techniques that seek to obscure geographic coordinates and/or analysis results to the 

minimum extent needed to prevent re-identification, the control of data access or securing 

the transmission of data (Richardson et al. 2015; Zandbergen 2014). All these approaches 

have limitations on a continuum ranging from the usefulness to researchers to the 

effectiveness of reducing confidentiality breaches. An additional consideration is the 

logistical ease of implementation; a solution may theoretically be perfect, but if it is unlikely 
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for either the data guardian or end user to implement, then it has applied limitations. Here 

we consider spatial confidentiality problems encountered by cancer registries. We introduce 

geospatial cryptography, which we define as the ‘specification, design, implementation and 

application of mathematical and cryptographic techniques to address privacy, confidentiality 

and security concerns that arise in the analysis of spatially referenced data on individuals’. 

In this article we assume both data guardian and data user have the technical ability to 

perform the required manipulations. We also assume the data user understands the types of 

tasks to be performed and is not expecting to perform an exploratory analysis that would 

involve multiple data queries, the addition of data from external sources and data 

visualizations involving linked windows and statistical and cartographic brushing. 

Relaxation of these assumptions is considered in the Sect. 4.

To illustrate that there is a need for such niche confidentiality solutions, we consider the use 

of geospatial cryptography in cancer control and surveillance by considering four use cases: 

(1) national-level de-duplication among state or province-based cancer registries; (2) Sharing 

of confidential data across cancer registries to support case aggregation across administrative 

geographies; (3) secure data linkage; and (4) cancer cluster investigation and surveillance. 

These are considered in order of difficulty, concluding with geospatial cryptographic 

analysis for cancer clustering. This most difficult use case employs homomorphic 

encryption, with data analysis occurring within a “black box” such that the analyst does not 

have direct access to the data (Fig. 1, to be discussed in more detail later), yet still allowing 

for niche suitable advanced spatial analysis, such as a space–time cluster analysis of 

residence geocoded incident cases.

Protection of confidentiality is a paramount concern in human subjects research, yet limits 

data sharing and access to the very information that is required to accomplish significant, 

rapid advances in public health (Wartenberg and Thompson 2010). This problem spans the 

research continuum, from basic discovery to translational research (VanWey et al. 2005). 

Both epidemiological and laboratory studies may employ data linkage using individual 

identifiers such as name and address (Rushton et al. 2006; Verykios et al. 2009) to link 

health data with Medicare and other government databases (National Research Council 

2007). Common linking techniques require identifying information to facilitate high match 

rates, but this is often not permissible for privacy reasons. Protocols for confidentiality 

protection vary across government agencies and research organizations, with some requiring 

that researchers visit and undertake their analyses within a secure facility limiting access to 

data. In other instances, data custodians only release de-identified information such that 

individual identifiers cannot be reconstructed, while others rely on aggregation to protect 

confidentiality (Abowd and Lane 2004; Fefferman et al. 2005; Ciriani et al. 2010).

De-identification can result in a loss of precision (due to generalization and aggregation) and 

statistical power (due to suppression). For geospatial analysis, the problem is to protect 

confidentiality while using geographic information (e.g., coordinates of place of residence) 

to undertake cluster analysis, spatial regressions, spatial epidemiology, exposure 

reconstruction, healthcare access evaluation and place-specific health disparities analysis or 

any analysis that involves geographic locations from health records. In spite of the necessity 

of the sharing and analysis of health data, restrictive institutional protocols are increasingly 
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employed to strictly limit data access, with some organizations going so far as to decline to 

release individual-level data under any circumstance. Yet data sharing is at the very heart of 

the scientific method; it makes possible validation studies to duplicate results, and the lack 

of ready access to high-precision federal vital records data makes many etiologic studies 

difficult if not impossible. Theoretically, the ability of geospatial cryptography to share and 

analyze confidential data with a minimal risk of releasing private information would be a 

major advance that would accelerate both basic and applied research. Recent advances in 

secure multi-party computation and homomorphic cryptography make possible analysis of 

encrypted data without decryption (Gentry 2009; Smart and Vercauteren 2010), but have yet 

to be applied in geography. Under these approaches, confidential data would not have to be 

decrypted to allow analysis and dissemination of the results. However, current limitations to 

this approach include the widespread usage across all situations and the required technical 

expertise. The NLM funded project titled “Exploratory Evaluation of Homomorphic 

Cryptography for Confidentiality Protection” (GMJ Principal Investigator) investigated the 

feasibility of using homomorphic cryptography in geospatial health analysis of confidential 

data (http://projectreporter.nih.gov/project_info_description.cfm?

projectnumber=1R21LM011132-01A1), some of the results of which are reported in this 

article.

While etiologic investigations and exposures reconstructions in small geographic areas are 

realizing substantial insights using local information (Bell et al. 2006; Meliker et al. 2009), 

the danger of reengineering actual or approximate addresses from analytical output is a 

significant concern (Curtis et al. 2006a; Gutmann et al. 2008; Wieland et al. 2008; Boulos et 

al. 2009). Conducting space–time analyses using encrypted geographic coordinate 

information could make possible individual-level spatial and spatiotemporal epidemiological 

analyses without compromising individual privacy. Geospatial cryptography may 

fundamentally transform how we access, share and analyze confidential geospatial health 

data, within a predetermined framework of likely need, expected utility and technical ability. 

As such, this paper is organized around the four use cases introduced earlier that have been 

structured to illustrate the benefits and limitations of geospatial cryptography in the analysis 

of data from our nation’s cancer registries.

1.1 Contributions of this paper

There are three substantive contributions of this paper. First, secure computational platforms 

have yet to be defined for geospatial cryptography, a task accomplished in this paper. 

Second, this paper is the first to define four real-world use cases that involve the analysis of 

confidential data from cancer registries where the present state of practice substantially 

reduces the pace of cancer research. These are identified and evaluated in this paper, and 

geospatial cryptographic solutions for each use case are proposed. Finally, this research 

demonstrates how geospatial cryptography has the potential to accelerate the pace of cancer 

research through secure data sharing.
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2 Materials and methods

2.1 A methodology for geospatial cryptography

Before considering each use case, we first describe an approach to geospatial cryptography 

involving partial homomorphic encryption and secure multi-party computation.

For decades, a major goal of cryptography has been the development of encryption methods 

for which one can add and multiply ciphertexts, where ciphertexts are the encrypted data. 

This would enable a fully homomorphic encryption scheme, since once addition and 

multiplication are possible, one can compute any function. Because of its inherent data 

security (the data keeper does not have to share the key; hence, security is very high), and 

because re-identification risk can be mathematically quantified (hence, data security can be 

directly assessed), it appears homomorphic encryption could accelerate human subjects 

research whenever confidential data must be shared for analysis to proceed. Conceivably, 

one could conduct the geospatial analysis in the encrypted space using original coordinates 

(not “fuzzed” or aggregated) and return the results (e.g., odds ratios for exposure; incidence/

mortality rate; and cluster results), without ever revealing individual locations. As noted in 

the discussion, the development of a geospatially encrypted geographic information system 

(GEGIS) would support mapping and visualization.

Formally, homomorphic cryptography is defined as a procedure that encrypts data in such a 

fashion that mathematical operations can be conducted without having to decrypt the data 

(Fontaine and Galand 2007). Results are then decrypted and reported, without ever revealing 

confidential information. In the additive homomorphic cryptosystem of Paillier (Paillier 

1999), the sum of two messages is equal to the decryption of the product of their 

corresponding ciphertexts:

(1)

Here m1 and m2 are the two plaintext messages, E is the encryption function, D is the 

decryption function, e is the public encryption key and d is the private decryption key. The 

product of a ciphertext may also be calculated in the Paillier cryptosystem:

(2)

Here q is just an arbitrary exponent. In addition, Paillier encryption is probabilistic in that its 

encryption algorithm uses pseudorandom number generators. Hence, encrypting the same 

message several times will yield different ciphertexts, making it very difficult for even an 

informed adversary to compare encrypted messages in order to ascertain the original value 

that was encrypted.

Recently, a fully homomorphic encryption scheme was developed that allows for computing 

arbitrary functions over encrypted data without the decryption key (Gentry 2009). While the 

Gentry system is an active research area in computer science (Gentry and Halevi 2011; 
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Smart and Vercauteren 2010; Santos et al. 2015), our experiments found it not to be practical 

at this time as it requires large ciphertexts and considerable computation time. However, a 

hub-based system for disease surveillance based on Paillier encryption has been successfully 

implemented (El Emam et al. 2011). For that specific problem, an efficient and scalable 

protocol was developed which also provided strong privacy guarantees. This gives some 

confidence that a Paillier-based system provides a viable framework for geospatial 

cryptography in cancer control and surveillance, and is the system used in our research.

2.2 Secure multi-party computation

The computer science community has developed a number of secure multi-party 

computation (SMC) protocols for basic mathematical operations, such as multiplication and 

the dot product. These have been integrated into protocols that perform more complex data 

mining analysis, such as association rule mining. However, there have been very few 

applications of SMC to solving healthcare problems, such as public health surveillance (El 

Emam et al. 2011) and running basic queries on genomic sequence databases (Kantarcioglu 

et al. 2008). Geospatial analysis imposes a further challenge: When locations of place of 

residence are displayed, individual privacy can be breached by reverse geocoding (Rushton 

et al. 2006), as occurred for mortality maps after Hurricane Katrina (Curtis et al. 2006b). To 

date and to our knowledge, SMC platforms have yet to be defined for geospatial 

cryptography, a unique contribution of this paper. Here we propose a prototype secure multi-

party computation platform for secure data analysis in general and the analysis of geospatial 

cancer data in particular.

The configuration of the prototype SMC platform is defined in terms of the parties involved 

and their communications. For confidential health data, as maintained by cancer registries, 

three types of parties may be involved: the researcher, data custodians (DC) which are the 

cancer registries themselves, and semi-trusted third parties (TTPs). TTPs are working in 

between the two other parties, by receiving the private shares of data from the DC and 

performing the distributed computations to extract and send the query results requested by 

the researcher. The TTPs never receive keys to decrypt the data. The data are encrypted 

while under the provenance of the data custodians, and they are never decrypted once they 

leave the DC and are shared with the TTP. Hence, the TTP can receive whatever private data 

the DC wishes to share for analysis (e.g., either complete data or a subset of information for 

each individual). Notice that the TTP could be defined to reside within the domain of the 

cancer registry, or be implemented on the cloud or at an external data center or server. 

Where the TTPs would be located thus is flexible, and in a given implementation would be 

placed to comply with the registry’s regulatory environment and bureaucratic decision 

process.

The desired characteristics of the protocol are threefold. First, it ensures that the researcher 

cannot get access to, view, or inadvertently reveal any personal health information. Second, 

the DC will give service to the researcher through two or more TTPs, and the TTPs have no 

access to the original data. Finally, the DC may or may not know the queries requested by 

the researcher, depending on the specific requirements of the data steward to ensure 

appropriate use of data.. Note that collusion among all of the TTPs is required to 
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compromise the original data. However, even if all except one TTP collude, they would not 

be able to reach the original data owned by the DC. This protocol thus suits the call, for 

example, for an NIH-wide GIS capability (Richardson et al. 2013) that will support intra-and 

extra-mural researchers by providing geospatial analysis of confidential health data without 

compromising individual privacy. It also provides a computational platform suitable for the 

four use cases considered here.

2.2.1 Setup phase—There are two main steps in the protocol: setup and operation. Figure 

1 illustrates the setup phase of the protocol. There are four steps in the setup phase that 

ultimately result in the establishment of security keys to the involved TTPs and metadata and 

a data map being sent to the researcher. The following notation is used: a denotes the raw 

data stored by DC; Ei is the encryption of the raw data using the encryption key initiated by 

TTPi; and µ is the mean value of the instances of the selected attribute. To establish secure 

data distribution, each data item a is privately distributed among N trusted third parties, 

TTP1,…, TTPN, as follows:

1. Each TTP generates a set of public and private keys, and broadcasts its public 

key.

2. DC randomly selects numbers a1,…, aN-1, and calculates aN such that 

.

3. DC encrypts each private share using the corresponding public key received from 

the TTPs and sends Ei (ai) to TTPi, for i = 1,…, N.

4. Each TTP decrypts the received value from the DC and privately stores its own 

dataset.

The DC then sends the metadata and data map to the researcher, who uses this to make 

queries and conduct secure analyses.

2.2.2 Operations phase—In the operations phase, queries sent by the researcher are 

performed on the secure data by the TTP and the final result is then sent back to the 

researcher. Figure 2 illustrates the operation phase of the protocol, which involves 3 steps:

1. The researcher creates her query and sends it to the TTPs interfaces.

2. As called for by the query, the TTPs perform the analyses using the Paillier 

cryptosystem and secure building blocks (such as secure multi-party 

multiplication and dot product).

3. Once the computations are complete, the researcher is sent the final result 

wrapped with her private random value (key), and extracts the analysis result by 

unwrapping the received value.

Here we present a simple example of computing the mean to illustrate how our platform 

could work. The example uses two TTPs, TTP1 and TTP2, but the approach applies without 

loss of generality when there are more than two TTPs. We let n be the number of records in 

the data set.
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1. The researcher generates a random number, rRC, and sends its encryption, 

E1(rRC), to TTP2.

2. The researcher sends the name of the attribute whose mean is to be calculated, A, 

to both TTPs.

3.
TTP2 computes , encrypts µ2 and sends E1(µ2) ⊗ E1(rRC) to TTP1.

4.
TTP1 decrypts E1(µ2) ⊗ E1(rRC) = E1(µ2 + rRC), adds  and sends 

the result to the researcher.

5. The researcher subtracts the random number rRC from the received value to reach 

the mean value of the selected attribute.

One might ask why cannot data custodians manage the distribution of encrypted data?

In fact, the TTP could be the data custodians themselves, and it will depend on the specific 

implementation and institutional considerations. A second consideration is why do analytical 

results need to be encrypted, as results do not necessarily violate data confidentiality? 

Whether the results need to be encrypted will depend on the re-identification risks of the 

results. Multi-party computation provides a wide range of flexibility and precision in terms 

of what can be inferred about individual subjects only given access to the result. Consider 

some examples relevant to the use cases. In some situations, it may be appropriate to deliver 

specific values, such as the identifiers of records matching a certain criterion (e.g., secure 

data linkage). In other instances, it may be more appropriate to only produce a count (e.g., 

case aggregation). Or in cases of high re-identification risk, a computation could be specified 

to only return a single bit: yes or no, there were matches (e.g., de-duplication via record 

matching). Such Boolean responses would also be used in a cluster surveillance system; yes 

or no, there was global clustering; yes or no, there was local clustering; yes or no, there was 

focused clustering; yes or no, there was a statistically significant departure from the baseline 

in incidence or mortality (e.g., cluster detection and surveillance). Additional information 

acceptable to the data custodians might also be included, such as measures of comparative 

risk associated with the cluster, number of cases in the cluster and so on. The key is to 

provide information to support informed decision-making that is also acceptable to the data 

custodians and does not increase re-identification risk. This section has provided a 

description of how geospatial cryptography can be implemented as a secure system, with 

specific examples.

3 Results

We now consider the four use cases that illustrate how applied geospatial cryptography can 

be used in cancer control and surveillance at our nation’s cancer registries.

3.1 Use case one: national-level de-duplication among state or province-based cancer 
registries

Duplication of health records arises when multiple records of the same health event are 

recorded by several different data stakeholders. One example is cancer, where duplicate 
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records regarding the same health event (for example, tumor diagnosis) arise when a person 

visits health providers in more than one administrative jurisdiction. Every state, province and 

territory in the USA and Canada has a population-based cancer registry which collects 

information on every newly diagnosed cancer cases in their respective geographic 

jurisdiction. Registry data are certified annually by the North American Association of 

Central Cancer Registries (NAACCR) based on meeting objective data quality standards. 

The standards include measures for completeness of coverage, accuracy (passing edits) and 

timeliness of reporting. The certification process requires de-duplication of data within a 

state or province, but currently does not address the possibility of duplication between states 

and provinces, a deficiency addressed by this use case. Some states also include additional, 

non-certified registries, creating additional duplication challenges. For example, a collection 

of papers appeared in 2015 in the journal Statistics and Public Policy that conducted cluster 

analyses on data described in Amin et al. (2014) as coming from the Florida Association of 

Pediatric Tumor Programs, which is separate from the Florida Cancer Data System. 

Inclusion of data from data sources other than certified registries may pose additional 

concerns and is an issue for future work.

The registration of a specific cancer depends on the place of residence at the time of 

diagnosis. Since an individual may have multiple different cancers over the course of a 

lifetime, sometimes these cancers are recorded as occurring in different jurisdictions. It is 

also possible that a resident of one jurisdiction would be diagnosed or treated outside of their 

home state or province. This arises, for example, for people who reside in different places at 

different times of the year (e.g., “snowbirds”), and the same cancer is “diagnosed” in each 

jurisdiction for each place of residence (e.g., both Florida and New York). Data on out-of-

state residents are routinely shared with their state of residence through data exchange 

agreements. However, when both jurisdictions have a valid address for diagnosed cases, the 

cases can become duplicates, counted in each jurisdiction, thus overestimating the number of 

cancer cases.

Further, confidentiality concerns and concomitant regulations restrict cancer registries from 

sharing the necessary personal identifying information that is required to de-duplicate cases 

across cancer registries. As a result, an unknown proportion of cancer incidence is 

overestimated due to an inability to undertake de-duplication across registries, a problem 

that is readily solved through geospatial cryptography.

From a technical perspective, the non-cryptographic approach to de-duplication requires 

plaintext (i.e., non-encrypted) access to the other party’s dataset. Duplicates are identified by 

directly comparing every element in the first list with every element in the second list and 

recording any matches. The obvious limitation of this approach is that the de-duplication 

cannot proceed unless at least one party agrees to share its data with the other. In practice 

and as noted earlier, there are privacy laws and policies in place that expressly prevent this, 

or, in cases where such sharing can be accomplished, it may be further restricted by legal, 

regulatory or procedural bottlenecks governing the access process itself. Even if a data 

release is possible in principle, the specific data to be released may require a risk 

assessment, and in some cases, a partial de-identification.
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Secure computation, by comparison, does not require one party to release their data to the 

other. Rather the party sends their data in an encrypted form, under a key only they know. 

De-duplication is performed only on the encrypted data. The results can be provided in 

several forms, depending on the regulatory and bureaucratic environment. First, as a 

response indicating whether or not duplicates were found (yes or no), and hence, further 

scrutiny is warranted. Second, as a list of the duplicates, encrypted and returned to each of 

the registries that contain the duplicate. Third, as a decrypted list of the duplicates, sent to 

each registry. Notice that access to personally identifiable information in another registries 

data is not a precondition to conducting the de-duplication.

What are the benefits of secure de-duplication using geospatial cryptography? Under current 

practice, de-duplication requires that state registries share data records for purposes of 

identifying duplicate records. Some state registries have more severe restrictions on sharing 

data compared with others. In fact, some state registries can only participate in research in a 

very limited capacity, if at all, because their data are so heavily protected. Further, some 

registries limit the variables submitted to NAACCR (e.g. some states submit tract-level data 

to their funding agencies but not to NAACCR). A program that utilizes encryption would 

save significant time and could be used for multistate de-duplication, which is extremely 

challenging. National-level de-duplication must be done through interstate cooperation, 

because the NAACCR Cancer in North American (CiNA) dataset does not contain the 

personal identifiers required for de-duplication. A substantial opportunity thus exists to 

enhance data sharing and to improve data accuracy among multiple data stakeholders 

through geospatial cryptography. Currently, NAACCR is undergoing a pilot study to 

determine the feasibility and accuracy of applying a hashing encryption approach to inter-

state deduplication. NAACCR is currently evaluating using hashing algorithms for national-

level de-duplication. It is unknown if this method is accurate or feasible in terms of 

financial, FTE, and IT burden on cancer registries. Parallel evaluation of homomorphic 

cryptography and comparison of accuracy and feasibility to hashing is a clear next step to 

determine not only the promise of encryption for de-duplication but also to delineate the 

limitations of each approach to guide future directions.

Nationally, some organizations share data with NCI, CDC, NAACCR and other entities, but 

do so at a greater level of detail with groups that can provide certain legal protections. If 

such a de-duplication service were created, its enhanced security might allow these 

organizations to share more detailed data by meeting legal mandated security requirements, 

thereby increasing data sharing and accelerating the pace of human subjects research.

3.2 Use case two: sharing of confidential data across cancer registries to support case 
aggregation

Currently, confidentiality concerns impede the study of rare cancers. To study rare cancers, 

researchers may wish to aggregate all cases of a specific cancer across geographic 

boundaries to pool data from a sufficient number of cases for statistical analyses. Indeed, 

such an activity is required simply to undertake the basic statistical power analysis needed in 

research proposals. Simple questions such as “will there be enough cases in the study to 

detect an effect of a given size?” at present must be answered speculatively, rather than by an 
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accurate assessment of how many cases will be available for inclusion in the study. However, 

because many states and provinces will not release information on cases if the aggregated 

cell size is less than 6, even for de-identified data, the researchers are prevented from 

assembling a cohort. Individual approvals from each state/province IRB would be required 

to assemble such a cohort, with multiple applications, reviews and approvals, delaying the 

study, incurring costs, and reducing efficiency. Further, after considerable effort and expense 

it sometimes occurs that a sufficient number of cases were not achieved.

We envision a procedure through which data could be uploaded to an encrypted system that 

would provide the results for all states in an area of concern without identifying the data 

from each state. Currently, only de-identified cohorts can be aggregated this way using 

national datasets, such as CiNA. Presently, there are two main strategies in place: attempt to 

de-identify data before sharing it with researchers, or simply do not release it at all. Not 

communicating across state lines leads to data duplication and leads directly to elevated risk 

estimates and potentially to the creation of false hot spots. Furthermore, data with personal 

identifiers or below-county geographic identifiers remains largely sequestered across 

jurisdictional lines. For example, a nationwide study may involve up to 50 separate IRB 

requests to 50 registries. In some cases, data might be made available to researchers 

following de-identification. Fundamentally, however, de-identification is often accomplished 

at the expense of data precision and quality, and case aggregation remains an issue. A secure 

computation approach could, in principle, overcome data fragmentation across jurisdictional 

lines by enforcing separation along technological (i.e., cryptographic) lines. There are 

numerous technical questions for future work to explore, such as which entities control the 

decryption key, and which entities participate in the secure computation protocol. All this, 

however, points toward a vision for the future in which data can one day be aggregated in a 

common registry with the goal of providing higher-quality, faster results while 

simultaneously delivering on legal and policy obligations to protect patient privacy.

3.3 Use case three: secure data linkage

With the advent of personalized medicine and cancer treatment, there is growing interest in 

multiple primary cancer research. It has become increasingly important to understand the 

genetic components that contribute to the occurrence of cancers in individuals. In order to 

track these cancers, we must be able to identify multiple primaries within jurisdictions as 

well as across jurisdictions. An individual may develop a cancer while a resident of one 

state/province and a second or third in another. Without the ability to link these cancers to 

the individual, we are underestimating the number of multiple primary cancers, are 

overestimating first primary cancers and are unable to contribute effectively to research in 

this arena.

Much of population-based cancer research relies on matching cancer registry data with other 

data sets to supplement existing data, to determine a cancer outcome following exposure, or 

various other research applications. These research efforts are often hindered by a registry’s 

inability to provide data for a given linkage project due to concerns surrounding 

confidentiality. Additionally, researchers can coordinate some types of studies, such as 

cohort linkages, through the NAACCR Virtual Pooled Registry Cancer Linkage System 
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(VPR-CLS), but such projects require multiple IRB approvals and often state-by-state (or 

province) permissions and approvals, an inefficient and laborious methodology.

Under geospatial cryptography, the data would be linked in a secure, privacy-preserving 

manner, and researchers could quickly identify the numbers of cases in each state that meet 

the study requirements, and prioritize before submitting their protocol for IRB approvals. 

This would augment the current VPR-CLS approach and help ease the burden of IRB and 

other approval requirements prior to data collection only to find nothing of interest. For 

example, aggregating 10 states’ data and identifying a substantial number of cases that are 

worth studying could save substantial effort that would otherwise be expended on non-

expedited IRB approval processes and could directly support quantification of the statistical 

power of the study during the planning phase.

The case can be made to IRBs that the risk of disclosing confidential data is extremely small 

under encryption, and, based on feedback from members of IRBs present at the NAACCR-

BioMedware geospatial cryptography workshop, there appears to be willingness for IRBs to 

accepting cryptographic approaches to data sharing with expedited IRB review.

Similar to the de-duplication model, the current method for conducting data linkages 

ultimately requires one party to share its data with the other. Conversely in the secure 

geospatial cryptography model, one party sends its data in an encrypted form to the other 

party who performs the secure linkage. Depending on the complexity of the linkage method, 

several rounds of encrypted messages may need to be exchanged between the parties. Exact 

linkage in a secure multi-party setting (El Emam et al. 2012) has been implemented in the 

context of public health surveillance. A greater technical challenge in this setting is 

approximate linkage, in which matching fields should be detected even in the presence of 

small variations (e.g., typos and misspellings), and probabilistic linkage in which a threshold 

probabilistic model is applied across fields to detect a match. As a downside to this 

approach, considerable overhead is incurred in this setting because of the potentially 

exponentially large number of possible outcomes an encrypted computation must explore as 

a consequence of not leaking information about the encrypted data. Highly efficient secure 

protocols for records linkage remain an open but promising research area.

3.4 Use case four: cancer clustering and surveillance

Small-area analysis, below county scale, is rarely conducted at a national level. Due to issues 

with confidentiality, many central cancer registries are unable to supply geographic location, 

such as latitude/longitude or even census tract to a national research database, such as 

NAACCRs CiNA dataset. This precludes the ability to conduct national-level cluster 

detection and, due to edge effects and missing geographic data outside the study area, limits 

the interpretability of state-based cluster detection analysis conducted along state or national 

borders. Notably, no geography-based information below province is currently releasable to 

researchers outside of Canada using North American datasets.

The use of area-based social measures (ABSM) at the national level is also hampered due to 

issues with confidentiality. Currently, three tract-level ABSM are calculated at the time of 

national call for data (Kreiger poverty codes, urban/rural status and urban/rural commuting 
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codes). The codes are intended to maintain confidentiality of location but are not always 

applicable for research purposes. Often the variables of interest extend beyond these three 

ABSM, for instance education or housing information or locally used ABSM. And the 

current ABMS, particularly the poverty code, are not applicable for all regions or for 

stratified race/ethnicity analysis due to issues with residual confounding, which leads to 

biased results.

Masking, aggregating, or spatially blurring the location data is not recommended practice 

(Jacquez 2004) due to lack of precision often leading to Type II error, for cluster detection, 

and computational issues, for ABSM analysis. In addition, research combining individual 

cancer patient data with ABSM requires multilevel analysis (Diez-Roux 1998; Subramanian 

2010), which requires tract identification.

So far in our discussion of secure computation, we have considered a scenario in which two 

data holders securely interact to answer questions of mutual importance. In this model, we 

assume that both parties have plaintext access to their respective datasets, and thus, the goal 

is to complete the computation without requiring plaintext access to the other dataset. Let us 

now consider a slightly different scenario in which there are potentially multiple data holders 

who provide their data in an encrypted form to a centralized registry. Here the goal would be 

for the registry, or perhaps a third party (e.g., researcher) to complete the computation 

without plaintext access to the respective datasets. An example scenario is one in which a 

researcher is interested in performing geospatial clustering of cancer incidences for the 

purposes of hot spot detection. Under current practice, the researcher would seek access to 

geographic data. Depending on the data holders’ confidentiality requirements, the registry 

may undertake to de-identify the data before releasing it to the researcher. Ultimately, 

however, de-identification represents a zero-sum trade-off between data quality and re-

identification risk. Once again, geospatial cryptography could potentially be used to side-

step this trade-off. And again, instead of sending de-identified data to the researcher, the 

registry sends the full-quality data in encrypted form, and the researcher conducts the secure 

computation (e.g., geospatial clustering) with the interaction of the registry. A semi-trusted 

third party (TTP) can be designated as the key holder enforcing a separation between the 

entity that possesses the encrypted data (i.e., the registry) and the entity that can decrypt it 

(i.e., the TTP). Finally, owing to the flexibility of the cryptography, arbitrary decryption 

access structures are possible, such as distributed decryption (e.g., two out of two parties are 

required to perform decryption), or even threshold decryption (e.g., any two out of three).

But how might spatial statistics, necessary for cluster analysis and surveillance, be 

undertaken in geospatial cryptography? Spatial weights are required in geospatial health 

analysis, and underpin most spatial models. Given M points (e.g., coordinates of places of 

residence of cancer cases) in the geographic plane define a matrix of spatial weights, W, of 

the form:

(3)
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Here S is a spatial statistic one wishes to calculate and D is a matrix of measures calculated 

from the attributes, which may include case–control identifiers and exposure metrics. Many 

inferential spatial statistics conform to this general form (Marshall 1991; Lawson 2006). 

Examples include the Bernoulli spatial scan statistic (Kulldorff 1997), Cuzick and Edwards’ 

test (Cuzick and Edwards 1990), Mantel’s test (Mantel 1967), the Knox test (Knox 1964) 

and the Vesta and Janus statistics (Jacquez et al. 2007), to name a few. Geospatial modeling 

approaches such as spatial regression (Anselin and Bera 1998; Waller and Gotway 2004), 

geostatistics (Goovaerts 1997), geographically weighted regression (Fotheringham et al. 

2002) and others may also be written in this form. The weights themselves may be nearest 

neighbor, adjacency or based on geographic distances (e.g., Euclidean distance).

To assess whether geospatial cryptographic techniques can be used in geospatial analysis we 

first calculated Euclidean and nearest neighbor relationships among a set of points in the 

plane, and then assessed clustering among these points by associating a binary attribute with 

each point (to represent a case–control identifier) and applied the Bernoulli spatial scan 

statistic (Kulldorff 1997) to assess spatial clustering. While by no means exhaustive or even 

necessarily representative of the rich complement of algorithms used in spatial analysis, we 

believe this to be a useful first exploration of geospatial cryptography for use in cancer 

clustering and surveillance.

3.4.1 Spatial weight calculations for residential locations—Places of residence are 

frequently used in human subjects research to record place of residence at time of diagnosis 

or death. These also are used in GIS operations to query data layers. Assume data of the 

form (xit, yit, ãit), here xit, yit are the geographic coordinates (e.g., longitude and latitude) of 

human subject i at time t, and ãit is a vector of individual-level attributes (e.g., case–control 

status, BMI, smoking status and age). We wish to evaluate the Euclidean distance between 

human subjects i and j at time t, and the nearest neighbor of person i at time t. Without loss 

of generality suppose the input to the protocol is a pair of coordinate-wise encrypted points 

(here we drop the time subscripting for simplicity): E(x1), E(y1) and E(x2), E(y2). The 

output of the protocol is an encrypted number E (d) representing the geographic Euclidean 

distance d between the two points:

Although protocols exist for securely computing Euclidean distances in a two-party setting 

(Mouffron 2008), i.e., in a setting in which each party knows its own coordinates, our 

protocol computes the result entirely on encrypted data, i.e., in a setting in which the TTPs 

receive the data from the DC’s in encrypted form, and neither party learns any information 

about the points (including even result d). The intuition of the protocol is as follows: two 

parties, TTP1 and TTP2 interact to compute the individual terms of the Euclidean distance as 

defined above, and then homomorphically sum them to produce the encrypted result. One 

approach to the protocol would be to share the private decryption key kd between the TTPs. 

This, however, requires a complex key agreement subprotocol. The approach we take instead 

is to separate privilege of the TTPs as follows: TTP1 receives the encrypted data from the 

DCs and TTP2 knows the private decryption kd. We use the notation 〚x〛 to denote the 
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encryption of x, i.e., E(x). Finally, we assume the TTPs are honest-but-curious (i.e., that they 

will follow the protocol below, but will try to extract information about the points through 

passive observation).

3.5 Secure pairwise euclidean distance (SPED) protocol

Public input Public encryption key ke (i.e., public modulus n in the case of Paillier).

 Private input Encrypted coordinates 〚x1〛, 〚y1〛 and 〚x2〛, 〚y2〛.

 Private input private decryption key kd:

Output Encrypted Euclidean distance 〚d〛.

3.5.1 Phase 1: computing squared terms—For each of the encrypted points 〚xi〛, 

〚yi〛, securely compute their respective squares, :

1. For each point 〚xi〛, 〚yi〛, TTP1 selects random blind factors rx, ry ∈R ℤn 

and computes:

and

and sends the result to TTP2.

2. For each blinded point 〚rxxi〛 and [[ryyi]], TTP2 performs the following:

a. Decrypt to recover blinded plaintext values rxxi and ryyi,

b. Compute the square of blinded plaintext values: (rxxi)2 and (ryyi)2

c. Encrypt the squared blinded plaintext values [[(rxxi)2]] and 

[[ryyi) 2]]and send to TTP1

3. For each blinded squared point, TTP1 computes  mod n and  mod n. TTP1 

then homomorphically strips off the blind factor by computing:

and

3.5.2 Phase 2: computing pairwise terms—Securely compute the pairwise terms 

〚−2x1x2〛 and 〚−2y1y2〛:
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1. Using the blinded terms rx1x1 and rx2x2 received in Step 2 of the previous phase, 

TTP2 performs the following:

a. Compute rx1x1 · rx2x2 mod n

b. Encrypt and send the result 〚rx1 rx2 x1 x2〛 to TTP1

2. TTP1 computes (rx1 rx2)−1 modn then homomorphically strips off the blind 

factors by computing:

Finally, TTP1 computes:

The TTPs repeat these steps similarly for computing 〚−2y1y2〛.

3.5.3 Phase 3: homomorphically computing the sum of terms—Using the 

encrypted terms computed in the previous steps, TTP1 computes the encrypted Euclidean 

distance as follows:

TTP1 can now send the Euclidean distance 〚d〛 to TTP2 to be decrypted, or alternatively it 

can be given as input to another secure protocol.

3.5.4 Security argument (sketch)—We provide a brief argument that the SPED 

protocol is secure, i.e., that neither TTP learns any information about points x1, y1 and x2, 

y2. Security from the perspective of TTP1 is straightforward: Through the course of the 

protocol, TTP1 only ever receives encrypted values, for which it does not know the 

corresponding decryption key, and therefore rests on the semantic security of the Paillier 

encryption system. Security from the perspective of TTP2 is similarly straightforward: 

through the course of the protocol, TTP2 only ever receives encryptions of blinded values. 

TTP2 can decrypt the blinded values, but does not know their blind factors. If TTP1 chose 

the blind factors independently and uniformly at random, then the blinded values are 

perfectly hiding.

3.6 Performance evaluation

We implemented the Paillier cryptosystem in C++ using the MIRACL1 software library 

using current recommended minimum key length |n| = 2048 bits (Barker and Roginsky 

2015). We utilized MIRACL’s built-in Karatsuba–Comba–Montgomery (KCM) 

multiplication assembly optimization for AMD64 architecture, and conducted tests on an 
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Intel Core i7-3770 3.4 GHz desktop running Debian. The timings are for a single thread and 

averaged across 1000 trials. Encryption took approximately 16 ms per trial, as did scalar 

homomorphic multiplication. Using Chinese Remaindering, decryption took approximately 

10 ms per trial. The timings of other operations, such as homomorphic addition, computing 

single multiplications or inverses and random number generation, were all negligible in 

comparison. As a simplifying assumption, we discount the network communication time 

between parties. Table 1 shows the timings for the SPED protocol at each step to compute 

the encrypted Euclidean distance between two points. In total it takes approximately 316 ms 

per point pair.

To get a sense of scale, Fig. 3 shows the time to compute all pairwise distances with the 

SPED protocol as a function of the total number of records. Since multiple invocations of 

SPED can be parallelized, we also show how the execution times can be reduced through the 

use of multiple computing threads/cores.

While substantial research opportunities exist for accelerating computation (since we did not 

optimize the algorithm), these experiments demonstrated spatial cryptography makes 

possible secure computations of spatial weights and spatial statistics for individual-level 

health data such that the identity of individuals cannot be reconstructed or deduced.

4 Discussion

What opportunities might exist for adoption of geospatial cryptography in health research 

and analysis? To address this question a small working group “Evaluation of Homomorphic 

Cryptography for Geospatial Studies with Human Subjects” was convened at the 2013 

meetings of the North American Association of Central Cancer Registries (NAACCR). Over 

the course of two days, six participants (Francis Boscoe, New York Cancer Registry; David 

O’Brien, Alaska Cancer Registry; Glenn Copeland, Michigan Cancer Surveillance Program; 

Rich Pinder, Los Angeles Cancer Surveillance Program; David Stinchcomb, Westat; and 

Xiao Cheng Wu, Louisiana Cancer Registry) met with organizers Geoffrey Jacquez 

(BioMedware and SUNY Buffalo), Khaled El Emam (University of Ottawa) and Betsy 

Kohler (NAACCR) to formulate recommendations regarding the use of geospatial 

cryptography in human subjects research.

4.1 Secure geocoding

Potential applications in addition to the prior use cases were identified and include secure 

geocoding. Workshop participants agreed that issues relating to data privacy represent 

substantial obstacles to basic geographic information system operations and the sharing of 

data. Dr. Daniel Goldberg created a geocoder which is available to the cancer surveillance 

community and is hosted at Texas A&M University. NAACCR members can submit the 

addresses of their cases to this geocoder to convert addresses into latitude–longitude 

coordinates suitable for data aggregation (e.g., calculation of county-specific incidence rates) 

and analysis. The address information is transmitted to the Texas A&M data servers, 

geocoded, and then returned to the registry that supplied the data. The records are then 

1https://github.com/CertiVox/MIRACL.
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deleted from the Texas A&M servers. Security vulnerabilities in this approach exist when 

the data are transmitted, as well as when they reside on the Texas A&M servers.

With online geocoding systems, whoever is providing the data are providing personal 

information (e.g., addresses) to the geocoding system. Using an encrypted secure string 

comparison scheme, it is possible to carry out secure geocoding such that whoever is 

providing the data encrypts it, submits it, and the geocoding is then accomplished on the 

encrypted addresses. Security vulnerabilities during data transmission, while resident on 

servers, and during the geocoding process itself are greatly minimized as the data are never 

decrypted.

Workshop participants suggested the NAACCR community would be enthusiastic about the 

use of geospatial cryptography to safeguard data in conjunction with such a geocoding 

protocol, thereby enabling the sharing of data and accelerating the pace of human subjects 

research.

4.2 Other applications

Registries collect hundreds of data items, many of which have not been evaluated for fitness 

for use or usability (there is significant interest in analyzing treatment data that registries 

collect). Identifying where there are missing/unusable data from registries while masking the 

identity of the individual registries (to encourage participation from as many registries as 

possible) would be extremely useful. Other potential applications of spatial cryptography 

include place-specific health disparities analyses, distance to facility analyses (e.g., at late-

stage diagnosis, how far was a patient from the screening facility?), and new ways of 

accessing and using Census data and tax information (e.g., identifying the denominator), all 

within under secure geospatial encryption.

4.3 Challenges

In spite of the potential applications noted above, challenges facing the development of 

geospatial cryptography techniques include determining how much precomputation the data 

owner should perform and to what degree the necessary analytics can be anticipated, 

minimizing the complexity of cipher key management; developing a broad enough library of 

secure computation routines/functions that an analyst can use; avoiding information leaks 

from multiple queries and model results; and improving performance to handle large data 

sets. Additional considerations include analyst training and implementing strong security 

controls and audits.

Substantial research opportunities exist in this emerging area of geospatial cryptography. 

First, spatial data structures and algorithms such as r trees, quad trees, and kd trees (Samet 

1990) have yet to be developed in geospatial cryptographic systems. How do we store, sort 

and rapidly access geospatial data in the encrypted space? Such questions must be addressed 

for a variety of different data types, including points, space–time paths, polygons and 

networks. This issue must be solved for large-scale GIS operations to become practical for 

encrypted data.
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Second, protocols for undertaking spatial statistics and models under geospatial encryption 

remain to be developed. This is a substantial undertaking at the interface of statistics, 

mathematics and computer science, and involves the development of optimized protocols for 

matrix algebra as a starting point. That such statistical protocols appear feasible was 

demonstrated, at least for the spatial scan statistic, in this research. Full feasibility 

demonstration will involve performance evaluation over a host of complex data 

arrangements, and test deployment of a geospatial cryptographic system at a cancer registry. 

But an enormous amount remains to be accomplished for a host of spatial pattern analysis 

and modeling approaches. Ultimately, a spatial statistical toolbox under geospatial 

cryptography would be a technological development of considerable importance.

Third, the impacts of geospatial cryptography on the individual and society remain to be 

assessed. What are the individual and societal implications of geospatial cryptography for 

confidentiality, data sharing and privacy? Clearly a substantive benefit is enabling 

collaboration through secure data sharing, but what are the societal implications? This 

question has yet to be addressed.

Fourth, important mathematical problems exist and likely more will be revealed in 

geospatial cryptography. The mathematical specification of the data sharing problem has yet 

to be fully addressed. The examples above can be formulated in such as way that the data 

providers are able to approve sharing of results with others before such sharing is 

undertaken. For statistical and GIS analyses, data may be aggregated and reported as a 

statistical summary—for example, the number of cases that meet certain query criteria 

within a given area. By itself such a single query may be secure. But when other data from 

outside sources are added, and other queries of the secure system are undertaken, re-

identification risk can increase (Curtis et al. 2006b, 2011). This problem has yet to be 

properly specified mathematically and solved. Its solution ultimately will provide the closed-

form calculation of privacy risks under repeated queries and the addition of data from 

outside sources. This is of considerable practical importance since it would allow registries a 

formal mathematical approach for assessing re-identification risks.

Finally, the potential impacts on visualization for geospatially encrypted systems (we might 

call this a GEGIS—geospatially encrypted geographic information system) at this juncture 

are largely unknown. The examples posed earlier have carefully avoided visualization, as 

this involves repeated queries, the addition of multiple external data sources, and the 

solution of computational issues noted above (e.g., geospatially encrypted data structures, 

and the ability to undertake spatial statistics under geospatial encryption). Hence, 

visualization poses an intriguing future research direction. The authors believe a key issue 

will be specifying and solving the problem of quantification of re-identification risk under 

multiple queries and when external data sources are included. One could then imagine a 

system that tracks queries as well as external data sources brought to a GEGIS session. As 

these operations take place to support visualization, the GEGIS would continually quantify 

re-identification risk using a closed-form solution. When this risk exceeded a threshold set 

by the data owners, the system might inform the user and stop performing requested 

functions. While this would be annoying to the researcher, it would support the maximum 
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amount of visualization and analysis that would be acceptable to the provider of the 

confidential/private data.

5 Conclusion

An important limitation is that we have focused our discourse on place of residence as the 

relevant location for analyses. However, for occupational exposures the place of employment 

may be of greater importance for cancer etiology. But while residence location, including 

residential histories, is often included in registry data, place of employment may not be. This 

is an important omission that merits further discussion.

Confidentiality protection is a requirement for studies involving human subjects, but can 

slow the pace of basic and applied research that is fundamental to improving our nation’s 

health. Spatial cryptography supports the analysis of confidential geospatial data in the 

encrypted space (e.g., make it homomorphic)—meaning analyses can be conducted on 

encrypted data with potentially little if any risk of revealing confidential information. This 

has enormous potential for accelerating basic and translational research. The protocols 

proposed in this paper, while focused on geospatial analyses of public health data, will 

broadly apply to knowledge domains that analyze confidential geospatial information.
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Fig. 1. 
Setup phase of the prototype SMC platform. “Statistical coding” may include SAS, R, 

Python, ArcGIS and SpaceStat
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Fig. 2. 
Operations phase of the prototype SMC platform
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Fig. 3. 
Computing all pairwise distances with SPED
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Table 1

Timings of operations in the SPED protocol per point pair

Encryptions Decryptions Scalar homomorphic
multiplications

Computing square terms (Phase 1) 4 × 16 ms 4 × 10 ms 8 × 16 ms

Computing pairwise terms (Phase 2) 2 × 16 ms n/a 2 × 16 ms

Computing sum of terms (Phase 3) n/a n/a n/a

Total 6 × 16 ms = 96 ms 6 × 10 ms = 60 ms 10 × 16 ms = 160 ms

Combined total 316 ms
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