Skip to main content

Advertisement

Log in

Laser enhancement of cancer cell destruction by photothermal therapy conjugated glutathione (GSH)-coated small-sized gold nanoparticles

  • Original Article
  • Published:
Lasers in Medical Science Aims and scope Submit manuscript

Abstract

The current study presents the employment of glutathione (GSH)-modified small-sized gold nanoparticles (AuNPs) ~ 3 nm in photothermal therapy (PTT), to evaluate the targeting and the toxic effect of cancer rather than normal cells. GSH is pH-sensitive surfaces that exhibit a fast response to the variation in pH conditions between normal (~ 7.4) and cancer cells (6–6.5). Results showed a considerable toxic impact via GSH-AuNP accumulation in cancer cells by both green and NIR laser irradiation. A proportional relation of cellular death to AuNP concentration, exposure time, and light-to-heat conversion efficiency has been demonstrated. The small-sized GSH-AuNPs represent promising agents for developing the safety issues of photothermal cancer treatment by the selective targeting of cancer rather than normal cells, reducing the NP toxicity by their size overlapping with the renal clearance barrier of kidney filtration (~ 5.5 nm), and promoting the photothermal performance in the NIR region, in which light penetration into deep cancer regions is more interested.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Kato Y, Ozawa S, Miyamoto C, Maehata Y, Suzuki A, Maeda T, Baba Y (2013) Acidic extracellular microenvironment and cancer. Cancer Cell Int 13:89

    Article  CAS  Google Scholar 

  2. Hejmadi M (2010) Introduction to cancer biology, 2nd edn

    Google Scholar 

  3. Skapek SX, Ferrari A, Gupta AA, Lupo PJ, Butler E, Shipley J, Barr FG, Hawkins DS (2019) Rhabdomyosarcoma. Nat Rev Dis Primers 5(1)

  4. Bettaieb A, Wrzal PK, Averill-Bates DA (2013) Hyperthermia : cancer treatment and beyond. In: Rangel L (ed) Medical Cancer Treatment: Conventional and Innovative Approaches, Ch. 12

    Google Scholar 

  5. Behrouzkia Z, Joveini Z, Keshavarzi B, Eyvazzadeh N, Aghdam RZ (2016) Hyperthermia: how can it be used? Oman Med J 2:89–97

    Article  Google Scholar 

  6. Jaque D, Martínez Maestro L, del Rosal B, Haro-Gonzalez P, Benayas A, Plaza JL, Martín Rodrígueza E, García Soléa J (2014) Nanoparticles for photothermal therapies. Nanoscale 6:9494

    Article  CAS  Google Scholar 

  7. Shanmugam V, Selvakumar S, Yeh CS (2014) Near-infrared light-responsive nanomaterials in cancer therapeutics. Chem Soc Rev 43:6254–6287

    Article  CAS  Google Scholar 

  8. Leung JP, Wu S, Chou KC, Signorell R (2013) Investigation of sub 100 nm gold nanoparticles for laser-induced thermotherapy of cancer. Nanomaterials 3:86–106

    Article  CAS  Google Scholar 

  9. Hubenthal F, Hendrich C, Träger F (2010) Damping of the localized surface plasmon polariton resonance of gold nanoparticles. Appl Phys B Lasers Opt 100:225–230

    Article  CAS  Google Scholar 

  10. Evlyukhin AB, Kuznetsov AI, Novikov SM, Beermann J, Reinhardt C, Kiyan R, Bozhevolnyi SI, Chichkov BN (2012) Optical properties of spherical gold mesoparticles. Appl Phys B Lasers Opt 106:841–848

    Article  CAS  Google Scholar 

  11. Shah M, Badwaik V, Kherde Y, Waghwani HK, Modi T, Aguilar ZP, Rodgers H, Hamilton W, Marutharaj T, Webb C, Lawrenz MB, Dakshinamurthy R (2014) Gold nanoparticles: various methods of synthesis and antibacterial applications. Front Biosci 19:1320–1344

    Article  Google Scholar 

  12. Guo L, Jackma J, Yang HH, Cho NJ, Kim DH (2015) Strategies for enhancing the sensitivity of plasmonic nanosensors. Nanotoday 10:213–239

    Article  CAS  Google Scholar 

  13. Wang JY, Chen J, Yang J, Wang H, Shen X, Sun YM, Guo M, Zhang XD (2016) Effects of surface charges of gold nanoclusters on long-term in vivo biodistribution, toxicity, and cancer radiation therapy. Int J Nanomedicine 11:3475–3485

    Article  CAS  Google Scholar 

  14. Zhang XD, Wu D, Shen X, Liu PX, Fan FY, Fan SJ (2012) In vivo renal clearance, biodistribution, toxicity of gold nanoclusters. Biomaterials 33:4628–4638

    Article  CAS  Google Scholar 

  15. Zhang XD, Yang J, Song SS, Long W, Chen J, Shen X, Wang H, Sun YM, Liu PX, Fan S (2014) Passing through the renal clearance barrier: toward ultrasmall sizes with stable ligands for potential clinical applications. Int J Nanomedicine 9:2069–2072

    Article  Google Scholar 

  16. Zhang XD, Sun Y, Luo ZH, Gao K, Chen J (2015) Ultrasmall glutathione-protected gold nanoclusters as next generation radiotherapy sensitizers with high tumor uptake and high renal clearance. Sci Rep 5:1–7

    Google Scholar 

  17. Broda J, Schmid G, Simon U (2014) Size- and ligand-specific bioresponse of gold clusters and nanoparticles: challenges and perspectives. In: Mingos DMP (ed) Gold clusters, colloids and nanoparticles I. Springer International Publishing, Switzerland, pp 189–242

    Google Scholar 

  18. Wade LG (2010) Amino acids, peptides, and proteins. In: Organic chemistry, 7th edn Ch.24. Pearson Education, Inc., pp 1153–1199

  19. AL-Jawad SMH, Taha AA, Al-Halbosiy MMF, AL-Barram LFA (2018) Synthesis and characterization of small-sized gold nanoparticles coated by bovine serum albumin (BSA) for cancer photothermal therapy. Photodiagn Photodyn Ther 21:201–210

    Article  CAS  Google Scholar 

  20. Chevrier DM, Chatt A, Zhang P (2012) Properties and applications of proteinstabilized fluorescent gold nanoclusters: short review. J Nanophoton 6:1–17

    Article  Google Scholar 

  21. Briñas RP, Hu M, Qian L, Lymar ES, Hainfeld JF (2008) Gold nanoparticle size controlled by polymeric Au(I) thiolate precursor size. J Am Chem Soc 130:975–982

    Article  Google Scholar 

  22. Hou H, Chen L, He H, Chen L, Zhao Z, Jin Y (2015) Fine-tuning LSPR response of gold nanorod/polyaniline core-shell nanoparticles with high photothermal efficiency for cancer cell ablation. J Mater Chem B 3:5189–5196

    Article  CAS  Google Scholar 

  23. Jiang K, Smith DA, Pinchuk A (2013) Size-dependent photothermal conversion efficiencies of plasmonically heated gold nanoparticles. J Phys Chem C 117:27073–27080

    Article  CAS  Google Scholar 

  24. Malola SA, Lehtovaara L, Enkovaara J, Hakkinen HJ (2013) Birth of the localized surface plasmon resonance in monolayer protected gold nanoclusters. ACS Nano 7:10263–10270

    Article  CAS  Google Scholar 

  25. Abadeer NS, Murphy CJ (2016) Recent progress in cancer thermal therapy using gold nanoparticles. J Phys Chem C 120:4691–4716

    Article  CAS  Google Scholar 

  26. Takano S, Yamazoe S, Koyasu K, Tsukuda T (2015) Slow-reduction synthesis of a thiolate-protected one-dimensional gold cluster showing an intense near-infrared absorption. J Am Chem Soc 137:7027–7030

    Article  CAS  Google Scholar 

  27. Hu J, Bae YH (2016) pH-Sensitive nanosystems. In: Torchilin V (ed) Smart pharmaceutical nanocarriers. Imperial College Press Northeastern University, USA, pp 49–81

    Chapter  Google Scholar 

  28. Pillai PP, Kowalczyk B, Grzybowski BA (2016) Self-assembly of like-charged nanoparticles into microscopic crystals. Nanoscale. 8:157–161

    Article  CAS  Google Scholar 

  29. Mizuhara T, Saha K, Moyano DF, Kim CS, Yan B, Kim YK, Rotello VM (2015) Acylsulfonamide-functionalized zwitterionic gold nanoparticles for enhanced cellular uptake at tumor pH. Angew Chem Int Ed 54:6567–6570

    Article  CAS  Google Scholar 

  30. Mura S, Nicolas J, Couvreur P (2013) Stimuli-responsive nanocarriers for drug delivery. Nat Mater 12:991–1003

    Article  CAS  Google Scholar 

  31. Salzano G, Costa FD, Torchilin PV (2015) SiRNA delivery by stimuli-sensitive nanocarriers. Curr Pharm Des 21:4566–4573

    Article  CAS  Google Scholar 

  32. Deng H, Zhong Y, Du M, Liu Q, Fan ZH, Dai F, Zhang X (2014) Theranostic self-assembly structure of gold nanoparticles for nir photothermal therapy and x-ray computed tomography imaging. Theranostics 4:904–918

    Article  CAS  Google Scholar 

  33. Iida K, Noda M, Ishimura K, Nobusada K (2014) First-principles computational visualization of localized surface plasmon resonance in gold nanoclusters. J Phys Chem 118:11317–11322

    Article  CAS  Google Scholar 

  34. Yao M, He L, McClements DJ, Xiao H (2015) Uptake of gold nanoparticles by intestinal epithelial cells: impact of particle size on their absorption, accumulation, and toxicity. J Agric Food Chem 63:8044–8049

    Article  CAS  Google Scholar 

  35. Fratoddi I, Venditti I, Cametti C, Russo MV (2015) How toxic are gold nanoparticles? The state-of-the-art. Nano Res 8:1771–1799

    Article  CAS  Google Scholar 

  36. Capek I (2015) On biodecorated gold nanoparticles distributed within tissues and cells. J Nanomed Res 2:1–10

    Google Scholar 

  37. Oh E, Delehanty JB, Sapsford KE, Susumu K, Goswami R, Blanco-Canosa JB, Dawson PE, Granek J, Shoff M, Zhang Q, Goering PL, Huston A, Medintz IL (2011) Cellular uptake and fate of PEGylated gold nanoparticles is dependent on both cell-penetration peptides and particle size. ACS Nano 5:6434–6448

    Article  CAS  Google Scholar 

  38. Sousa AA, Morgan JT, Brown PH, Adams A, Mudiyanselage P, Zhang G, Ackerson CJ, Kruhlak MJ, Leapman RD (2012) Synthesis, characterization and direct intracellular imaging of ultrasmall and uniform glutathione-coated gold nanoparticles. Small 8:2277–2286

    Article  CAS  Google Scholar 

  39. Wang P, Wang X, Wang L, Hou X, Liu W, Chen C (2015) Interaction of gold nanoparticles with proteins and cells. Sci Technol Adv Mater 16:1–15

    Google Scholar 

  40. Giljohann DA, Seferos DS, Daniel WL, Massich MD, Patel PC, Mirkin CA (2010) Gold nanoparticles for biology and medicine. Angew Chem Int Ed 49:3280–3294

    Article  CAS  Google Scholar 

  41. Kobayashi H, Watanabe R, Choyke PL (2014) Improving conventional enhanced permeability and retention (EPR) effects; what is the appropriate target? Theranostics 4:81–89

    Article  CAS  Google Scholar 

  42. Silva J, Fernandes AR, Baptista PV (2014) Application of nanotechnology in drug delivery. In: Sezer AD (ed) Application of Nanotechnology in Drug Delivery, Turkey, p 128–154

  43. Umair M, Javed I, Rehman M, Madni A, Javeed A, Ghafoor A, Ashraf M (2016) Nanotoxicity of inert materials: the case of gold, silver and iron. J Pharm Pharm Sci 19:161–180

    Article  CAS  Google Scholar 

  44. Douplik A (2014) Laser surgery. In: Zhou SA, Zhou L, Brahme A (eds) Physical medicine and rehabilitation, Comprehensive biomedical physics. Elsevier B.V., pp 171–199

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lamyaa F. A. AL-Barram.

Ethics declarations

Conflict of interest

The author declares that there is no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

AL-Barram, L.F.A. Laser enhancement of cancer cell destruction by photothermal therapy conjugated glutathione (GSH)-coated small-sized gold nanoparticles. Lasers Med Sci 36, 325–337 (2021). https://doi.org/10.1007/s10103-020-03033-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10103-020-03033-y

Keywords

Navigation