Skip to main content
Log in

Transcutaneous laser treatment of leg veins

  • Original Article
  • Published:
Lasers in Medical Science Aims and scope Submit manuscript

Abstract

Leg telangiectasias and reticular veins are a common complaint affecting more than 80 % of the population to some extent. To date, the gold standard remains sclerotherapy for most patients. However, there may be some specific situations, where sclerotherapy is contraindicated such as needle phobia, allergy to certain sclerosing agents, and the presence of vessels smaller than the diameter of a 30-gauge needle (including telangiectatic matting). In these cases, transcutaneous laser therapy is a valuable alternative. Currently, different laser modalities have been proposed for the management of leg veins. The aim of this article is to present an overview of the basic principles of transcutaneous laser therapy of leg veins and to review the existing literature on this subject, including the most recent developments. The 532-nm potassium titanyl phosphate (KTP) laser, the 585–600-nm pulsed dye laser, the 755-nm alexandrite laser, various 800–983-nm diode lasers, and the 1,064-nm neodymium yttrium–aluminum–garnet (Nd:YAG) laser and various intense pulsed light sources have been investigated for this indication. The KTP and pulsed dye laser are an effective treatment option for small vessels (<1 mm). The side effect profile is usually favorable to that of longer wavelength modalities. For larger veins, the use of a longer wavelength is required. According to the scarce evidence available, the Nd:YAG laser produces better clinical results than the alexandrite and diode laser. Penetration depth is high, whereas absorption by melanin is low, making the Nd:YAG laser suitable for the treatment of larger and deeply located veins and for the treatment of patients with dark skin types. Clinical outcome of Nd:YAG laser therapy approximates that of sclerotherapy, although the latter is associated with less pain. New developments include (1) the use of a nonuniform pulse sequence or a dual-wavelength modality, inducing methemoglobin formation and enhancing the optical absorption properties of the target structure, (2) pulse stacking and multiple pass laser treatment, (3) combination of laser therapy with sclerotherapy or radiofrequency, and (4) indocyanin green enhanced laser therapy. Future studies will have to confirm the role of these developments in the treatment of leg veins. The literature still lacks double-blind controlled clinical trials comparing the different laser modalities with each other and with sclerotherapy. Such trials should be the focus of future research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Robertson L, Evans C, Fowkes FG (2008) Epidemiology of chronic venous disease. Phlebology 23:103–111

    Article  CAS  PubMed  Google Scholar 

  2. Evans CJ, Allan PL, Lee AJ et al (1998) Prevalence of venous reflux in the general population on duplex scanning: the Edinburgh vein study. J Vasc Surg 28:767–776

    Article  CAS  PubMed  Google Scholar 

  3. Ruckley CV, Evans CJ, Allan PL et al (2008) Telangiectasia in the Edinburgh Vein Study: epidemiology and association with trunk varices and symptoms. Eur J Vasc Endovasc Surg 36:719–724

    Article  CAS  PubMed  Google Scholar 

  4. Somjen GM (1995) Anatomy of the superficial venous system. Dermatol Surg 21:35–45

    Article  CAS  PubMed  Google Scholar 

  5. Mellor RH, Brice G, Stanton AW et al (2007) Mutations in FOXC2 are strongly associated with primary valve failure in veins of the lower limb. Circulation 115:1912–1920

    Article  CAS  PubMed  Google Scholar 

  6. Ouvry PA (1989) Telangiectasia and sclerotherapy. J Dermatol Surg Oncol 15:177–181

    Article  CAS  PubMed  Google Scholar 

  7. Sebben JE (1989) Sclerotherapy for telangiectasia of the lower extremity. Dermatol Clin 7:129–135

    CAS  PubMed  Google Scholar 

  8. Neumann HA, Kockaert MA (2003) The treatment of leg telangiectasia. J Cosmet Dermatol 2:73–81

    Article  CAS  PubMed  Google Scholar 

  9. Kern P (2002) Sclerotherapy of varicose leg veins. Technique, indications and complications. Int Angiol 21:40–45

    CAS  PubMed  Google Scholar 

  10. Guex JJ (2010) Complications of sclerotherapy: an update. Dermatol Surg 36(Suppl 2):1056–1063

    Article  CAS  PubMed  Google Scholar 

  11. Lupton JR, Alster TS, Romero P (2002) Clinical comparison of sclerotherapy versus long-pulsed Nd:YAG laser treatment for lower extremity telangiectases. Dermatol Surg 28:694–697

    Article  PubMed  Google Scholar 

  12. Apfelberg DB, Maser MR, Lash H (1976) Argon laser management of cutaneous vascular deformities. A preliminary report. West J Med 124:99–101

    CAS  PubMed Central  PubMed  Google Scholar 

  13. Apfelberg DB, Maser MR, Lash H (1978) Argon laser treatment of cutaneous vascular abnormalities: progress report. Ann Plast Surg 1:14–18

    Article  CAS  PubMed  Google Scholar 

  14. Apfelberg DB, Maser MR, Lash H et al (1984) Use of the argon and carbon dioxide lasers for treatment of superficial venous varicosities of the lower extremity. Lasers Surg Med 4:221–231

    Article  CAS  PubMed  Google Scholar 

  15. Arndt KA (1982) Argon laser therapy of small cutaneous vascular lesions. Arch Dermatol 118:220–224

    Article  CAS  PubMed  Google Scholar 

  16. Anderson RR, Parrish JA (1983) Selective photothermolysis: precise microsurgery by selective absorption of pulsed radiation. Science 220:524–527

    Article  CAS  PubMed  Google Scholar 

  17. Braverman IM (2000) The cutaneous microcirculation. J Investig Dermatol Symp Proc 5:3–9

    Article  CAS  PubMed  Google Scholar 

  18. Sadick NS (2003) Sclerotherapy and ambulatory phlebectomy. In: Bolognia JL, Jorizzo JL, Rapini RP (eds) Dermatology. Mosby, London, pp 2399–2414

    Google Scholar 

  19. Braverman IM (1989) Ultrastructure and organization of the cutaneous microvasculature in normal and pathologic states. J Invest Dermatol 93:2S–9S

    Article  CAS  PubMed  Google Scholar 

  20. Redisch W, Pelzer R (1949) Localized vascular dilatations of the human skin, capillary microscopy and related studies. Am Heart J 37:106–113

    Article  CAS  PubMed  Google Scholar 

  21. McCoppin HH, Hovenic WW, Wheeland RG (2011) Laser treatment of superficial leg veins: a review. Dermatol Surg 37:729–741

    Article  CAS  PubMed  Google Scholar 

  22. Sommer A, Van Mierlo PL, Neumann HA et al (1997) Red and blue telangiectasias. Differences in oxygenation? Dermatol Surg 23:55–59

    CAS  PubMed  Google Scholar 

  23. Weiss RA, Weiss MA (1993) Doppler ultrasound findings in reticular veins of the thigh subdermic lateral venous system and implications for sclerotherapy. J Dermatol Surg Oncol 19:947–951

    Article  CAS  PubMed  Google Scholar 

  24. Schadeck M (2003) Current status of sclerotherapy of varicose veins. Hautarzt 54:1065–1072

    Article  CAS  PubMed  Google Scholar 

  25. Anderson RR, Parrish JA (1981) The optics of human skin. J Invest Dermatol 77:13–19

    Article  CAS  PubMed  Google Scholar 

  26. Greenwald J, Rosen S, Anderson RR et al (1981) Comparative histological studies of the tunable dye (at 577 nm) laser and argon laser: the specific vascular effects of the dye laser. J Invest Dermatol 77:305–310

    Article  CAS  PubMed  Google Scholar 

  27. Van Gemert M, Welch A (1989) Clinical use of laser–tissue interactions. IEEE Eng Med Biol Mag 8:10–13

    Article  PubMed  Google Scholar 

  28. Ross EV, Domankevitz Y (2005) Laser treatment of leg veins: physical mechanisms and theoretical considerations. Lasers Surg Med 36:105–116

    Article  PubMed  Google Scholar 

  29. Garden JM, Tan OT, Kerschmann R et al (1986) Effect of dye laser pulse duration on selective cutaneous vascular injury. J Invest Dermatol 87:653–657

    Article  CAS  PubMed  Google Scholar 

  30. Dierickx CC, Casparian JM, Venugopalan V et al (1995) Thermal relaxation of port-wine stain vessels probed in vivo: the need for 1–10-millisecond laser pulse treatment. J Invest Dermatol 105:709–714

    Article  CAS  PubMed  Google Scholar 

  31. Anderson RR, Parrish JA (1981) Microvasculature can be selectively damaged using dye lasers: a basic theory and experimental evidence in human skin. Lasers Surg Med 1:263–276

    Article  CAS  PubMed  Google Scholar 

  32. Malskat W, Poluektova A, Van der Geld C, et al. (2013) Endovenous laser ablation (EVLA): a review of mechanisms, modeling outcomes and issues for debate. Lasers Med Sci (in press)

  33. Baumler W, Ulrich H, Hartl A et al (2006) Optimal parameters for the treatment of leg veins using Nd:YAG lasers at 1064 nm. Br J Dermatol 155:364–371

    Article  CAS  PubMed  Google Scholar 

  34. Nelson JS, Milner TE, Anvari B et al (1995) Dynamic epidermal cooling during pulsed laser treatment of port-wine stain. A new methodology with preliminary clinical evaluation. Arch Dermatol 131:695–700

    Article  CAS  PubMed  Google Scholar 

  35. Tong AK, Tan OT, Boll J et al (1987) Ultrastructure: effects of melanin pigment on target specificity using a pulsed dye laser (577 nm). J Invest Dermatol 88:747–752

    Article  CAS  PubMed  Google Scholar 

  36. Manuskiatti W, Eimpunth S, Wanitphakdeedecha R (2007) Effect of cold air cooling on the incidence of postinflammatory hyperpigmentation after Q-switched Nd:YAG laser treatment of acquired bilateral nevus of Ota like macules. Arch Dermatol 143:1139–1143

    Article  PubMed  Google Scholar 

  37. Nelson JS, Milner TE, Anvari B et al (1996) Dynamic epidermal cooling in conjunction with laser-induced photothermolysis of port wine stain blood vessels. Lasers Surg Med 19:224–229

    Article  CAS  PubMed  Google Scholar 

  38. Anvari B, Tanenbaum BS, Milner TE et al (1995) A theoretical study of the thermal response of skin to cryogen spray cooling and pulsed laser irradiation: implications for treatment of port wine stain birthmarks. Phys Med Biol 40:1451–1465

    Article  CAS  PubMed  Google Scholar 

  39. Waldorf HA, Alster TS, McMillan K et al (1997) Effect of dynamic cooling on 585-nm pulsed dye laser treatment of port-wine stain birthmarks. Dermatol Surg 23:657–662

    CAS  PubMed  Google Scholar 

  40. Buscher BA, McMeekin TO, Goodwin D (2000) Treatment of leg telangiectasia by using a long-pulse dye laser at 595 nm with and without dynamic cooling device. Lasers Surg Med 27:171–175

    Article  CAS  PubMed  Google Scholar 

  41. Altshuler GB, Zenzie HH, Erofeev AV et al (1999) Contact cooling of the skin. Phys Med Biol 44:1003–1023

    Article  CAS  PubMed  Google Scholar 

  42. Jia W, Tran N, Sun V et al (2012) Photocoagulation of dermal blood vessels with multiple laser pulses in an in vivo microvascular model. Lasers Surg Med 44:144–151

    Article  PubMed Central  PubMed  Google Scholar 

  43. Vincent JR, Jones GT, Hill GB et al (2011) Failure of microvenous valves in small superficial veins is a key to the skin changes of venous insufficiency. J Vasc Surg 54:62S–69S

    Article  PubMed  Google Scholar 

  44. Fournier N, Brisot D, Mordon S (2002) Treatment of leg telangiectases with a 532 nm KTP laser in multipulse mode. Dermatol Surg 28:564–571

    Article  CAS  PubMed  Google Scholar 

  45. Woo WK, Jasim ZF, Handley JM (2003) 532-nm Nd:YAG and 595-nm pulsed dye laser treatment of leg telangiectasia using ultralong pulse duration. Dermatol Surg 29:1176–1180

    Article  PubMed  Google Scholar 

  46. West TB, Alster TS (1998) Comparison of the long-pulse dye (590–595 nm) and KTP (532 nm) lasers in the treatment of facial and leg telangiectasias. Dermatol Surg 24:221–226

    CAS  PubMed  Google Scholar 

  47. McMeekin TO (1999) Treatment of spider veins of the leg using a long-pulsed Nd:YAG laser (Versapulse) at 532 nm. J Cutan Laser Ther 1:179–180

    Article  CAS  PubMed  Google Scholar 

  48. Bernstein EF, Kornbluth S, Brown DB et al (1999) Treatment of spider veins using a 10 millisecond pulse-duration frequency-doubled neodymium YAG laser. Dermatol Surg 25:316–320

    Article  CAS  PubMed  Google Scholar 

  49. Massey RA, Katz BE (1999) Successful treatment of spider leg veins with a high-energy, long-pulse, frequency-doubled neodymium:YAG laser (HELP-G). Dermatol Surg 25:677–680

    Article  CAS  PubMed  Google Scholar 

  50. Ozden MG, Bahcivan M, Aydin F et al (2011) Clinical comparison of potassium-titanyl-phosphate (KTP) versus neodymium:YAG (Nd:YAG) laser treatment for lower extremity telangiectases. J Dermatolog Treat 22:162–166

    Article  PubMed  Google Scholar 

  51. Spendel S, Prandl EC, Schintler MV et al (2002) Treatment of spider leg veins with the KTP (532 nm) laser—a prospective study. Lasers Surg Med 31:194–201

    Article  PubMed  Google Scholar 

  52. Faurschou A, Olesen AB, Leonardi-Bee J, et al. (2011) Lasers or light sources for treating port-wine stains. Cochrane Database Syst Rev CD007152

  53. Bernstein EF, Lee J, Lowery J et al (1998) Treatment of spider veins with the 595 nm pulsed-dye laser. J Am Acad Dermatol 39:746–750

    Article  CAS  PubMed  Google Scholar 

  54. Hsia J, Lowery JA, Zelickson B (1997) Treatment of leg telangiectasia using a long-pulse dye laser at 595 nm. Lasers Surg Med 20:1–5

    Article  CAS  PubMed  Google Scholar 

  55. Reichert D (1998) Evaluation of the long-pulse dye laser for the treatment of leg telangiectasias. Dermatol Surg 24:737–740

    CAS  PubMed  Google Scholar 

  56. Kono T, Yamaki T, Ercocen AR et al (2004) Treatment of leg veins with the long pulse dye laser using variable pulse durations and energy fluences. Lasers Surg Med 35:62–67

    Article  PubMed  Google Scholar 

  57. Alora MB, Stern RS, Arndt KA et al (1999) Comparison of the 595 nm long-pulse (1.5 msec) and ultralong-pulse (4 msec) lasers in the treatment of leg veins. Dermatol Surg 25:445–449

    Article  CAS  PubMed  Google Scholar 

  58. Rubin IK, Farinelli WA, Doukas A et al (2012) Optimal wavelengths for vein-selective photothermolysis. Lasers Surg Med 44:152–157

    Article  PubMed  Google Scholar 

  59. McDaniel DH, Ash K, Lord J et al (1999) Laser therapy of spider leg veins: clinical evaluation of a new long pulsed alexandrite laser. Dermatol Surg 25:52–58

    Article  CAS  PubMed  Google Scholar 

  60. Ross EV, Meehan KJ, Gilbert S et al (2009) Optimal pulse durations for the treatment of leg telangiectasias with an alexandrite laser. Lasers Surg Med 41:104–109

    Article  CAS  PubMed  Google Scholar 

  61. Trelles MA, Allones I, Alvarez J et al (2006) The 800-nm diode laser in the treatment of leg veins: assessment at 6 months. J Am Acad Dermatol 54:282–289

    Article  PubMed  Google Scholar 

  62. Passeron T, Olivier V, Duteil L et al (2003) The new 940-nanometer diode laser: an effective treatment for leg venulectasia. J Am Acad Dermatol 48:768–774

    Article  PubMed  Google Scholar 

  63. Eremia S, Li C, Umar SH (2002) A side-by-side comparative study of 1064 nm Nd:YAG, 810 nm diode and 755 nm alexandrite lasers for treatment of 0.3–3 mm leg veins. Dermatol Surg 28:224–230

    Article  PubMed  Google Scholar 

  64. Rogachefsky AS, Silapunt S, Goldberg DJ (2002) Nd:YAG laser (1064 nm) irradiation for lower extremity telangiectases and small reticular veins: efficacy as measured by vessel color and size. Dermatol Surg 28:220–223

    Article  PubMed  Google Scholar 

  65. Omura NE, Dover JS, Arndt KA et al (2003) Treatment of reticular leg veins with a 1064 nm long-pulsed Nd:YAG laser. J Am Acad Dermatol 48:76–81

    Article  PubMed  Google Scholar 

  66. Munia MA, Wolosker N, Munia CG et al (2012) Comparison of laser versus sclerotherapy in the treatment of lower extremity telangiectases: a prospective study. Dermatol Surg 38:635–639

    Article  CAS  PubMed  Google Scholar 

  67. Levy JL, Elbahr C, Jouve E et al (2004) Comparison and sequential study of long pulsed Nd:YAG 1,064 nm laser and sclerotherapy in leg telangiectasias treatment. Lasers Surg Med 34:273–276

    Article  PubMed  Google Scholar 

  68. Coles CM, Werner RS, Zelickson BD (2002) Comparative pilot study evaluating the treatment of leg veins with a long pulse ND:YAG laser and sclerotherapy. Lasers Surg Med 30:154–159

    Article  PubMed  Google Scholar 

  69. Fodor L, Ramon Y, Fodor A et al (2006) A side-by-side prospective study of intense pulsed light and Nd:YAG laser treatment for vascular lesions. Ann Plast Surg 56:164–170

    Article  CAS  PubMed  Google Scholar 

  70. Parlette EC, Groff WF, Kinshella MJ et al (2006) Optimal pulse durations for the treatment of leg telangiectasias with a neodymium YAG laser. Lasers Surg Med 38:98–105

    Article  PubMed  Google Scholar 

  71. Sadick NS (2003) Laser treatment with a 1064-nm laser for lower extremity class I–III veins employing variable spots and pulse width parameters. Dermatol Surg 29:916–919

    Article  PubMed  Google Scholar 

  72. Sadick NS (2001) Long-term results with a multiple synchronized-pulse 1064 nm Nd:YAG laser for the treatment of leg venulectasias and reticular veins. Dermatol Surg 27:365–369

    Article  CAS  PubMed  Google Scholar 

  73. Sadick NS, Prieto VG, Shea CR et al (2001) Clinical and pathophysiologic correlates of 1064-nm Nd:Yag laser treatment of reticular veins and venulectasias. Arch Dermatol 137:613–617

    CAS  PubMed  Google Scholar 

  74. Goldman MP, Eckhouse S (1996) Photothermal sclerosis of leg veins. ESC Medical Systems, LTD Photoderm VL Cooperative Study Group. Dermatol Surg 22:323–330

    CAS  PubMed  Google Scholar 

  75. Schroeter C, Wilder D, Reineke T et al (1997) Clinical significance of an intense, pulsed light source on leg telangiectasias of up to 1 mm diameter. Eur J Dermatol 7:38–42

    Google Scholar 

  76. Mordon S, Brisot D, Fournier N (2003) Using a "non uniform pulse sequence" can improve selective coagulation with a Nd:YAG laser (1.06 microm) thanks to Met-hemoglobin absorption: a clinical study on blue leg veins. Lasers Surg Med 32:160–170

    Article  PubMed  Google Scholar 

  77. Trelles MA, Weiss R, Moreno-Moragas J et al (2010) Treatment of leg veins with combined pulsed dye and Nd:YAG lasers: 60 patients assessed at 6 months. Lasers Surg Med 42:609–614

    Article  PubMed  Google Scholar 

  78. Tanghetti E, Sherr E (2003) Treatment of telangiectasia using the multi-pass technique with the extended pulse width, pulsed dye laser (Cynosure V-Star). J Cosmet Laser Ther 5:71–75

    Article  PubMed  Google Scholar 

  79. Kauvar AN, Lou WW (2000) Pulsed alexandrite laser for the treatment of leg telangiectasia and reticular veins. Arch Dermatol 136:1371–1375

    CAS  PubMed  Google Scholar 

  80. Brunnberg S, Lorenz S, Landthaler M et al (2002) Evaluation of the long pulsed high fluence alexandrite laser therapy of leg telangiectasia. Lasers Surg Med 31:359–362

    Article  PubMed  Google Scholar 

  81. Moreno-Moraga J, Hernandez E, Royo J et al (2013) Optimal and safe treatment of spider leg veins measuring less than 1.5 mm on skin type IV patients, using repeated low-fluence Nd:YAG laser pulses after polidocanol injection. Lasers Med Sci 28:925–933

    Article  PubMed  Google Scholar 

  82. Goldman MP, Fitzpatrick RE (1990) Pulsed-dye laser treatment of leg telangiectasia: with and without simultaneous sclerotherapy. J Dermatol Surg Oncol 16:338–344

    Article  CAS  PubMed  Google Scholar 

  83. Sadick NS, Trelles MA (2005) A clinical, histological, and computer-based assessment of the Polaris LV, combination diode, and radiofrequency system, for leg vein treatment. Lasers Surg Med 36:98–104

    Article  PubMed  Google Scholar 

  84. Trelles MA, Martin-Vazquez M, Trelles OR et al (2006) Treatment effects of combined radio-frequency current and a 900 nm diode laser on leg blood vessels. Lasers Surg Med 38:185–195

    Article  PubMed  Google Scholar 

  85. Chess C (2004) Prospective study on combination diode laser and radiofrequency energies (ELOS) for the treatment of leg veins. J Cosmet Laser Ther 6:86–90

    Article  PubMed  Google Scholar 

  86. Shafirstein G, Moreno M, Klein A et al (2011) Treatment of leg veins with indocyanine green and lasers investigated with mathematical modelling. Int J Hyperthermia 27:771–781

    Article  CAS  PubMed  Google Scholar 

  87. Klein A, Baumler W, Koller M et al (2012) Indocyanine green-augmented diode laser therapy of telangiectatic leg veins: a randomized controlled proof-of-concept trial. Lasers Surg Med 44:369–376

    Article  PubMed  Google Scholar 

  88. Klein A, Buschmann M, Babilas P et al (2013) Indocyanine green-augmented diode laser therapy vs. long-pulsed Nd:YAG (1064 nm) laser treatment of telangiectatic leg veins: a randomized controlled trial. Br J Dermatol 169:365–373

    Article  CAS  PubMed  Google Scholar 

  89. Schwartz L, Maxwell H (2011) Sclerotherapy for lower limb telangiectasias. Cochrane Database Syst Rev CD008826

Download references

Funding sources

None declared

Conflicts of interest

None declared

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arne A. Meesters.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Meesters, A.A., Pitassi, L.H.U., Campos, V. et al. Transcutaneous laser treatment of leg veins. Lasers Med Sci 29, 481–492 (2014). https://doi.org/10.1007/s10103-013-1483-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10103-013-1483-2

Keywords

Navigation